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Abstract

This paper learns a graphical model, namely an explanatory
graph, which reveals the knowledge hierarchy hidden inside
a pre-trained CNN. Considering that each filter1 in a conv-
layer of a pre-trained CNN usually represents a mixture of
object parts, we propose a simple yet efficient method to au-
tomatically disentangles different part patterns from each fil-
ter, and construct an explanatory graph. In the explanatory
graph, each node represents a part pattern, and each edge en-
codes co-activation relationships and spatial relationships be-
tween patterns. More importantly, we learn the explanatory
graph for a pre-trained CNN in an unsupervised manner, i.e.
without a need of annotating object parts. Experiments show
that each graph node consistently represents the same object
part through different images. We transfer part patterns in the
explanatory graph to the task of part localization, and our
method significantly outperforms other approaches.

Introduction

Convolutional neural networks (CNNs) (LeCun et al. 1998;
Krizhevsky, Sutskever, and Hinton 2012; He et al. 2016;
Li et al. 2015) have achieved superior performance in ob-
ject classification and detection. However, the end-to-end
learning strategy makes the entire CNN a black box. When
a CNN is trained for object classification, we believe that
its conv-layers have encoded rich implicit patterns (e.g. pat-
terns of object parts and patterns of textures). Therefore, in
this research, we aim to provide a global view of how vi-
sual knowledge is organized in a pre-trained CNN, which
presents considerable challenges. For example,

1 How many types of patterns are memorized by each con-
volutional filter of the CNN (here, a pattern may describe
a specific object part or a certain texture)?

2 Which patterns are co-activated to describe an object part?

3 What is the spatial relationship between two patterns?

In this study, given a pre-trained CNN, we propose to
mine mid-level object part patterns from conv-layers, and we
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1The output of a conv-layer is called the feature map of a conv-
layer. Each channel of this feature map is produced by a filter, so
we call a channel the feature map of a filter.

Figure 1: An explanatory graph represents knowledge hier-
archy hidden in conv-layers of a CNN. Each filter in a pre-
trained CNN may be activated by different object parts. Our
method disentangles part patterns from each filter in an un-
supervised manner, thereby clarifying the knowledge repre-
sentation.

organize these patterns in an explanatory graph in an unsu-
pervised manner. As shown in Fig. 1, the explanatory graph
explains the knowledge hierarchy hidden inside the CNN.
The explanatory graph disentangles the mixture of part pat-
terns in each filter’s feature map1 of a conv-layer, and uses
each graph node to represent a part.
• Representing knowledge hierarchy: The explanatory
graph has multiple layers, which correspond to different
conv-layers of the CNN. Each graph layer has many nodes.
We use these graph nodes to summarize the knowledge hid-
den in chaotic feature maps of the corresponding conv-layer.
Because each filter in the conv-layer may potentially repre-
sent multiple parts of the object, we use graph nodes to rep-
resent patterns of all candidate parts. A graph edge connects
two nodes in adjacent layers to encode co-activation logics
and spatial relationships between them.

Note that we do not fix the location of each pattern (node)
to a certain neural unit of a conv-layer’s output. Instead,
given different input images, a part pattern may appear on
various positions of a filter’s feature maps1. For example,
the horse face pattern and the horse ear pattern in Fig. 1 can
appear on different positions of different images, as long as
they are co-activated and keep certain spatial relationships.
• Disentangling object parts from a single filter: As
shown in Fig. 1, each filter in a conv-layer may be activated
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by different object parts (e.g. the filter’s feature map1 may
be activated by both the head and the neck of a horse). To
clarify the knowledge representation, we hope to disentan-
gle patterns of different object parts from the same filter in
an unsupervised manner, which presents a big challenge for
state-of-the-art algorithms.

In this study, we propose a simple yet effective method
to automatically discover object parts from a filter’s feature
maps without ground-truth part annotations. In this way, we
can filter out noisy activations from feature maps, and we
ensure that each graph node consistently represents the same
object part among different images.

Given a testing image to the CNN, the explanatory graph
can tell 1) whether a node (part) is triggered and 2) the loca-
tion of the part on the feature map.
• Graph nodes with high transferability: Just like a dic-
tionary, the explanatory graph provides off-the-shelf patterns
for object parts, which enables a probability of transferring
knowledge from conv-layers to other tasks. Considering that
all filters in the CNN are learned using numerous images, we
can regard each graph node as a detector that has been so-
phisticatedly learned to detect a part among thousands of im-
ages. Compared to chaotic feature maps of conv-layers, our
explanatory graph is a more concise and meaningful repre-
sentation of the CNN knowledge.

To prove the above assertions, we learn explanatory
graphs for different CNNs (including the VGG-16, residual
networks, and the encoder of a VAE-GAN) and analyze the
graphs from different perspectives as follows.
Visualization & reconstruction: Patterns in graph nodes
can be directly visualized in two ways. First, for each graph
node, we list object parts that trigger strong node activations.
Second, we use activation states of graph nodes to recon-
struct image regions related to the nodes.
Examining part interpretability of graph nodes: (Bau
et al. 2017) defined different types of interpretability for a
CNN. In this study, we evaluate the part-level interpretability
of the graph nodes. I.e. given an explanatory graph, we check
whether a node consistently represents the same part seman-
tics among different objects. We follow ideas of (Bau et al.
2017; Zhou et al. 2015) to measure the part interpretability
of each node.
Examining location instability of graph nodes: Besides
the part interpretability, we also define a new metric, namely
location instability, to evaluate the clarity of the semantic
meaning of each node in the explanatory graph. We assume
that if a graph node consistently represents the same object
part, then the distance between the inferred part and some
ground-truth semantic parts of the object should not change
a lot among different images.
Testing transferability: We associate graph nodes with ex-
plicit part names for multi-shot part localization. The supe-
rior performance of our method shows the good transferabil-
ity of our graph nodes.

In experiments, we demonstrate both the representation
clarity and the high transferability of the explanatory graph.
Contributions of this paper are summarized as follows.
1) In this paper, we, for the first time, propose a simple
yet effective method to clarify the chaotic knowledge hid-

den inside a pre-trained CNN and to summarize such a deep
knowledge hierarchy using an explanatory graph. The graph
disentangles part patterns from each filter of the CNN. Ex-
periments show that each graph node consistently represents
the same object part among different images.
2) Our method can be applied to different CNNs, e.g. VGGs,
residual networks, and the encoder of a VAE-GAN.
3) The mined patterns have good transferability, espe-
cially in multi-shot part localization. Although our pat-
terns were pre-trained without part annotations, our transfer-
learning-based part localization outperformed approaches
that learned part representations with part annotations.

Related work

Semantics in CNNs

The interpretability and the discrimination power are two
crucial aspects of a CNN (Bau et al. 2017). In recent years,
different methods are developed to explore the semantics
hidden inside a CNN. Many statistical methods (Szegedy
et al. 2014; Yosinski et al. 2014; Aubry and Russell 2015)
have been proposed to analyze the characteristics of CNN
features. In particular, (Zhang, Wang, and Zhu 2018) has
demonstrated that in spite of the good classification perfor-
mance, a CNN may encode biased knowledge representa-
tions due to dataset bias. Instead, the CNN usually uses un-
reliable contexts for classification. For example, a CNN may
extract features from hairs as a context to identify the smil-
ing attribute. Therefore, we need methods to visualize the
knowledge hierarchy hidden inside a CNN.

Visualization & interpretability of CNN filters: Visu-
alization of filters in a CNN is the most direct way of explor-
ing the pattern hidden inside a neural unit. Up-convolutional
nets (Dosovitskiy and Brox 2016) were developed to invert
feature maps to images. Comparatively, gradient-based visu-
alization (Zeiler and Fergus 2014; Mahendran and Vedaldi
2015; Simonyan, Vedaldi, and Zisserman 2013) showed the
appearance that maximized the score of a given unit, which
is more close to the spirit of understanding CNN knowledge.
Furthermore, Bau et al. (Bau et al. 2017) defined and ana-
lyzed the interpretability of each filter.

Although these studies achieved clear visualization re-
sults, theoretically, gradient-based visualization methods vi-
sualize one of the local minimums contained in a high-
layer filter. I.e. when a filter represents multiple patterns,
these methods selectively illustrated one of the patterns; oth-
erwise, the visualization result will be chaotic. Similarly,
(Bau et al. 2017) selectively analyzed the semantics among
the highest 0.5% activations of each filter. In contrast, our
method provides a solution to explaining both strong and
weak activations of each filter and discovering all possible
patterns from each filter.

Pattern retrieval: Some studies go beyond passive
visualization and actively retrieve units from CNNs for
different applications. Like middle-level feature extrac-
tion (Singh, Gupta, and Efros 2012), pattern retrieval
mainly learns mid-level representations of CNN knowledge.
Zhou et al. (Zhou et al. 2015; 2016) selected units from
feature maps to describe “scenes”. Simon et al. discovered
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Figure 2: Spatial and co-activation relationships between
part patterns in the explanatory graph. High-layer patterns
filter out noises and disentangle low-layer patterns. From an-
other perspective, we can regard low-layer patterns as com-
ponents of high-layer patterns.

objects from feature maps of unlabeled images (Simon and
Rodner 2015), and selected a filter to describe each part in
a supervised fashion (Simon, Rodner, and Denzler 2014).
However, most methods simply assumed that each filter
mainly encoded a single visual concept, and ignored the
case that a filter in high conv-layers encoded a mixture of
patterns. (Zhang et al. 2017a; 2017c; 2017b) extracted cer-
tain neurons from a filter’s feature map to describe an object
part in a weakly-supervised manner (e.g. learning from ac-
tive question answering and human interactions).

In this study, the explanatory graph disentangles patterns
different parts in the CNN without a need of part anno-
tations. Compared to raw feature maps, patterns in graph
nodes are more interpretable.

Weakly-supervised knowledge transferring

Knowledge transferring ideas have been widely used in deep
learning. Typical research includes end-to-end fine-tuning
and transferring CNN knowledge between different cate-
gories (Yosinski et al. 2014) or different datasets (Ganin and
Lempitsky 2015). In contrast, we believe that a transparent
representation of part knowledge will create a new possi-
bility of transferring part knowledge to other applications.
Therefore, we build an explanatory graph to represent part
patterns hidden inside a CNN, which enables transfer part
patterns to other tasks. Experiments have demonstrated the
efficiency of our method in multi-shot part localization.

Algorithm

Intuitive understanding of the pattern hierarchy

As shown in Fig. 2, the feature map of a filter can usually be
activated by different object parts in various locations. Let us
assume that a feature map is activated with N peaks. Some
peaks represent common parts of the object, and we call such
activation peaks part patterns. Whereas, other peaks may
correspond to background noises.

Our task is to discover activation peaks of part patterns out
of noisy peaks from a filter’s feature map. We assume that
if a peak corresponds to an object part, then some patterns
of other filters must be activated in similar map positions;

vice versa. These patterns represent sub-regions of the same
part and keep certain spatial relationships. Thus, in the ex-
planatory graph, we connect each pattern in a low conv-layer
to some patterns in the neighboring upper conv-layer. We
mine part patterns layer by layer. Given patterns mined from
the upper conv-layer, we select activation peaks, which keep
stable spatial relationships with specific upper-layer patterns
among different images, as part patterns in the current conv-
layer.

As shown in Fig. 2, patterns in high conv-layers usu-
ally represent large-scale object parts. Whereas, patterns in
low conv-layers mainly describes relatively simple shapes,
which are less distinguishable in semantics. We use high-
layer patterns to filter out noises and disentangle low-layer
patterns. From another perspective, we can regard low-layer
patterns as components of high-layer patterns.

Learning

Notations: We are given a CNN pre-trained using its own
set of training samples I. Let G denote the target explana-
tory graph. G contains several layers, which corresponds to
conv-layers in the CNN. We disentangles the d-th filter of
the L-th conv-layer into NL,d different part patterns, which
are modeled as a set of NL,d nodes in the L-th layer of G,
denoted by ΩL. ΩL,d ⊂ ΩL denotes the node set for the d-th
filter. Parameters of these nodes in the L-th layer are given
as θL, which mainly encode spatial relationships between
these nodes and the nodes in the (L+ 1)-th layer.

Given a training image I ∈ I, the CNN generates a fea-
ture map1 of the L-th conv-layer, denoted by XI

L. Then, for
each node V ∈ ΩL,d, we can use the explanatory graph to in-
fer whether V ’s part pattern appears on the d-th channel1 of
XI

L, as well as the position of the part pattern (if the pattern
appears). We use RI

L to represent position inference results
for all nodes in the L-th layer.

Objective function: We build the explanatory graph in a
top-down manner. Given all training samples I, we first dis-
entangle patterns from the top conv-layer of the CNN, and
built the top graph layer. Then, we use inference results of
the patterns/nodes on the top layer to help disentangle pat-
terns from the neighboring lower conv-layer. In this way, the
construction of G is implemented layer by layer. Given in-
ference results for the (L+1)-th layer {RI

L+1}I∈I, we expect
that all patterns to simultaneously 1) be well fit to XI

L and
2) keep consistent spatial relationships with upper-layer pat-
terns RI

L+1 among different images. The objective of learn-
ing for the L-th layer is given as

argmaxθL

∏
I∈I

P (XI
L|RI

L+1,θL) (1)

I.e. we learn node parameters θL that best fit feature maps
of training images.

Let us focus on a conv-layer’s feature map XI
L of image

I . Without ambiguity, we ignore the superscript I to sim-
plify notations in following paragraphs. We can regard XL

as a distribution of “neural activation entities.” We consider
the neural response of each unit x ∈ XL as the number of
“activation entities.” In other words, each unit x localizes
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Figure 3: Related patterns V and V ′ keep similar spatial re-
lationships among different images. Circle centers represent
the prior pattern positions, e.g. μV and μV ′ . Red arrows de-
note relative displacements between the inferred positions
and prior positions, e.g. pV − μV .

at the position of px
2 in the dx-th channel of XL. We use

F (x)=β ·max{fx, 0} to denote the number of activation en-
tities at the position px, where fx is the normalized response
value of x; β is a constant.

Therefore, just like a Gaussian mixture model, we use all
patterns in ΩL,d as a mixture model to jointly explain the
distribution of activation entities on the d-th channel of XL:

P (XL|RL+1,θL)=
∏

x∈XL
P (px|RL+1,θL)

F (x) (2)

=
∏

x∈XL

{ ∑
V ∈ΩL,d∪{Vnone}

P (V )P (px|V,RL+1,θL)
}F (x)

d=dx

where we consider each node V ∈ ΩL,d as a hidden vari-
able or an alternative component in the mixture model to
describe activation entities. P (V ) = 1

NL,d+1
is a constant

prior probability. P (px|V,RL+1,θL) measures the compati-
bility of using node V to describe an activation entity at px.
In addition, because noisy activations cannot be explained
by any patterns, we add a dummy component Vnone to the
mixture model for noisy activations. Thus, the compatibility
between V and px is computed based on spatial relationship
between V and other nodes in G, which is roughly formu-
lated as

P (px|V,RL+1,θL)=

{
γ
∏

V ′∈EV

P (px|pV ′ ,θL)
λ,V ∈ΩL,dx

γτ, V =Vnone

(3)

P (px|pV ′ ,θL)=N (px|μV ′→V , σ2
V ′) (4)

In above equations, node V has a set of M neighboring pat-
terns in the upper layer, denoted by EV ∈ θL, which would
be determined during the learning process. The overall com-
patibility P (px|V,RL+1,θL) is divided into the spatial com-
patibility between node V and each neighboring node V ′,
P (px|pV ′ ,θL). ∀V ′ ∈ EV , pV ′ ∈RL+1 denotes the position
inference result of V ′, which have been provided. λ = 1

M
is

a constant for normalization. γ is a constant to roughly en-
sure

∫
P (px|V,RL+1,θL)dpx = 1, which can be eliminated

during the learning process.
As shown in Fig. 3, an intuitive idea is that the relative dis-

placement between V and V ′ should not change a lot among
different images. Let μV ∈ θL and μV ′ ∈ θL+1 denote the

2To make unit positions in different conv-layers comparable
with each other (e.g. μV ′→V in Eq. 4), we project the position of
unit x to the image plane. We define the coordinate px on the image
plane, instead of on the feature-map plane.

Inputs: feature map XL of the L-th conv-layer,
inference results RL+1 in the upper conv-layer.
Outputs: μV , EV for ∀V ∈ ΩL.
Initialization: ∀V , EV ={Vdummy}, a random value
for μ(0)

V
for iter = 1 to T do

∀V ∈ ΩL, compute P (px, V |RL+1,θL).
for V ∈ ΩL do

1) Update μV via an EM algorithm,
μ
(iter)
V =μ

(iter−1)
V +η

∑
I∈I,x∈XL

EP (V |px,RL+1,θL)

[
F (x) · ∂logP (px,V |RL+1,θL)

∂μV

]
.

2) Select M patterns from V ′ ∈ ΩL+1 to
construct EV based on a greedy strategy,
which maximize

∏
I∈IP (XL|RL+1,θL).

end

end

Algorithm 1: Learning sub-graph in the L-th layer

Figure 4: A four-layer explanatory graph. For clarity, we put
all nodes of different filters in the same conv-layer on the
same plan and only show 1% of the nodes with 10% of their
edges from two perspectives.

prior positions of V and V ′, respectively. Then, px−pV ′ will
approximate to μV − μV ′ , if node V can well fit activation
entities at px. Therefore, given EV and RL+1, we assume
the spatial relationship between V and V ′ follows a Gaus-
sian distribution in Eqn. 4, where μV ′→V =μV − μV ′ + pV ′

denotes the prior position of V given V ′. σ2
V ′ denotes the

variation, which can be estimated from data3.
In this way, the core of learning is to determine an optimal

set of neighboring patterns EV ∈ θL and estimate the prior
position μV ∈ θL. Note that our method only models the
relative displacement μV − μV ′ .

Inference of pattern positions: Given the d-th filter’s
feature map, we simply assign node V ∈ ΩL,d with a certain
unit x̂ = argmaxx∈XL:dx=dS

I
V →x on the feature map as the

true inference of V , where SI
V →x =F (x)P (px|V,RL+1,θL)

denotes the score of assigning V to x. Accordingly, pV ′ =

3We can prove that for each V ∈ ΩL,d, P (px|V,RL+1,θL)

∝ N (px|μV +ΔI,V , σ̃2
V ), where ΔI,V =

∑
V ′∈EV

pV ′−μV ′
σ2
V ′

/
∑

V ′∈EV

1
σ2
V ′

; σ̃2
V = 1/EV ′∈EV

1
σ2
V ′

. Therefore, we can either

directly use σ̃2
V as σ2

V , or compute the variation of px−μV −ΔI,V

w.r.t. different images to obtain σ2
V .
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Figure 5: Image patches corresponding to different nodes in the explanatory graph.

px̂ represents the inferred position of V . In particular, in
Eqn. (1), we define RL+1={pV ′}V ′∈ΩL+1

.
Top-down EM-based Learning: For each node V , we

need to learn the parameter μV ∈ θL and a set of patterns in
the upper layer that are related to V , EV ∈θL. We learn the
model in a top-down manner. We first learn nodes in the top-
layer of G, and then learn for the neighboring lower layer.
For the sub-graph in the L-th layer, we iteratively estimate
parameters of μV and EV for nodes in the sub-graph. We
can use the Expectation-Maximization (EM) algorithm for
learning. Please see Algorithm 1 for details.

Note that for each pattern V in the top conv-layer, we sim-
ply define EV = {Vdummy}, In RL+1, μVdummy = pVdummy = 0.
Vdummy is a dummy node. Based on Eqns. (3) and (4), we ob-
tain P (px|V,RL+1,θL)=N (px|μV , σ2

V ).

Experiments

Overview of experiments

Four types of CNNs: To demonstrate the broad applicabil-
ity of our method, we applied our method to four types of
CNNs, i.e. the VGG-16 (Simonyan and Zisserman 2015),
the 50-layer and 152-layer Residual Networks (He et al.
2016), and the encoder of the VAE-GAN (Larsen, Sønderby,
and Winther 2016).

Three experiments and thirteen baselines: We designed
three experiments to evaluate the explanatory graph. The
first experiment is to visualize patterns in the graph. The sec-
ond experiment is to evaluate the semantic interpretability
of the part patterns, i.e. checking whether a pattern consis-
tently represents the same object region among different im-
ages. We compared our patterns with three types of middle-
level features and neural patterns. The third experiment is
multi-shot learning for part localization, in order to test the
transferability of patterns in the graph. In this experiment,
we associated part patterns with explicit part names for part
localization. We compared our method with ten baselines.

Three benchmark datasets: We built explanatory graphs
to describe CNNs learned using a total of 37 animal cate-
gories in three datasets: the ILSVRC 2013 DET Animal-Part
dataset (Zhang et al. 2017a), the CUB200-2011 dataset (Wah
et al. 2011), and the Pascal VOC Part dataset (Chen et
al. 2014). As discussed in (Chen et al. 2014; Zhang et
al. 2017a), animals usually contain non-rigid parts, which

presents a key challenge for part localization. Thus, we se-
lected animal categories in the three datasets for testing.

Implementation details

We first trained/fine-tuned a CNN using object images of a
category, which were cropped using object bounding boxes.
Then, we learned an explanatory graph to represent patterns
of the category hidden inside the CNN. We set parameters
τ=0.1, M=15, T =20, and β=1.

VGG-16: Given a VGG-16 that was pre-trained using the
1.3M images in the ImageNet dataset (Deng et al. 2009),
we fine-tuned all conv-layers of the VGG-16 using object
images in a category. The loss for finetuning was that for
classification between the target category and background
images. In each VGG-16, there are thirteen conv-layers and
three fully connected layers. We selected the ninth, tenth,
twelfth, and thirteenth conv-layers of the VGG-16 as four
valid conv-layers, and accordingly built a four-layer graph.
We extracted NL,d patterns from the d-th filter of the L-th
layer. We set NL=1 or 2,d=40 and NL=3 or 4,d=20.

Residual Networks: We chose two residual networks, i.e.
the 50-layer and 152-layer ones. The finetuning process for
each network was exactly the same as that for VGG-16. We
built a three-layer graph based on each residual network by
selecting the last conv-layer with a 28 × 28 × 128 feature
ouput, the last conv-layer with a 14× 14× 256 feature map,
and the last conv-layer with a 7 × 7 × 512 feature map as
valid conv-layers. We set NL=1,d = 40, NL=2,d = 20, and
NL=3,d=10.

VAE-GAN: For each category, we used the cropped ob-
ject images in the category to train a VAE-GAN. We learned
a three-layer graph based on the three conv-layers of the en-
coder of the VAE-GAN. We set NL=1,d = 52, NL=2,d = 26,
and NL=3,d=13.

Experiment 1: pattern visualization

Given an explanatory graph for a VGG-16 network, we vi-
sualize its structure in Fig. 4. Part patterns in the graph are
visualized in the following three ways.

Top-ranked patches: We performed pattern inference on
all object images. For each image I , we extracted an im-
ages patch in the position of px̂V

4 with a fixed scale of

4We projected the unit to the image to compute its position.
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L=1 L=2 L=3 L=4 L=1 L=2 L=3 L=4 L=1 L=2 L=3 L=4

Figure 6: Heat maps of patterns. We use a heat map to visualize the spatial distribution of the top-50% patterns in the L-th layer
of the explanatory graph with the highest inference scores.

Figure 7: Image synthesis result (right) based on patterns
activated on an image (left). The explanatory graph only en-
codes major part patterns hidden in conv-layers, rather than
compress a CNN without information loss. Synthesis re-
sults demonstrate that the patterns are automatically learned
to represent foreground appearance, and ignore background
noises and trivial details of objects.

70 pixels×70 pixels to represent pattern V . Fig. 5 shows a
pattern’s image patches that had highest inference scores.

Heat maps of patterns: Given a cropped object image I ,
we used the explanatory graph to infer its patterns on image
I , and drew heat maps to show the spatial distribution of the
inferred patterns. We drew a heat map for each layer L of the
graph. Given inference results of patterns in the L-th layer,
we drew each pattern V ∈ ΩL as a weighted Gaussian distri-
bution α ·N (μ=pV , σ2

V )4 on the heat map, where α=SI
V →x̂.

Please see Fig. 6 for heat maps of the top-50% patterns with
the highest scores of SI

V →x̂.
Pattern-based image synthesis: We used the up-

convolutional network (Dosovitskiy and Brox 2016) to visu-
alize the learned patterns. Up-convolutional networks were
originally trained for image reconstruction. In this study,
given an image’s feature maps corresponding to the second
graph layer, we estimated the appearance of the original im-
age. Given an object image I , we used the explanatory graph
for pattern inference, i.e. assigning each pattern V with a
certain neural unit x̂V as its position inference4. We con-
sidered the top-10% patterns with highest scores of SI

V →x̂

as valid ones. We filtered out all neural responses of units,
which were not assigned to valid patterns, from feature maps
(setting these responses to zero). We then used (Dosovitskiy
and Brox 2016) to synthesize the appearance corresponding

to the modified feature maps. We regard image synthesis in
Fig. 7 as the visualization of the inferred patterns.

Experiment 2: semantic interpretability of patterns

In this experiment, we tested whether each pattern in an ex-
planatory graph consistently represented the same object re-
gion among different images. We learned four explanatory
graphs for a VGG-16 network, two residual networks, and a
VAE-GAN that were trained/fine-tuned using the CUB200-
2011 dataset (Wah et al. 2011). We used two methods to
evaluate the semantic interpretability of patterns, as follows.

Part interpretability of patterns: We mainly extracted
patterns from high conv-layers, and as discussed in (Bau et
al. 2017), high conv-layers contain large-scale part patterns.
We were inspired by Zhou et al. (Zhou et al. 2015) and mea-
sured the interpretability of part patterns. For the pattern of
a given node V , we used people to manually evaluate the
pattern’s interpretability. When we used V to make infer-
ences among all images, we regarded inference results with
the top-K inference scores SIi

V among all images as valid
representations of V . We require the K highest inference
scores SIi

V on images {I1, . . . , Ik} to take about 30% of the
inference energy, i.e.

∑K
i=1 S

Ii
V = 0.3

∑
i∈I S

I
V (we use this

equation to compute K). As shown in Fig.8, we asked hu-
man raters how many inference results among the top K de-
scribed the same object part, in order to compute the purity
of part semantics of pattern V .

The table in Fig. 8(top-left) shows the semantic purity of
the patterns in the second layer of the graph. Let the second
graph layer correspond to the L-th conv-layer with D filters.
Like in (Zhou et al. 2015), the raw filter maps baseline used
activated neurons in the feature map of a filter to describe
a part. The raw filter peaks baseline considered the highest
peak on a filer’s feature map as a part detection. Like our
method, the two baselines only visualized top-K ′ part infer-
ences (the K ′ feature maps’ neural activations took 30% of
activation energies among all images). We back-propagated
the center of the receptive field of each neural activation to
the image plane and simply used a fixed radius to draw the
image region corresponding to each neural activation. Fig. 8
compares the image region corresponding to each node in
the explanatory graph and image regions corresponding to
feature maps of each filter. Our graph nodes encoded much
more meaningful part representations than raw filters.
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Figure 8: Purity of part semantics. We draw image regions corresponding to each node in an explanatory graph and image
regions corresponding to each pattern learned by other methods (we show some examples on the right). We use human users to
annotate the semantic purity of each node/pattern. Cyan boxes show inference results that do not describe the common part.

Inferred
position

Annotated
landmark

Figure 9: Notation for the computation of location instabil-
ity.

ResNet-50 ResNet-152 VGG-16 VAE-GAN
Raw filter (Zhou et al. 2015) 0.1328 0.1346 0.1398 0.1944
Ours 0.0848 0.0858 0.0638 0.1066

(Singh, Gupta, and Efros 2012) 0.1341
(Simon, Rodner, and Denzler 2014) 0.2291

Table 1: Location instability of patterns.

Because the baselines simply averaged the semantic pu-
rity among the D filters, for a fair comparison, we also com-
puted average semantic purities using the top-D nodes, each
node V having the highest scores of

∑
i∈I S

I
V .

Location instability of inference positions: We also de-
fined the location instability of inference positions for each
pattern as an alternative evaluation of pattern interpretabil-
ity. We assumed that if a pattern was always triggered by the
same object part through different images, then the distance
between the pattern’s inference position and a ground-truth
landmark of the object part should not change a lot among
various images.

As shown in Fig. 9, for each testing image I , we computed
the distances between the inferred position of V and ground-
truth landmark positions of head, back, and tail parts, de-
noted by dhead

I , dback
I , and dtail

I . We normalized these distances
by the diagonal length of input images. Then, we computed
(
√

var(dhead
I ) +

√
var(dback

I ) +
√

var(dtail
I ))/3 as the location

Figure 10: And-Or graph for semantic object parts. The
AOG encodes a four-layer hierarchy for each semantic part,
i.e. the semantic part (OR node), part templates (AND node),
latent part patterns (OR nodes, those from the explanatory
graph), and neural units (terminal nodes). In the AOG, the
OR node of semantic part contains a number of alternative
appearance candidates as children. Each OR node of a latent
part pattern encodes a list of neural units as alternative de-
formation candidates. Each AND node (e.g. a part template)
uses a number of latent part patterns to describe its compo-
sitional regions.

instability of the node for evaluation, where var(dhead
I ) de-

notes the variation of dhead
I among different images.

Given an explanatory graph, we compared its location in-
stability with three baselines. In the first baseline, we treated
each filter in a CNN as a detector of a certain pattern. Thus,
given the feature map of a filter (after the ReLu operation),
we used the method of (Zhou et al. 2015) to localize the unit
with the highest response value as the pattern position. The
other two baselines were typical methods to extract middle-
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Method obj.-box fine-tune
no

-R
L SS-DPM-Part (Azizpour and Laptev 2012) N 0.3469

PL-DPM-Part (Li et al. 2013) N 0.3412
Part-Graph (Chen et al. 2014) N 0.4889

un
su

p5 -R
L CNN-PDD (Simon, Rodner, and Denzler 2014) N 0.2333

CNN-PDD-ft (Simon, Rodner, and Denzler 2014) Y 0.3269
Ours Y 0.0862

su
p-

R
L fc7+linearSVM Y 0.3120

fc7+sp+linearSVM Y 0.3120
Fast-RCNN (1 ft) (Girshick 2015) N 0.4517
Fast-RCNN (2 fts) (Girshick 2015) Y 0.4131

Table 2: Normalized distance of part localization on the
CUB200-2011 dataset (Wah et al. 2011). The second col-
umn indicates whether the baseline used all object-box an-
notations in the category to fine-tune a CNN.

level features from images (Singh, Gupta, and Efros 2012)
and extract patterns from CNNs (Simon, Rodner, and Den-
zler 2014), respectively. For each baseline, we chose the
top-500 patterns (i.e. 500 nodes with top scores in our ex-
planatory graph, 500 filters with strongest activations in the
CNN, and the top-500 middle-level features). For each pat-
tern, we selected position inferences on the top-20 images
with highest scores to compute the instability of its inferred
positions. Table 1 compares the location instability of the
patterns learned by different baselines, and our method ex-
hibited significantly lower location instability.

Experiment 3: multi-shot part localization

And-Or graph for semantic parts The explanatory graph
makes it plausible to transfer middle-layer patterns from
CNNs to semantic object parts. In order to test the trans-
ferability of patterns, we build an additional And-Or graph
(AOG) to associate certain implicit patterns with an explicit
part name, in the scenario of multi-shot learning. We used
the AOG to localize semantic parts of objects for evaluation.
The structure of the AOG is inspired by (Zhang, Wu, and
Zhu 2017), and the learning of the AOG was originally pro-
posed in (Zhang et al. 2017a). We briefly introduce the AOG
in (Zhang et al. 2017a) as follows.

As shown in Fig. 10, like the hierarchical model in (Li and
Hua 2015), the AOG encodes a four-layer hierarchy for each
semantic part, i.e. the semantic part (OR node), part tem-
plates (AND node), latent patterns (OR nodes, those from
the explanatory graph), and neural units (terminal nodes). In
the AOG, each OR node (e.g. a semantic part or a latent pat-
tern) contains a list of alternative appearance (or deforma-
tion) candidates. Each AND node (e.g. a part template) uses
a number of latent patterns to describe its compositional re-
gions.

1) The OR node of a semantic part contains a total of m
part templates to represent alternative appearance or pose
candidates of the part. 2) Each part template (AND node)
retrieve K patterns from the explanatory graph as children.
These patterns describe compositional regions of the part.
3) Each latent pattern (OR node) has all units in its corre-
sponding filter’s feature map as children, which represent its
deformation candidates on image I .

Experimental settings of three-shot learning We
learned the explanatory graph based on a fine-tuned VGG-
16 network and built the AOG following the scenario of
multi-shot learning introduced in (Zhang et al. 2017a).
For each category, we used three annotations of the head
part to learn three head templates in the AOG. Such part
annotations were offered by (Zhang et al. 2017a). To enable
a fair comparison, all the object-box annotations and the
three part annotations were equally provided to all baselines
for learning.

We learned the explanatory graph based on a fine-tuned
VGG-16 network (Simonyan and Zisserman 2015) and built
the AOG following the scenario of multi-shot learning in-
troduced in (Zhang et al. 2017a). For each category, we
set three templates for the head part (m = 3), and used
a single part-box annotation for each template. We set
K = 0.1

∑
L,d NL,d to learn AOGs for categories in the

ILSVRC Animal-Part and CUB200 datasets and set K =
0.4

∑
L,d NL,d for Pascal VOC Part categories. Then, we

used the AOGs to localize semantic parts on objects. Note
that we used object images without part annotations to learn
the explanatory graph and we used three part annotations
provided by (Zhang et al. 2017a) to build the AOG. All these
training samples were equally provided to all baselines for
learning (besides part annotations, all baselines also used ob-
ject annotations contained in the datasets for learning).

Baselines: We compared AOGs with a total of ten base-
lines in part localization. The baselines included 1) state-of-
the-art algorithms for object detection (i.e. directly detecting
target parts from objects), 2) graphical/part models for part
localization, and 3) the methods selecting CNN patterns to
describe object parts.

The first baseline was the standard fast-RCNN (Girshick
2015), namely Fast-RCNN (1 ft), which directly fine-tuned a
VGG-16 network based on part annotations. Then, the sec-
ond baseline, namely Fast-RCNN (2 fts), first used massive
object-box annotations in the target category to fine-tune the
VGG-16 network with the loss of object detection. Then,
given part annotations, Fast-RCNN (2 fts) further fine-tuned
the VGG-16 to detect object parts. We used (Simon, Rod-
ner, and Denzler 2014) as the third baseline, namely CNN-
PDD. CNN-PDD selected certain filters of a CNN to local-
ize the target part. In CNN-PDD, the CNN was pre-trained
using the ImageNet dataset (Deng et al. 2009). Just like Fast-
RCNN (2 ft), we extended (Simon, Rodner, and Denzler
2014) as the fourth baseline CNN-PDD-ft, which fine-tuned
a VGG-16 network using object-box annotations before ap-
plying the technique of (Simon, Rodner, and Denzler 2014).
The fifth and sixth baselines were DPM-related methods, i.e.
the strongly supervised DPM (SS-DPM-Part) (Azizpour and
Laptev 2012) and the technique in (Li et al. 2013) (PL-DPM-
Part), respectively. Then, the seventh baseline, namely Part-
Graph, used a graphical model for part localization (Chen et
al. 2014). For weakly supervised learning, “simple” meth-
ods are usually insensitive to model over-fitting. Thus, we
designed two baselines as follows. First, we used object-
box annotations in a category to fine-tune the VGG-16 net-
work. Then, given a few well-cropped object images, we
used the selective search (Uijlings et al. 2013) to collect im-
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obj.-box fine-tune bird cat cow dog horse sheep Avg.

no
-R

L SS-DPM-Part (Azizpour and Laptev 2012) N 0.356 0.270 0.264 0.242 0.262 0.286 0.280
PL-DPM-Part (Li et al. 2013) N 0.294 0.328 0.282 0.312 0.321 0.840 0.396
Part-Graph (Chen et al. 2014) N 0.360 0.208 0.263 0.205 0.386 0.500 0.320

un
su

p5 -R
L CNN-PDD (Simon, Rodner, and Denzler 2014) N 0.301 0.246 0.220 0.248 0.292 0.254 0.260

CNN-PDD-ft (Simon, Rodner, and Denzler 2014) Y 0.358 0.268 0.220 0.200 0.302 0.269 0.269
Ours Y 0.162 0.130 0.258 0.137 0.181 0.192 0.177

su
p-

R
L fc7+linearSVM Y 0.247 0.174 0.251 0.217 0.261 0.317 0.244

fc7+sp+linearSVM Y 0.247 0.174 0.249 0.217 0.261 0.317 0.244
Fast-RCNN (1 ft) (Girshick 2015) N 0.324 0.324 0.325 0.272 0.347 0.314 0.318
Fast-RCNN (2 fts) (Girshick 2015) Y 0.350 0.295 0.255 0.293 0.367 0.260 0.303

Table 3: Normalized distance of part localization on the Pascal VOC Part dataset (Chen et al. 2014). The second column
indicates whether the baseline used all object-box annotations in the category to fine-tune a CNN.

obj.-box fine-tune gold. bird frog turt. liza. koala lobs. dog fox cat lion tiger bear rabb. hams. squi.

no
-R

L SS-DPM-Part N 0.297 0.280 0.257 0.255 0.317 0.222 0.207 0.239 0.305 0.308 0.238 0.144 0.260 0.272 0.178 0.261
PL-DPM-Part N 0.273 0.256 0.271 0.321 0.327 0.242 0.194 0.238 0.619 0.215 0.239 0.136 0.323 0.228 0.186 0.281
Part-Graph N 0.363 0.316 0.241 0.322 0.419 0.205 0.218 0.218 0.343 0.242 0.162 0.127 0.224 0.188 0.131 0.208

un
su

p5 -R
L CNN-PDD N 0.316 0.289 0.229 0.260 0.335 0.163 0.190 0.220 0.212 0.196 0.174 0.160 0.223 0.266 0.156 0.291

CNN-PDD-ft Y 0.302 0.236 0.261 0.231 0.350 0.168 0.170 0.177 0.264 0.270 0.206 0.256 0.178 0.167 0.286 0.237
Ours Y 0.090 0.091 0.095 0.167 0.124 0.084 0.155 0.147 0.081 0.129 0.074 0.102 0.121 0.087 0.097 0.095

su
p-

R
L fc7+linearSVM Y 0.150 0.318 0.186 0.150 0.257 0.156 0.196 0.136 0.101 0.138 0.132 0.163 0.122 0.139 0.110 0.262

fc7+sp+linearSVM Y 0.150 0.318 0.186 0.150 0.254 0.156 0.196 0.136 0.101 0.138 0.132 0.163 0.122 0.139 0.110 0.262
Fast-RCNN (1 ft) N 0.261 0.365 0.265 0.310 0.353 0.365 0.289 0.363 0.255 0.319 0.251 0.260 0.317 0.255 0.255 0.169
Fast-RCNN (2 fts) Y 0.340 0.351 0.388 0.327 0.411 0.119 0.330 0.368 0.206 0.170 0.144 0.160 0.230 0.230 0.178 0.205

horse zebra swine hippo catt. sheep ante. camel otter arma. monk. elep. red pa. gia.pa. Avg.

no
-R

L SS-DPM-Part N 0.246 0.206 0.240 0.234 0.246 0.205 0.224 0.277 0.253 0.283 0.206 0.219 0.256 0.129 0.242
PL-DPM-Part N 0.322 0.267 0.297 0.273 0.271 0.413 0.337 0.261 0.286 0.295 0.187 0.264 0.204 0.505 0.284
Part-Graph N 0.296 0.315 0.306 0.378 0.333 0.230 0.216 0.317 0.227 0.341 0.159 0.294 0.276 0.094 0.257

un
su

p5 -R
L CNN-PDD N 0.261 0.266 0.189 0.192 0.201 0.244 0.208 0.193 0.174 0.299 0.236 0.214 0.222 0.179 0.225

CNN-PDD-ft Y 0.310 0.321 0.216 0.257 0.220 0.179 0.229 0.253 0.198 0.308 0.273 0.189 0.208 0.275 0.240
Ours Y 0.189 0.212 0.212 0.151 0.185 0.124 0.093 0.120 0.102 0.188 0.086 0.174 0.104 0.073 0.125

su
p-

R
L fc7+linearSVM Y 0.205 0.258 0.201 0.140 0.256 0.236 0.164 0.190 0.140 0.252 0.256 0.176 0.215 0.116 0.184

fc7+sp+linearSVM Y 0.205 0.258 0.201 0.140 0.256 0.236 0.164 0.190 0.140 0.250 0.256 0.176 0.215 0.116 0.184
Fast-RCNN (1 ft) N 0.374 0.322 0.285 0.265 0.320 0.277 0.255 0.351 0.340 0.324 0.334 0.256 0.336 0.274 0.299
Fast-RCNN (2 fts) Y 0.346 0.303 0.212 0.223 0.228 0.195 0.175 0.247 0.280 0.319 0.193 0.125 0.213 0.160 0.246

Table 4: Normalized distance of part localization on the ILSVRC 2013 DET Animal-Part dataset (Zhang et al. 2017a). The
second column indicates whether the baseline used all object-box annotations in the category to fine-tune a CNN.

Dataset ILSVRC DET Animal Pascal VOC Part CUB200-2011

Supervised-AOG 0.1344 0.1767 0.0915
Ours (unsupervised) 0.1250 0.1765 0.0862

Table 5: Normalized distance of part localization. We com-
pared supervised and unsupervised mining of part patterns.

age patches, and used the VGG-16 network to extract fc7
features from these patches. The baseline fc7+linearSVM
used a linear SVM to detect the target part. The other base-
line fc7+sp+linearSVM combined both the fc7 feature and
the spatial position (x, y) (−1 ≤ x, y ≤ 1) of each im-
age patch as features for part detection. The last competing
method is weakly supervised mining of part patterns from
CNNs (Zhang et al. 2017a), namely supervised-AOG. Un-
like our method (unsupervised), supervised-AOG used part
annotations to extract part patterns.

Comparisons: To enable a fair comparison, we classify
all baselines into three groups, i.e. no representation learn-
ing (no-RL), unsupervised representation learning (unsup-
RL)5, and supervised representation learning (sup-RL). The

5Representation learning in these methods only used object-box
annotations, which is independent to part annotations. A few part

No-RL group includes conventional methods without us-
ing deep features, such as SS-DPM-Part, PL-DPM-Part, and
Part-Graph. Sup-RL methods are Fast-RCNN (1 ft), Fast-
RCNN (2 ft), CNN-PDD, CNN-PDD-ft, supervised-AOG,
fc7+linearSVM, and fc7+sp+linearSVM. Fast-RCNN meth-
ods used part annotations to learn features. Supervised-AOG
used part annotations to select filters from CNNs to localize
parts. Unsup-RL methods include CNN-PDD, CNN-PDD-
ft, and our method. These methods did not use part annota-
tions, and only used object boxes for learning/selection.

We use the normalized distance to evaluate localization
accuracy, which has been used in (Zhang et al. 2017a;
Simon, Rodner, and Denzler 2014) as a standard metric.
Tables 2, 3, and 4 show part-localization results on the
CUB200-2011 dataset (Wah et al. 2011), the Pascal VOC
Part dataset (Chen et al. 2014), and the ILSVRC 2013 DET
Animal-Part dataset (Zhang et al. 2017a), respectively. Ta-
ble 5 compares the unsupervised and supervised learning of
neural patterns. In the experiment, the AOG outperformed
all baselines, even methods that learned part features in a
supervised manner.

annotations were used to select off-the-shelf pre-trained features.
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Conclusion and discussions

In this paper, we proposed a simple yet effective method to
learn an explanatory graph that reveals knowledge hierarchy
inside conv-layers of a pre-trained CNN (e.g. a VGG-16, a
residual network, or a VAE-GAN). We regard the graph as a
concise and meaningful representation, which 1) filters out
noisy activations, 2) disentangles reliable part patterns from
each filter of the CNN, and 3) encodes co-activation log-
ics and spatial relationships between patterns. Experiments
showed that our patterns had significantly higher stability
than baselines.

The explanatory graph’s transparent representation makes
it plausible to transfer CNN patterns to object parts. Part-
localization experiments well demonstrated the good trans-
ferability. Our method even outperformed supervised learn-
ing of part representations. Nevertheless, the explanatory
graph is still a rough representation of the CNN, rather than
an accurate reconstruction of the CNN knowledge.
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