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Abstract

Deep Neural Networks (DNNs) have demonstrated remark-
able performance in a diverse range of applications. Along
with the prevalence of deep learning, it has been revealed that
DNNs are vulnerable to attacks. By deliberately crafting ad-
versarial examples, an adversary can manipulate a DNN to
generate incorrect outputs, which may lead catastrophic con-
sequences in applications such as disease diagnosis and self-
driving cars. In this paper, we propose an effective method
to detect adversarial examples in image classification. Our
key insight is that adversarial examples are usually sensitive
to certain image transformation operations such as rotation
and shifting. In contrast, a normal image is generally immune
to such operations. We implement this idea of image trans-
formation and evaluate its performance in oblivious attacks.
Our experiments with two datasets show that our technique
can detect nearly 99% of adversarial examples generated by
the state-of-the-art algorithm. In addition to oblivious attacks,
we consider the case of white-box attacks. We propose to in-
troduce randomness in the process of image transformation,
which can achieve a detection ratio of around 70%.

Introduction

The past decade has witnessed the unprecedented thrift
of machine learning techniques. Deep Neural Networks
(DNNs), at the front of this machine learning trend, has been
used to assist decision making in a diverse range of applica-
tions from disease diagnosis (Esteva et al. 2017), navigat-
ing self-driving cars (Bojarski et al. 2016), to natural lan-
guage processing (Petrov 2016) and playing the game of
Go (Silver et al. 2016). In all these tasks where traditional
machine learning techniques found challenging to handle,
DNNs have demonstrated superior performance.

Along with the prevalence of deep learning techniques,
however, it has been revealed that DNNs are vulnerable to
attacks using adversarial examples (Szegedy et al. 2013;
Goodfellow, Shlens, and Szegedy 2015; Kurakin, Goodfel-
low, and Bengio 2016; Baluja and Fischer 2017; Carlini and
Wagner 2017b) in the case of image classification. An ad-
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Figure 1: An illustration of image transformation-based ad-
versarial example detection.

versarial example is generated by adding certain perturba-
tions into a normal image. The perturbed image is specifi-
cally generated so that it is visually similar to the original
image, but will be misclassified when fed into the DNNs.
By deliberately crafting adversarial examples, a malicious
attacker can manipulate a well-trained DNN to generate in-
correct outputs. This situation may lead to catastrophic con-
sequences and cost human lives in applications such as dis-
ease diagnosis and self-driving cars. For example, an at-
tacker could modify a stop sign so that an auto-driving sys-
tem mistakes it as a speed limit sign and fails to stop. It could
result in a severe traffic accident and pose direct threat to the
passengers.

Adversarial example attacks raise crucial security con-
cerns in applications where DNNs are used to support deci-
sion making. In response to the threat, many defensive tech-
niques have been proposed by the machine learning and se-
curity community. A significant number of these techniques
attempt to thwart the attack through adversarial examples
detection, i.e., distinguishing adversarial examples from nor-
mal ones. Unfortunately, the recent research (Carlini and
Wagner 2017a) has demonstrated that the adversarial exam-
ples generated by the Carlini-Wagner (CW) attack (Carlini
and Wagner 2017a) can circumvent all existing detection
techniques, especially in white-box threat model. This calls
for new research on effective methods to detect adversary
examples.

In this paper, we propose a novel adversarial example de-
tection method that can effectively thwart the state-of-the-
art CW attack. Our key insight is, adversarial examples are
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usually sensitive to image transformation operations such as
rotating and shifting. In other words, the classification re-
sults of an image and its transformed version are very likely
to be different. In contrast, information contained in a nor-
mal image are generally immune to such operations. Fig-
ure 1 illustrates this observation with an example using an
image from the MNIST dataset. The classification results of
the adversarial example are different before and after image
transformation, while this phenomenon is not observed on a
normal image.

Inspired by this observation, we develop an image
transformation-based adversarial example detection method.
Our method is to firstly apply certain transformation opera-
tions on an image to generate several transformed images.
We then use the classification results of these transformed
images as features to predict if the original image has been
perturbed by an adversary, i.e., whether or not this image is
an adversarial example. Our method exploits a set of trans-
formation operations that are effective in distinguishing nor-
mal and adversarial examples. By employing image trans-
formations, we could effectively detect adversarial examples
of oblivious attacks. To defend against more sophisticated
white-box attacks, we propose to introduce randomness in
the transformation process. Intensive experiments on several
image dataset shows that the proposed method is effective:
It can detect 99% of adversarial examples generated in the
oblivious attack. For the white-box attacks, it achieves a de-
tection ratio of more than 70%. We summarize our contribu-
tion as follows:

• We make the important observation that adversarial ex-
ample are usually sensitive to image transformation oper-
ations. In contrast, normal images are generally immune
to such operations. The observation provides a new re-
search direction for adversarial example detection.

• Based on our observation, we propose a novel im-
age transformation-based adversarial example detection
method for DNN. To the best of our knowledge, it is the
first method that is effective in thwarting the state-of-the-
art CW attack in the white-box setting.

• We implement the proposed method and evaluate it on
two image datasets. Our method shows superior perfor-
mance in defending against the CW attacks in both obliv-
ious and white-box threat model.

The rest of the paper is organized as follows. We discuss
more related works in Section 2. We present some back-
grounds and two threat models in Section 3. In Section 4,
we present our technique in detail and show the experimen-
tal results of its effectiveness in detecting adversarial exam-
ples. Finally, we conclude this paper in Section 5.

Related Work

We briefly summarize attack algorithms to deep neural net-
works and corresponding defensive techniques.

Attack to Deep Neural Networks

Deep learning is widely adopted to support decision mak-
ing in many crucial application fields. Hence, understanding

the robustness of DNN in adversarial environment is a vital
task. Towards this goal, Szegedy et.al (Szegedy et al. 2013)
introduced adversarial example attack that targets DNNs in
image classification. They found that an adversary can cause
the network to misclassify an image by applying a certain
hardly perceptible perturbation which maximizes the net-
work’s prediction error.

Their work has since inspired several research attempts
to further examine the security weakness of DNNs. For ex-
ample, the fast gradient sign method (FGS (Goodfellow,
Shlens, and Szegedy 2015)) is a one-step shot attack. It de-
fines a loss function Loss(x, l) which represents the cost of
classifying x as label l. Then it tries to maximize Loss(x, lx)
where lx is the ground-truth label of x. FGS solves this
optimization problem by performing one step gradient up-
date from x with volume ε. Based on FGS, the iterative
fast gradient sign method (IFGS (Kurakin, Goodfellow, and
Bengio 2016) performs attacks by conducting a series of
smaller-step FGS updates iteratively. Other approaches such
as DeepFool (Moosavi-Dezfooli, Fawzi, and Frossard 2016)
and JSMA (Papernot et al. 2016) formalize the attack as dif-
ferent optimization problems.

To our knowledge, the most recent work in this field is due
to Carlini et.al (Carlini and Wagner 2017b). The proposed
CW attacks is shown to achieve the best attacking results
comparing with previous attack algorithms. It can generate
adversarial examples that are able to circumvent existing de-
tection methods (Carlini and Wagner 2017a). Due to its sig-
nificant threat, in this paper, we mainly focus on defending
the CW attack. Nevertheless, our method is also effective
against the other aforementioned attack algorithms.

Defensive Techniques

In response to the threat, several defensive techniques have
been proposed. These techniques generally fall in two cat-
egories. The first category of techniques attempts to clas-
sify the adversarial examples correctly, which is to construct
classifiers that are robust against perturbation added by ad-
versaries. Techniques in this category include (Szegedy et al.
2013; Goodfellow, Shlens, and Szegedy 2015; Tramèr et al.
2017; Cao and Gong 2017; Xu, Evans, and Qi 2017). How-
ever, most of these techniques are not effective at classifying
adversarial examples correctly (Carlini and Wagner 2017a).

The second category is adversarial example detection,
where the goal is to build a detector that is able to distin-
guish adversarial examples from the normal ones. Our tech-
nique belongs to this category. Inherently, a detector is also
a classifier, which is trained on a set of normal and adver-
sarial examples. Detectors learn to capture the difference
caused by the added perturbation. Adversarial example de-
tection techniques include (Grosse et al. 2017; Gong, Wang,
and Ku 2017; Metzen et al. 2017; Feinman et al. 2017;
Meng and Chen 2017). As mentioned above, these existing
detection methods can all be bypassed by crafting specific
adversarial examples (Carlini and Wagner 2017b). As a re-
sult, effective defence against state-of-the-art adversarial ex-
ample attack remains an open issue, which we aim to address
in this paper.

4140



Background

Notations

The notations used in the paper follow the rules in (Carlini
and Wagner 2017a). Let F (·) denote a classification model
(i.e., a deep neural network). The input to F (·) is the vector
representation of an instance (in our case, an image), and the
output is the probability distribution over all possible classi-
fication labels. More formally, F (x)i denotes the probability
that instance x is classified as label i.

Let Z(·) denote the logits, i.e., the output of the final layer
(before the softmax layer) of the DNN. Assuming a softmax
activation layer is applied on the logits to compute the label
probabilities, the model outputs can be written as:

F (x) = softmax(Z(x)) (1)
The label with the highest estimated probability is then used
as the predicted label of x, denoted by:

C(x) = argmax
i

(F (x)i) (2)

Given a model F (·) and a valid input image x, an adversar-
ial example generated on x is denoted as x′, which is gener-
ated by adding certain perturbations into x. As the result of
such perturbations, the predicted label of x is changed, i.e.,
C(x′) �= C(x).

The goal of adversarial example detection is to construct
a detector, denoted by D, which is also a classifier. Given
an input image x, D aims to correctly label the input as an
adversarial example or a normal image.

Attack Algorithm

In this paper, we focus on the state-of-the-art adversarial
example attack, namely CW attack (Carlini and Wagner
2017a). The CW attacks is shown to achieve the best attack-
ing performance comparing with previous attack algorithms,
i.e., it can generate adversarial examples that are able to cir-
cumvent most of existing detection methods.

For a given image, the goal of the CW attack is to find
a small perturbation that can mislead the model to give the
incorrect output that does not match the actual label of the
image. The CW attack assumes the adversary wants the im-
age to be classified as a specific (incorrect) label, which is
called the target label. The attack can be formulated as the
following optimization problem:

min ||δ||p + c · f(x+ δ)

such that : x+ δ ∈ [0, 1]n
(3)

where ||δ||p is a distance metric. Note in this paper, we use
L2 norm in the evaluation, i.e., p = 2. The function f(·)
indicates whether the attack succeed or not, which is defined
in the following way:
f(x′) = max(Z(x′)lx −max{Z(x′)i : i �= lx},−κ) (4)

where κ is a hyperparameter that controls the level of confi-
dence in generating an adversarial example. A larger κ en-
courages the attacker to generate an adversarial example x′
which will be classified as label i by the DNN with higher
confidence. Finally, c is a hyperparameter which is used to
balance ||δ||p and f(·). This hyperparameter can be tuned
using binary search by the CW attack automatically.
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Figure 2: Impact of image transformation on normal and ad-
versarial examples

Threat Models

In this paper, we consider two different threat models.

1. The Oblivious Model: the adversary has knowledge of
the original classifier F but is not aware of the detector D.
Hence, the adversary’s goal is only to fool the unsecured
model F .

2. The White-Box Model: the adversary has knowledge of
the model F and is aware of the existence of the detector
D. It also has knowledge of the structure and exact pa-
rameters of D. In other words, the adversary needs to fool
both the classifier F and D simultaneously.

Proposed Methods and Evaluation

There has been a debate on why the adversarial examples
exist (Szegedy et al. 2013; Goodfellow, Shlens, and Szegedy
2015; Tramèr et al. 2017; Meng and Chen 2017). But most
literate agree the security problem roots from the imperfec-
tion of machine learning models when compared with hu-
mans in some tasks. When an image appears to be hard to
recognize, a human usually would apply certain image trans-
formation operations to help improve its readability. For ex-
ample, the human may rotate the image, look from a dif-
ferent angle, move it closer/further, etc, in order to discover
new features from different prospects.

We find this trick also works for machine learning models
when it comes to adversarial examples. In image classifi-
cation, adversarial examples trick a model by adding small
perturbations to specific positions in an image. These po-
sitions are selected so that adding perturbations there will
have the maximal impact on the model’s prediction error,
and therefore push the image over the decision boundary.
However, image transformation such as rotation and shift-
ing, could change the shape of the decision boundary, and
therefore render such perturbations invalid. Figure 2 shows
a set of handwriting images and corresponding adversarial
examples. Note that transforming an adversarial examples is
likely to cause their classification results to change, but have
less impact on normal images.
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A recent paper (Lu et al. 2017) argues that physical ad-
versarial examples can be correctly classified when viewing
the object from different angles and distances. Thus, the ad-
versarial example problem may not be worried too much.
However, this paper is not targeting the state-of-the-art at-
tack. Additionally, an opposing opinion is stated in (Athalye
and Sutskever 2017) where the authors generated adversarial
examples which can yield same prediction labels even when
zoomed or rotated. In this paper, we are trying to detect ad-
versarial examples which is easier than to recover their orig-
inal labels as (Lu et al. 2017). Our detection method would
work if there are different patterns between normal images
and adversarial examples..

We design the following experiments to validate our ob-
servation. First, we implement two Convolutional Neural
Networks (CNNs) as the image classifier F , one for each
image dataset. The architectures of these CNNs are de-
scribed in Figure 3. The classifiers are trained on two pop-
ular image classification datasets: MNIST (LeCun 1998)
and CIFAR10 (Krizhevsky and Hinton 2009). The MNIST
dataset has 70, 000 handwritten digits from which 60, 000
are used as the training set and 10, 000 as the testing set.
The CIFAR10 dataset consists of 60, 000 colour images in
10 classes. 50, 000 of them are used as the training set and
the rest as the testing set. These classifiers are trained at the
learning rate of 0.01 with a batch size of 128 and 50 epochs.

For each image in the testing set, we generate three ad-
versarial examples with different confidence levels using the
CW attack algorithm. Then, we rotate the original image and
its corresponding adversarial examples for a certain angle.
We feed the rotated image sets into the classifier and then
compute the average prediction accuracy on each set. Note
that for an adversarial example, we say a prediction result
is accurate if it is classified as the adversary desired. That is
too say, the accuracy for adversarial examples is the attack
success rate.

We plot the classification accuracy for the four sets of im-
ages with respect to different rotation angles in Figure 4.
Note that the classifier achieved 100% accuracy for all the
images when no rotation is applied because we only care
about the images (or adversarial examples) that are classi-
fied correctly (attacked successfully). But as the rotation an-
gel increases, it can be seen that it will cause the prediction
accuracy (or attack success rate for adversarial examples) to

Figure 4: Adversarial examples and normal images demon-
strate a significant different level of sensitivity to the rotation
operation in terms of classification accuracy.
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Figure 5: Image transformation-based adversarial example
detection

drop for all the image sets. However, the adversarial exam-
ples are significantly more sensitive to rotation comparing
with the normal image samples. This effect is particularly
obvious on adversarial examples with a lower confidence
level (κ = 0).

Our proposed detection method takes advantage of the
fact that a minor transformation of an image may result in
a significant change of the classification results. Our basic
idea is to apply several transformation operations on an im-
age. Then, the transformed images are fed into the model
and the corresponding classification results are collected. Fi-
nally, using these results as observation, we can train a de-
tector to identify adversarial examples from normal images
using supervised learning techniques. The experiments are
implemented with Keras using TensorFlow as backend.

In the following subsections, we present the proposed
method with respect to the oblivious threat model and the
white-box threat model, and evaluate their effectiveness via
experiments on the two image datasets. Figure 5 illustrates
the proposed method on a high level.

Defense Against Oblivious Attacks

In oblivious attacks, the adversary does not know the exis-
tence of such a detector. That means the adversary only gen-
erates adversarial examples that aim to maximize the predic-
tion error of the classifier.
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In order to train the detector, our first step is to generate
a set of training instances. To this end, we generate a set
of adversarial examples using the CW attack algorithm for
each image in training set of MNIST and CIFAR10 as de-
scribed above. The target label of each adversarial example
is randomly selected (different from the ground truth label
of the original image). The adversarial examples and origi-
nal images are fed into the classifier and we select a subset of
images as follows: 1) The image is a normal image and the
classifier can classify it correctly. 2) The image is an adver-
sarial example and it can attack the classifier successfully,
i.e., its classification result is the target label selected by the
adversary. The purpose of this selection process is to filter
out two types of images which makes it hard to evaluate the
actual performance of the proposed detection method. The
first type of images are those hard to classify correctly even
without perturbation and the second type of images are those
adversarial examples which fail to attack even without any
defensive method.

Among the selected images, the original images are la-
belled valid (0) and the adversarial examples are labelled
adversarial (1). Then, we apply a set of transformation
operations on each image. Specifically, an image is firstly
shifted to one direction (up, down, left, or right) by 0, 1 or
2 pixels; then, it is rotated by one of the following angles
([−30, 15, 0, 15, 30] for MNIST and [−50, 25, 0, 25, 50] for
CIFAR10). As there are 9 different ways to shift and 5 dif-
ferent angles to rotate an image, there are totally 9× 5 = 45
transformed versions of each image.

For each image, we feed its 45 transformed versions into
the classifier and record the outcomes. More specifically, for
each image, we record the logits (output of the DNN before
the output layer) of its 45 transformed versions. The length
of the logit is denoted by N (in our experiments N = 10 as
there are 10 classes). By concatenating these 45 logits, we
get a vector of length 45 × N , which is used as the repre-
sentation of the image. These vectors are then used as the
training instances for the detector.

Table 1: Detector architectures with respect to different
dataset

Layer Type MNIST CIFAR10
Fully Connected + ReLU 128 128
Fully Connected + ReLU N/A 32

Fully Connected + Sigmoid 1 1

We use multi-layer perceptrons as the detectors whose
architecture is shown in Table 1. The detectors on MNIST
have two layers while the detectors on CIFAR10 have 3 lay-
ers. On each dataset, we train four detectors on different
training sets: D0 is trained on a dataset in which the adver-
sarial examples have a confidence level of 0 (κ = 0). Simi-
larly, D20 and D40 corresponds to adversarial examples with
confidence levels of 20 (κ = 20) and 40 (κ = 40), respec-
tively. And finally, DA is trained using adversarial examples
from all these confidence levels. The set of normal images
used in the three training sets are the same.

For each image in the original testing set (of MNIST and
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Figure 6: Detection results for oblivious attack. Detectors
are evaluated on adversarial examples with different confi-
dence levels. Adversarial examples with negative confidence
levels are valid inputs (normal images). Models trained
on low-confidence adversarial examples can detect high-
confidence adversarial examples.

CIFAR10), we generate adversarial examples with different
confidence levels. The generated adversarial examples and
the original images together are used as the testing set for
the detector. We remove all the images which are classi-
fied incorrectly by the classifiers due to the same reasons
discussed above. The performance of the trained detectors
are showed in Figure 6 in terms of detection accuracy. Here,
we do not use precision, recall, or F1 score as performance
metrics. This is due to the fact that in our experiments, a
“positive” case is defined differently for classifying normal
images and adversarial examples with different confidence
levels and these metrics may vary as the ratio of normal im-
age and adversary examples varies. As such, some common
classification performance metrics may be confusing with
respect to our results.

Except for D0, we observe that a detector that is trained
using only low-confidence adversarial examples is also able
to detect high-confidence adversarial examples. This phe-
nomenon is also reported in (Carlini and Wagner 2017a).
This result indicates all adversarial examples share certain
inherent similarity when put under image transformations.
Overall, the detector trained using all adversarial examples
achieves the best detection rate. The experiment demon-
strates that our idea of image transformation is effective in
thwarting the CW attack.

Defense Against White-Box Attacks

In white-box attacks, the adversary has complete knowledge
of both the classifier and the detector, making it more chal-
lenging to defend. We simulate CW attacks in a white-box
threat model with the method presented in (Carlini and Wag-
ner 2017a). The basic idea is to construct a new model which
combines the image classifier and the detector. Suppose in
the original classification model there are N different labels.
Then the new model would have N+1 labels from which the
last label represents if the input is an adversarial example.

Let G denote the new model which combines the classifier
F and the detector D. Denote G’s logits as ZG, F ’s logits as
ZF and D’s output as ZD. We construct ZG in the following
way:

4143



Table 2: Distortion of adversarial examples

Confidence Oblivious White-Box Increase By(%)
0 1.94 2.55 31.5

10 2.93 4.97 82.3
20 3.29 7.64 132.7
30 4.66 8.75 87.7
40 5.44 10.54 93.8
50 7.72 11.79 52.6

ZG(x)i =

{
ZF (x)i if i ≤ N

(ZD(x)× 2×maxZF (x) if i = N + 1

It is easy to see that when an input is detected as an adver-
sarial example by D, it would also be classified as adversar-
ial (the last label) by G. This is because ZD would be larger
than 0.5 when the input is detected as adversarial. Then
ZG(x)N+1 would be larger than ZG(X)i for 1 ≤ i ≤ N .
If an input is detected as being valid, G would classify it
as the same label as F does. In this way, the new model G
combines F and D.

Now we can apply the CW attack on the new model G.
For all the adversarial examples generated in the white-box
threat model, we check if they can be detected by D. The
evaluation shows that D can barely detect any adversarial
example, as shown in Table 3. In other words, the CW attack
can bypass the detector. Similar results are reported in (Car-
lini and Wagner 2017a) where the CW attack bypassed ALL
of the ten detection methods it explored.

Although the CW attack can bypass the detector, the ex-
istence of detector will increase the cost of adversarial ex-
amples in terms of distortion. Distortion is defined as the
L2 distance between an original image and its adversarial
example. A smaller distortion means that the adversarial ex-
amples is closer to the original image and less likely to be
distinguished by human eyes. The CW attack can generate
adversarial examples with much less distortion than previ-
ous attack algorithms. We compare the distortions of the ad-
versarial examples generated in different settings (oblivious
attack or white-box attack).

In Table 2, we can see that by introducing the detector,
The CW attack must add more distortion to the original im-
age to fool both the image classifier and the detector, es-
pecially in generating high confidence level adversarial ex-
amples. This is because a higher confidence level means
pushing the adversarial examples further beyond the deci-
sion boundary.

However, increasing the cost of an attack is not the same
as successfully defending against the attack. Taking into
consideration the mechanism of the CW attacks, we propose
to add randomness into our defensive method. The added
random targets the optimization method of The CW attacks.
The goal is to make it much harder, if possible, to find the
optimal solution to launch an attack.

Specifically, instead of perform image transformation
with certain fixed steps, we conduct some randomly selected
transformation operations. After an input image is shifted, it

is rotated by a random angle selected from certain range. For
example, when an image should be rotated by an angle of θ,
we rotate it by a random angle θ′ where θ′ is drawn from
a uniform distribution (θ′ ∈ Unif(θ + ε, θ − ε)). Besides
this simple random rotation, all the other steps in training
and testing the detector remains the same. We first examine
if the added randomness effect CW attack in the oblivious
threat model. The results are shown in Figure 7. Note in our
evaluation, δ is set to 5. We can see that the performance of
the detectors has a slight drop compared to the determined
case showed in Figure 6.
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Figure 7: Detection results for the oblivious attack with ran-
dom rotation angles.

Now we perform the white-box CW attack against the
randomized model G. The performance is shown in Fig-
ure 8. Even though all the detectors suffer from detection
accuracy drops, they are acceptable compared to the exist-
ing defensive models. None of then can prevent the CW at-
tack (Carlini and Wagner 2017a) in the white-box setting.
Note that these results are not as smooth as others because
of lack of samples. In the white-box evaluation, for each de-
tector and each confidence levels, we generate 400 adver-
sarial examples on MNIST dataset and 100 on CIFAR10.
Using the CW attack to generate adversarial examples is a
time-consuming job. When performing our experiments on a
laptop with GPU (NVIDIA GeForce GTX 960M), generat-
ing one adversarial example for oblivious threat model takes
around 4 seconds while generating one adversarial example
for white-box threat model takes around 75 seconds in av-
erage. This is because the model G which the CW attack
is targeting in the white-box setting is much more complex
than the original classifier F which the CW attack is target-
ing in the oblivious attack. Besides the detector itself, the
classifier F is reused for 45 times in G.

An empirical comparison is given in Table 3. In this eval-
uation, we compare our proposed method with Gong (Gong,
Wang, and Ku 2017) and Grosse (Grosse et al. 2017). All
the models are trained and tested on adversarial examples
with confidence level of 0. The CW attack can always gen-
erate successful adversarial examples with high probability,
i.e., it achieved high attack success rate. In oblivious threat
model, these adversarial examples can be detected by any of
the methods. However, we can see that, in white-box threat
model, both Gong and Grosse’s methods failed to detect the
adversarial examples since their detection rate dropped to
zero. The distortions increased by less than 10% compared
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Figure 8: Detection results for the white-box attack with
random rotation angles. Adversarial examples in white-box
mode are generated and then detection accuracy is calcu-
lated. Note adversarial examples with negative confidence
levels are valid inputs.

Table 3: Comparison of Different Methods on MNIST

Threat Model Metric Gong Grosse Proposed

Oblivious
AttackSuc 1 1 0.97
DetectSuc 0.99 0.99 0.96
Distortion 1.94 1.94 1.94

White-box
AttackSuc 1 1 0.97
DetectSuc 0 0 0.85
Distortion 2.11 2.06 2.55

with those of oblivious model. But our method achieved
85% detect success rate while increased distortion by more
than 30%.

Now let us look into the reasons why this trick works in
the white-box attack settings. The essential reason is that
the detector evaluates an input with different random angles.
What happens if we let the attacker use exactly the same ro-
tation angles as the detector? We evaluate detection accuracy
in this case and the results showed that all the adversarial
examples bypassed our detector (the accuracy dropped to 0,
same as Gong and Grosse’s techniques). This means that the
CW attack believes it has already found adversarial example
which can circumvent the detector. If the detector continues
using the same angles (as the CW attack does), it would be
fooled by the CW attack. So from a general perspective, the
CW attack model can still bypass our detector, only if the at-
tack model knows what random angles the detector uses in
its future evaluation. In this case, the randomization is elim-
inated and the detectors are bypassed.

But as a matter of fact, the rotation angles are randomly
generated whenever the detector evaluates an input. So in
each time when the detector works, new and different an-
gles are used and the adversary can never know. Those ad-
versarial examples that work in the previous configuration
(rotation angles), will be highly likely to fail in the new con-
figuration.

Defense Against Other Attacks We show that our detec-
tor that targets CW attack is also effective against other ad-
versarial example attacks. We train a detector with adversar-
ial examples generated using the CW attack, and use it to
detect adversarial examples generated by two other attack

Table 4: Evaluation on Other Attacks

Attack Method EPS AttackSuc DetectSuc
FGS 0.1 0.175 0.994
FGS 0.3 0.481 0.989
FGS 0.5 0.586 0.967
IFGS 0.1 0.927 0.999
IFGS 0.3 0.999 0.999
IFGS 0.5 1 0.999
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Figure 9: The FGS and IFGS attacks demonstrate similar
patterns as the CW attack.

algorithms, namely FGS (Goodfellow, Shlens, and Szegedy
2015) and IFGS (Kurakin, Goodfellow, and Bengio 2016)).

The detector (DA) is trained with adversarial examples
generated by the CW attack with different confidence levels.
We can see from Table 4 that the detector is effective against
these two attacks eventhough the detector is not trained on
adversarial examples generated by them. As such, we can
conclude that adversarial examples generated with these dif-
ferent algorithms are all sensitive to image transformations,
which can be used by our detector. This is shown in Figure 9,
which illustrates the sensitivity of FGS and IFGS adversarial
examples to image transformation.

Conclusion

Adversarial example attack can mislead deep neural net-
works to generate incorrect outputs as the attacker de-
sires. This raises significant security concerns in applica-
tions where deep learning is used to support decision mak-
ing. Several defensive techniques have been proposed but
they can all be circumvented by carefully crafting adversar-
ial examples. As such, effective defense against state-of-the-
art adversarial example attack remains an open issue. In this
paper, we proposed image transformation-based adversarial
example detection method. Our insight is that adversarial
examples are more sensitive to certain image transforma-
tion operation comparing with normal images. Taking ad-
vantage of this difference, we trained detectors to identify
adversarial examples from normal images. Experimental re-
sults showed that our method is effective against the state-
of-the-art CW attack in both oblivious attacks and white-box
attacks. To our knowledge, this defensive capability is not
available from other existing defensive techniques.
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