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Abstract

Binary embedding refers to methods for embedding points in
R

d into vertices of a Hamming cube of dimension k, such
that the normalized Hamming distance well preserves the
pre-defined similarity between vectors in the original space.
A common approach to binary embedding is to use random
projection with unstructured projection, followed by one-bit
quantization to produce binary codes, which has been proven
that k = O (

ε−2 log n
)

is required to approximate the angle
up to ε-distortion, where n is the number of data. Of particu-
lar interest in this paper is circulant binary embedding (CBE)
with angle preservation, where a random circulant matrix is
used for projection. It yields comparable performance while
achieving the nearly linear time and space complexities, com-
pared to embedding methods relying on unstructured pro-
jection. To support promising empirical results, several non-
asymptotic analysis have been introduced to establish condi-
tions on the number of bits to meet ε-distortion embedding,
where one of state-of-the-art achieves the optimal sample
complexity k = O (

ε−3 log n
)

while the distortion rate ε−3

is far from the optimality, compared to k = O (
ε−2 log n

)
. In

this paper, to support promising empirical results of CBE, we
extend the previous theoretical framework to address the opti-
mal condition on the number of bits, achieving that CBE with
k = O (

ε−2 log n
)

approximates the angle up to ε-distortion
under mild assumptions. We also provide numerical experi-
ments to support our theoretical results.

Introduction

Binary embedding (BE) is a nonlinear dimensionality re-
duction method, where a mapping is determined to relate
high-dimensional points in R

d to binary codes of length
O(d) whose normalized Hamming distance preserves the
pre-defined distance in the original space R

d. It becomes a
ubiquitous tool for large-scale data analysis, including ap-
proximate nearest neighbor search (Charikar 2002), large-
scale machine learning (Gong et al. 2013; Yu et al. 2014),
and so on. A notable method is angle-preserving binary em-
bedding (Charikar 2002), where an embedding function is
constructed by random projection followed by one-bit quan-
tization such that the angular distance between two points is
preserved by the normalized Hamming distance. Besides the
angle-preserving binary embedding, various methods have
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Table 1: Comparison of the analysis for BE with unstruc-
tured projection and circulant projection in terms of bit com-
plexity and conditions necessary to build the analysis, where
ε is a distortion rate and n is the number of data points.

Methods Bit Complexity Conditions
Unstructured BE O (

ε−2 log n
)

-
Our analysis O (

ε−2 log n
)

small infinity norm
(Oymak 2016) (Near-optimal) O (

ε−3 log n
)

small infinity norm
(Yu et al. 2015) (Near-optimal) O (

ε−2 log2 n
)

small infinity norm

been proposed, including the method preserving the similar-
ity specified by shift-invariant kernels (Raginsky and Lazeb-
nik 2009; Kim and Choi 2015) and the maximum inner prod-
uct search (Shrivastava and Li 2014).

Most of binary embedding methods involving random
projection require long codes to achieve satisfactory perfor-
mance, so time and space complexities become serious con-
cerns. In the case where the code length is O(d), both time
and space complexities require O(d2) to construct a single
binary code, which becomes expensive when the dimension
of data d is large. In order to improve the scalability, both in
terms of computational cost and space complexity, a few fast
binary embedding methods have been recently developed by
accelerating matrix-vector multiplication with some struc-
tured matrices: a randomized Hadamard matrix (Dasgupta,
Kumar, and Sarlós 2011), the Kronecker product of multi-
ple small matrices (Gong et al. 2013; Kim and Choi 2015;
Zhang et al. 2015), a circulant matrix (Yu et al. 2014), and
two consecutive structured matrices (Yi, Caramanis, and
Price 2015; Choromanska et al. 2016). These can be inter-
preted as nonlinear extensions of random projection with
Walsh-Hadamard matrix (Ailon and Chazelle 2009), the
Kronecker product of two small matrices (Eftekhari, Babaie-
Zadeh, and Moghaddam 2011), and a circulant matrix (Hin-
richs and Vybı́ral 2011).

Of particular interest is the circulant binary embedding
(CBE) (Yu et al. 2014), which yields comparable per-
formance while reducing time complexity from O(d2) to
O(d log d) and the space complexity from O(d2) to O(d)
by employing the randomized circulant matrix. To sup-
port such promising results, several theoretical guarantees
(Oymak 2016; Yu et al. 2015; Choromanska et al. 2016;
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Dirsken and Stollenwerk 2016) have been proposed by
introducing non-asymptotic analysis of binary embedding
with random structured matrices, which is mainly inter-
preted as analyzing the number of bits to approximate the
angular distance up to ε-distortion with high probability.
This type of analysis is analogous to the well-studied the-
ory for fast random projection (Ailon and Chazelle 2009;
Eftekhari, Babaie-Zadeh, and Moghaddam 2011; Hinrichs
and Vybı́ral 2011), providing conditions on preserving pair-
wise Euclidean distance in a low-dimensional space up to
ε-distortion, which is built on Johnson-Lindenstrauss lemma
(Johnson and Lindenstrauss 1984).

In case of binary embedding with unstructured projec-
tion, (Yi, Caramanis, and Price 2015) provides the optimal
bit complexity, showing that O(ε−2 log n) bits are required
to preserve the angular distance up to ε-distortion, where
n is the number of data points. Similarly, (Oymak 2016;
Yu et al. 2015; Choromanska et al. 2016; Dirsken and Stol-
lenwerk 2016) propose the theoretical frameworks to estab-
lish conditions on the number of bits, but they achieve only
near-optimal bit complexities compared to O(ε−2 log n).
Specifically, (Oymak 2016) obtain the optimal sample com-
plexity, O(ε−3 log n), but the distortion rate ε−3 is far from
the optimality. In this paper, to support promising empirical
results of CBE, we extend the framework (Oymak 2016) to
address the optimal condition on the number of bits to meet
ε-distortion binary embedding. Our work contains the fol-
lowing technical improvements over the previous analyses:
• A non-trivial extension of (Oymak 2016) is developed,

where a Gaussian random sequence is replaced by
Rademacher entries, i.e. an independent Bernoulli ran-
dom sequence. It matches the original implementation of
CBE (Yu et al. 2014).

• Compared to existing analyses (Choromanska et al. 2016;
Dirsken and Stollenwerk 2016; Yu et al. 2015; Oymak
2016), our analysis achieves the optimal complexity of
CBE, matching the optimality of unstructured projection
in case that ε-distortion binary embedding is interested,
under reasonable conditions on the number of bits and co-
herence of datasets, which is summarized in Table 1.

Background
In this section, we briefly review binary embedding meth-
ods: (1) standard binary embedding where random projec-
tion is performed with an unstructured matrix; (2) circulant
binary embedding where the randomized circulant matrix is
used (Yu et al. 2014). We also review the existing results of
theoretical guarantees in the case of binary embedding with
unstructured projection.

Binary Embedding: Unstructured Projection

A common approach to binary embedding constitutes a ran-
dom projection followed by a one-bit quantization, to relate
a vector x ∈ Sd−1 to a binary string of length k (Charikar
2002):

h(x) � sgn
(
G�x

)
,

= [h1(x), . . . , hk(x)]
�, (1)

where Sd−1 is referred to as (d − 1)-sphere and sgn(·)
is an element-wise one-bit quantizer. Elements of G =
[g1, . . . , gk] ∈ R

d×k are drawn independently from Gaus-
sian distribution, N (0, 1), with zero mean and unit variance.

It was shown in (Charikar 2002) that the Hamming
distance between hl(xi) = sgn(g�l xi) and hl(xj) =
sgn(g�l xj) is an unbiased estimator of the angular distance
between two vectors xi and xj , i.e.,

E

[
I [hl(xi) �= hl(xj)]

]
=

θxi,xj

π
, l = 1, · · · , k (2)

where I[ · ] is the indicator function which returns 1 when-
ever the input argument is true and 0 otherwise. The angle
between two vectors xi and xj is denoted by θxi,xj

and the
angle is normalized by π such that the value of the angular
distance lies between 0 and 1.

Definition 1. The normalized Hamming distance between
two binary codes h(xi) ∈ {1, 0}k and h(xj) ∈ {1, 0}k of
length k is defined as the average of k independent Bernoulli
indicator variables Il(xi,xj) = I [hl(xi) �= hl(xj)] (l =
1, . . . , k), i.e.,

dH(h(xi), h(xj)) �
1

k

k∑
l=1

I [hl(xi) �= hl(xj)] . (3)

Definition 2. Given ε ∈ (0, 1) and any finite set of d-
dimensional vectors, D = {x1, · · · ,xn}, a mapping h :
Sd−1 → {0, 1}k is said to be an ε-distortion binary embed-
ding if ∣∣∣∣dH(h(xi), h(xj))−

θxi,xj

π

∣∣∣∣ ≤ ε, (4)

for ∀xi,xj ∈ D.

Of particular interest is the bit complexity of ε-distortion
binary embedding, establishing a certain condition on the
number of bits, k, which guarantees Eq. 4, given a dataset
D. The bit complexity in the case of Eq. 1 is summarized in
the following theorem (Jacques et al. 2013).

Theorem 1. Given ε ∈ (0, 1) and any finite data set
D = {x1, · · · ,xn} ⊂ Sd−1, with probability at least
1 − exp(−cε2k), k = O (

1
ε2 log n

)
implies that we have

h : Rd → {0, 1}k such that for all xi,xj ∈ D∣∣∣∣dH(h(xi), h(xj))−
θxi,xj

π

∣∣∣∣ ≤ ε,

where c > 0 is a constant.

Proof. Since the proof is the standard application of Hoeffd-
ings’ inequality, we defer it to supplementary material.

Circulant Binary Embedding: Structured
Projection

We briefly review circulant binary embedding (CBE) (Yu et
al. 2014). Given a d-dimensional vector g = [g1, . . . , gd]

�,
where {gi}di=1 are assumed to be independently drawn from
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Gaussian distribution N (0, 1), a circulant matrix Gc ∈
R

d×d = circ(g) is defined as⎛
⎜⎜⎜⎜⎜⎝

g1 gd · · · g3 g2
g2 g1 · · · g4 g3
... g2 g1

. . .
...

...
...

. . .
... gd

gd gd−1 · · · g2 g1

⎞
⎟⎟⎟⎟⎟⎠ . (5)

Given x ∈ R
d, circulant binary embedding (Yu et al.

2014) uses the randomized circulant matrix Eq. 5 (Hinrichs
and Vybı́ral 2011) to produce a d-bit binary code:

hC(x) = sgn
(
G�c Dx

)
, (6)

where Gc ∈ R
d×d is given in Eq. 5 and D ∈ R

d×d is a
diagonal matrix with a Rademacher sequence, i.e., diago-
nal entries being either +1 or -1 (independently drawn from
Bernoulli distribution with probability 1/2). Pre-multiply x
by D is equivalent to applying random sign flipping to each
entry of x. Since the sign flipping can be performed as a pre-
processing for each data x, D is dropped out for the sake of
simplicity in the subsequent analysis. It was shown in (Yu
et al. 2014) that CBE improves the time complexity from
O(d2) to O(d log d) and the space complexity from O(d2)
to O(d). If one desires to select k(< d) bits, one can ran-
domly select k bits in d entries of hC(x) ∈ R

d. Resorting to
FFT, hC(x) can be efficiently computed by

hC(x) = sgn
(
F−1(F(g)�F(Dx)

)
, (7)

where F(·) represents the discrete Fourier transform,
F−1(·) is the inverse discrete Fourier transform, and � is
element-wise product. Since (inverse) discrete Fourier trans-
form requires O(d log d) in time, the time complexity of
CBE is O(d log d).

Note that in the case of CBE, Bernoulli indicator vari-

ables
{
IC
l (xi,xj) = I [

hC
l (xi) �= hC

l (xj)
] }d

l=1
are not

marginally independent, in contrast to the unstructured pro-
jection, where hC

l (x) represents the l-th bit of hC(x) de-
fined in Eq. 6. This imposes a technical challenge for the
conditions to meet ε-distortion embedding. The normalized
Hamming distance between two binary codes hC(xi) and
hC(xj) is defined as

dH
(
hC(xi), h

C(xj)
)
=

1

k

k∑
l=1

IC
l (xi,xj). (8)

For the sake of simplicity, we omit input arguments in
IC
l (xi,xj), i.e., use IC

l in obvious cases.

Motivation

Our analysis is motivated by empirical success of CBE
(Yu et al. 2014) and recently proposed theoretical anal-
ysis to establish large deviation theory (Yi, Caramanis,
and Price 2015; Yu et al. 2015; Choromanska et al. 2016;
Dirsken and Stollenwerk 2016; Oymak 2016), leading to the

bit complexity. In this section, we discuss the technical chal-
lenge and limitation of the previous works to enhance our
motivation.

Among the theoretical work to analyze CBE, the diffi-
culty is raised by the statistical dependence between indi-
cator variables. Formally, due to the dependence between
the column vectors in cir(g), the Bernoulli indicator vari-
ables, {IC

l }kl=1 are not marginally independent, which im-
poses a technical challenge to establish certain conditions
on the number of bits required to meet ε-distortion binary
embedding. To alleviate the dependence, most of works im-
plicitly or explicitly make use of the asymptotic behav-
ior of indicator variables, in which the dependence be-
comes very weak, as the data dimension grows (see Figure
1). This interesting phenomenon leads to develop promis-
ing theoretical frameworks (Yi, Caramanis, and Price 2015;
Yu et al. 2015; Oymak 2016; Choromanska et al. 2016;
Dirsken and Stollenwerk 2016) to analyze the behavior of
CBE. Unfortunately, these frameworks have the following
limitations:

• Near-optimal complexity. (Yu et al. 2015; Choromanska
et al. 2016; Oymak 2016) only achieve near-optimal bit
complexities, motivating us to establish an analysis to-
wards the optimality. Specifically, given restricted geo-
metrical configurations, (Yu et al. 2015) shows that k =
O(ε−2 log2 n) implies that CBE meets ε-distortion binary
embedding. (Oymak 2016) follows the similar framework
of (Yu et al. 2015) to achieve k = O(ε−3 log n) under
mild conditions, where the optimal sample complexity is
introduced but the distortion rate ε−3 is far from the opti-
mality.

• One-layer vs. Two-layer binary embedding. (Yi, Cara-
manis, and Price 2015; Dirsken and Stollenwerk 2016)
propose two-layer binary embedding by applying addi-
tional random projection with structured matrices. Under
mild conditions, this direction achieves the same time and
space complexities with the almost optimal bit complex-
ity 1 (Yi, Caramanis, and Price 2015; Dirsken and Stol-
lenwerk 2016). We believe, however, that an additional
random projection procedure is absolutely not necessary
for the optimal complexity, supported by theoretical and
empirical analysis to be presented in the subsequent sec-
tions.

Main Results for Optimal Bit Complexity

In this section, we develop a theoretical analysis to address
that how many bits are required for CBE to meet ε-distortion
binary embedding. Our work contains the following techni-
cal improvements over previous analysis:

• We extend the framework (Oymak 2016) for the standard
CBE, where it assumes that the diagonal entries of D in

1As pointed out in (Dirsken and Stollenwerk 2016), the analysis
presented in (Yi, Caramanis, and Price 2015) implicitly assumes
that the indicator variables are pairwise independent, which is not
satisfied in case of a small-dimensional space. This phenomenon
has been independently observed as in Figure 1.
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Figure 1: Empirical evidence for the dependence between {exp(Ii)}mi=1 with respect to various data dimensions, where m = 5

and the angle between two points is π
2 . The vertical line represents E

[∏5
i=1 exp(Ii)

]
−∏5

i=1 E [exp(Ii)], where the expectation
is approximated by the sample average. Black solid line means that the binary codes are generated by CBE and red dotted line
means BE with unstructured projection.

Eq. 6 follow i.i.d. isotropic Gaussian distribution. We re-
place the Gaussian random sequence into the Rademacher
entries, i.e., an independent Bernoulli sequence with equal
probability. We observe that the Rademacher sequence
is more natural for CBE with superior empirical results
to the Gaussian random sequence, introduced in experi-
ments.

• Compared to existing analysis (Choromanska et al. 2016;
Dirsken and Stollenwerk 2016; Yu et al. 2015; Oymak
2016), our analysis relies on realistic conditions on the
number of bits and maximum value of vectors in datasets
to achieve the optimal complexity of CBE, matching
the optimality of unstructured projection in case that ε-
distortion binary embedding is interested.

To present our analysis, the following assumptions should
be introduced.

Condition 1. Suppose that we have D = {x1, · · · ,xn} ⊂
Sd−1. Letting ρ � sup1≤i≤n ||xi||∞, there exist nonnega-
tive constants c1, c2, c3, such that

• k ≥ c1ε
−2 log n.

• c2εkρ log d < 1.
• c3ρk < ε.
• c4k

3ρ2ε2 < 1,

where k is the number of bits, n is the number of data points,
and d is the data dimension. In addition to the assumptions,
we implicitly assume that N > d, which is a certainly desir-
able scenario.

Condition 1 summarizes the assumptions necessary to
build the main analysis. Note that this condition consists of
three assumptions where the first condition matches the op-
timal bit complexity of BE with unstructured projection, the
second/third conditions are similarly introduced as in (Oy-
mak 2016), and the final condition appears because of de-
riving the optimal complexity. Except for the first one, it is
not trivial to see the relation of variables, leading to describe
details in the next section.

Before introducing technical arguments, our main result
is firstly presented:

Theorem 2. Given ε ∈ (0, 1) and any finite dataset D =
{x1, · · · ,xn} ⊂ Sd−1, under Condition 1, with probability
at least 1 − exp(−c5ε

2k), k = O (
ε−2 log n

)
implies that

CBE guarantees ε-distortion binary embedding such that for
all xi,xj ∈ D∣∣∣∣dH(hC(xi), h

C(xj))−
θxi,xj

π

∣∣∣∣ ≤ ε,

where c5 > 0 is a constant.

Proof. Since the proof contains technical arguments, details
are discussed in the subsequent sections.

Theorem 2 achieves the optimal bit complexity composed
of the optimal distortion rate and sample complexity, com-
pared to BE. Up to our best knowledge, our analysis is the
first attempt to establish the optimal complexity under mild
conditions, even though there exist several empirical evi-
dences (Yu et al. 2014; 2015) to support that CBE similarly
performs the standard BE.

Discussion on Condition 1

In this section, we discuss on the complex relation of major
factors (ρ, ε, k, d) in Condition 1. Our interest is to consider
low-distortion binary embedding, i.e. ε = o(1) and the case
that a upper bound on l∞ norm decreases with respect to
data dimension, meaning that ρ follows a similar form of
O(d−c), where c > 0 is a positive constant. Then, there
exist various choices of k and n by employing the following
geometrical configurations.

As pointed out in (Oymak 2016), the maximum incoher-
ence of dataset suggests that ρ = O(d−1/2). It is easy to see
that setting by k = O(d1/3) and n = O(ε2k) satisfies the
assumptions in Condition 1. (Ailon and Chazelle 2009) pre-
process data vectors by applying Hadamard transformation,
having ρ = O((log d)d−1/2) with high probability. Simi-
larly, the assumptions in Condition 1 are easily satisfied by
setting k = O

(
(log d)

−2/3
d1/3

)
and n = O(ε2k).

Remark that our setting of k is slightly worse than
O((log d)−1d1/2), which is chosen by (Oymak 2016). The
difference appears from introducing the optimal distortion
rate, and we argue that such difference is not significant.
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Proof of Main Theorem 2

In this section, we introduce the proof of Theorem 2 by
employing an orthogonal decomposition of circulant pairs
which is studied in (Yu et al. 2015; Oymak 2016). Before
discussing details of our analysis, several notations are for-
mally introduced.

Definition 3. Given an example xi for any i = 1, · · · , n,
the m-shifted variable for xi is defined as xc

i,m �
[circ(Dx)]:,m, where [circ(Dx)]:,m is the m-th column vec-
tor of the circulant matrix for Dx defined by Eq. 5.

Therefore, for any l = 1, · · · , k, IC
l can be re-defined as

follows.

IC
l � I[sgn(w�xc

i,l) �= sgn(w�xc
j,l)], (9)

where w is drawn from N (0, I).
The following definition re-states the procedure of or-

thogonal decomposition for circulant pairs
{
xc
i,l,x

c
j,l

}m

l=1
as studied in (Oymak 2016; Yu et al. 2015).

Definition 4. Given xi,xj from D = {x1, · · · ,xn} ⊂
Sd−1, there exists an orthogonal decomposition for
xc
i,m,xc

j,m defined as:

xc
i,m = x̂c

i,m + p̂i,m (10)

xc
j,m = x̂c

j,m + p̂j,m, (11)

where m = 1, · · · , d. If m = 1, both p̂i and p̂j are zero vec-
tors. Otherwise (i.e. if m > 1), p̂i, p̂j are the projections of

xc
i,m,xc

j,m onto the subspace spanned by
{
x̂c
i,l, x̂

c
j,l

}m−1

l=1
.

A crucial observation of Definition 4 is that ||p̂i,m||2 for
any i and m is always bounded with high probability, which
is shown in the subsequent corollary.

Corollary 1. Suppose that xi,xj from D =
{x1, · · · ,xn} ⊂ Sd−1 satisfies max{||xi||∞, ||xj ||∞} ≤
ρ. Letting ε ∈ (0, 1), with probability at least
1− 4 exp(−ε2k), we achieve that

max{||p̂i,m||2, ||p̂j,m||2} ≤ caεkρ,

where ca > 0 is a constant. {p̂i,m, p̂j,m}km=1 are defined in
Definition 4.

Proof. Since the proof is eseentially similar to Lemma 5.1
in (Oymak 2016) by employing Lemma 2 in Appendix, we
describe details in the supplementary material.

Given Condition 1, c2εkρ log d < 1 induces the following
interesting property:

max{||p̂i,m||2, ||p̂j,m||2} ≤ c log−1 d, (12)

where c > 0 is a constant. As d grows, both ||p̂i,m||2 and
||p̂j,m||2 become the zero vectors. The following corollary
is a simple consequence of Corollary 1, which means that the
absolute value of random projection of ||p̂i,m||2 is bounded
with high probability.

 5 500 5000
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Figure 2: Plots of ||p̂i,m||2 and the sample average of
|g�p̂i,m| for θxi,xj = π/2 and θxi,xj = π/3 with respect
to the data dimension. The sample average is computed by
1
n

∑n
k=1 |g�k p̂i,m|, where gk ∼ N (0, I) for i = 1, · · · , n

and n = 100. Without loss of generality, we set m = 2.

Corollary 2. Under the same setting of Corollary 1 with
Condition 1 including c4k

3ρ2ε2 ≤ 1, for any i ∈ {1, · · · , n}
and m ∈ {1, · · · , k}, the following holds

P
[|g�p̂i,m| ≤ ε

] ≥ 1− exp(−c4ε
2k),

where g follows N (0, I) and c4 > 0.

Proof. Supposing that ||p̂i,m||2 ≤ ε, the standard Gaussian
distribution property suggests that

P
[|g�p̂i,m| ≥ tε

] ≤ exp(−0.5t2),

where g follows N (0, I). Corollary 1 says that p̂i,m is al-
ways bounded by caεkρ with probability 1 − 4 exp(−ε2k),
which leads to

P
[|g�p̂i,m| ≤ ε

] ≥ 1− exp
(−0.5c−2

a ρ−2k−2
)
.

The condition c4k
3ρ2ε2 ≤ 1 makes the lower bound inter-

esting, i.e.,

1− 4 exp(−ε2k) ≥ 1− exp(−c4ε
2k),

1− exp
(−0.5c−2

a ρ−2k−2
) ≥ 1− exp(−c4ε

2k).

Then, given a large n, there exists a non-negative c4 such
that

c4 ≤ min

{
1

2
c−2
a k−3ρ−2ε−2, 1− log 4

c1 log n

}
,

which concludes the proof.

By setting k = O(d1/3) and ρ = O((log d)d−1/2),
Corollary 2 can be interpreted in terms of the data dimen-
sion. It means that as d goes infinity, the absolute value of
random projection of ||p̂i,m||2 is bounded with high proba-
bility, which is empirically supported in Figure 2.
Lemma 1. Under the same setting of Corollary 1, for m =
1, · · · , k, with probability at least 1− 4 exp(−ε2k), the fol-
lowing holds∣∣ang

(
x̂c
i,m, x̂c

j,m

)− ang (xi,xj)
∣∣ ≤ cεkρ,

where ang(x,y) is the angle between two vectors x,y and
c > 0 is a constant.
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Proof. The proof has a similar spirit of the logic in (Oymak
2016). Lemma A.5 in (Oymak 2016) states that

ang
(
xi, x̂

c
i,m

)
= ang

(
xi,xi − p̂i,m

) ≤ 5||p̂i,m||2.
According to Corollary 1, with probability at least 1 −
4 exp(−ε2k), the following is achieved:

max
{

ang
(
xi, x̂

c
i,m

)
, ang

(
xj , x̂

c
j,m

)} ≤ 5caεkρ,

where ca > 0 is a constant. Then, the following relation is
revealed by applying the triangle inequality of angular dis-
tance: ∣∣ang

(
x̂c
i,m, x̂c

j,m

)− ang (xi,xj)
∣∣

≤ ∣∣ang
(
x̂c
i,m,xi

)
+ ang

(
x̂c
j,m,xj

)∣∣ ≤ 10caεkρ.

By setting c = 10ca, the proof is concluded.

In the rest of the section, the proof of Theorem 2 is
described. We extend the arguments presented in (Oymak
2016) to achieve the optimal bit complexity. Our interest is
to build a tight lower bound on the following event:

E(i,j) �
∣∣∣∣∣1k

k∑
l=1

IC
l (xi,xj)− ang(xi,xj)

∣∣∣∣∣ ≤ ε, (13)

where IC
l is defined as in Eq. 9 and ε ∈ (0, 1). As observed

in Figure 1, {IC
l }kl=1 are not mutually independent, which

means that the event should be decomposed into the follow-
ing two sub-events:

E(i,j),r �
∣∣∣∣∣1k

k∑
l=1

Ir,l
(i,j) − ang(xi,xj)

∣∣∣∣∣ ≤ ε (14)

E(i,j),p � ∩k

[
max

{|g�p̂i,k|, |g�p̂j,k|
} ≤ ε

]
,(15)

where Ir,l
(i,j) is the union of two events defined by

E1
margin � I [

g�x̂c
i,m > ε and g�x̂c

j,m < −ε
]

E2
margin � I [

g�x̂c
i,m < −ε and g�x̂c

j,m > ε
]
.

It is trivial to observe that E(i,j) is satisfied whenever
E(i,j),r ∩ E(i,j),p holds, which leads to develop a lower
bound on the event E(i,j):

P
[
E(i,j)

]
= P

[
E(i,j),r ∩ E(i,j),p

]
(16)

= 1− P

[
Ec

(i,j),r ∪ Ec
(i,j),p

]
(17)

≥ 1−
(
P

[
Ec

(i,j),r

]
+ P

[
Ec

(i,j),p

])
.(18)

As discussed in (Yu et al. 2015; Oymak 2016), the ran-
dom variables {xc

i,m,xc
j,m}km=1 are mutually independent,

an upper bound on P

[
Ec

(i,j),r

]
can be achieved by applying

the standard Hoeffding’s inequality, resulting in

P

[
Ec

(i,j),r

]
≤ 2 exp(−2ε2k), (19)

where we place derivation on this inequality in the supple-
mentary material. Now, looking at the second event, the fol-
lowing holds.

P
[
Ec

(i,j),p

]
= P

[
∪k

m=1

[
min

{
|g�p̂i,m|, |g�p̂j,m|

}
≥ ε

]]

≤
k∑

m=1

P

[
min

{
|g�p̂i,m|, |g�p̂j,m|

}
≥ ε

]

≤ k exp(−c4ε
2k) = exp(−cdε

2k),

where the final inequality is derived by Corollary 2 and 0 <
cd ≤ c4 − ln k

c1 logn is a constant, which is easy to be satisfied
in case of a large n.

Now, a lower bound on the event E(i,j) is achieved by the
followings:

P
[
E(i,j)

] ≥ 1−
(
P

[
Ec

(i,j),r

]
+ P

[
Ec

(i,j),p

])
≥ 1− (

2 exp(−2ε2k) + exp(−cdε
2k)

)
≥ 1− (

3 exp(−cf ε
2k)

)
,

where cf is set to min(2, cd). Obviously, cf is greater than
zero, which makes the bound interesting. The standard pro-
cedure with the union bound derives the lower bound on the
event E(i,j) for all pairs 1 ≤ i, j ≤ n:

P
[∩(i,j)E(i,j)

] ≥ 1− 3n2 exp(−cf ε
2k)

≥ 1− exp(−c5ε
2k),

where the final inequality holds due to the first condition in
Condition 1, i.e., k ≥ c1ε

−2 log n. It concludes the proof of
Theorem 2.

Experiments

In this section, we conducted various numerical experiments
to support the theoretical analysis of CBE developed in sec-
tion with the following datasets:

• MNIST (LeCun et al. 1998) consists of 70,000 hand-
written digit images where images are represented by
784-dimensional vectors. We used raw images as high-
dimensional vectors.

• CIFAR-10 (Krizhevsky and Hinton 2009) consists of
60,0000 low-resolution images from 10 classes. We
trained a residual network (He et al. 2016) with 32 layers
and 1,024 filters to achieve around 95% classification ac-
curacy. We extracted 1,024-dimensional features for im-
ages, which is obtained by the average pooling layer in
residual network.

• GIST1M (Jégou, Douze, and Schmid 2011) consists of
920-dimensional 1 million GIST descriptors with addi-
tional 1,000 queries.

For preprocessing, all vectors in datasets are l2 normalized.
Due to the space limit, we defer the results of GIST1M and
another dataset to the supplementary material.

We compared CBE with BE and CBEg in terms of angle
preservation and Hamming ranking evaluation, where CBEg
means that CBE with Gaussian random sequence instead of
Radmecher sequence, proposed in (Oymak 2016). All ex-
periments are repeated five times to avoid any bias.
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Figure 3: Plots for the relative error on approximating the angle between vectors measured by Frobenious and spectral norms,
showing that CBE is almost identical to the standard binary embedding.
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Figure 4: Precision-recall curves from Hamming rank-
ing evaluation to compare CBE with BE and CBEg on
MNIST(the top row) and CIFAR-10(the second row).

Angle Preservation

To evaluate the angle preservation, we measured the relative
error on approximating the angle with the normalized Ham-
ming distance:

||H −A||F
||A||F ,

||H −A||2
||A||2 ,

where || · ||F is Frobenius norm, || · ||2 is spectral norm,

Hij = dH(h(xi), h(xj)) and Aij =
θxi,xj

π . Similar met-
rics have been introduced to measure the relative error on
Gram matrix (Yang et al. 2014). To evaluate H and A, we
randomly select 3,000 data points for all datasets. Figure 3
concludes that BE and CBE are indistinguishable in terms of
angle preservation. Moreover, we observed that a Gaussian
random sequence proposed in (Oymak 2016) is inferior to
Rademacher sequence, showing that our theoretical analysis
is well suited for CBE.

Hamming Ranking Evaluation

We followed Hamming ranking evaluation to compare the
methods in terms of approximate nearest neighbor accuracy,
where the close neighbors for queries are retrieved by cal-
culating the normalized Hamming distance between queries
and data points. For all datasets, we randomly select 1,000
queries from test datasets and computed 100 nearest neigh-
bors for ground-truths, where angular distance is used. For
evaluation measure, we computed the standard precision-
recall curves with respect to the different number of bits.

Figure 4 compares the performance of BE and CBE in
terms of precision-recall curves, concluding that the perfor-
mance of BE and CBE is almost identical. These results are
also very similar to Figure 3 and are well supported by the
analysis in the main section.

Conclusions

Binary embedding (BE) projects the data points in R
d into

{0, 1}k such that the normalized Hamming distance should
preserve the pre-defined similarity metric. Despite the sim-
plicity of binary embedding, it requires the large time and
space complexities, O(d2), to precisely estimate the similar-
ity, where the data dimension is denoted by d. A promising
approach to reduce the time and space complexities is cir-
culant binary embedding (CBE), which is empirically vali-
dated that CBE shows comparable performance. In this pa-
per, we established a condition on the number of bits re-
quired for CBE to preserve the angular distance up to ε-
distortion, k = O (

ε−2 log n
)
, which is the optimal bit com-

plexity compared to BE with unstructured projection.

Appendix

Lemma 2. Letting two unit vectors be x,y ∈ Sd−1, sup-
pose that max{||x||∞, ||y||∞} ≤ ρ and x�y = 0. Given
D be a diagonal matrix whose entries are i.i.d. Rademacher
entries, for all 1 ≤ i �= j ≤ d, the following is achieved:

P
(|circ(Dx)�:,icirc(Dy):,j | > t

) ≤ 2 exp
(−ct2ρ−2

)
P
(|circ(Dx)�:,icirc(Dx):,j | > t

) ≤ 2 exp
(−ct2ρ−2

)
,

where t ∈ (0, 1), c > 0, and circ(·) is defined in Eq. 5.

Proof. We defer the proof to the supplementary material.
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