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Abstract

Bayesian optimization (BayesOpt) is a derivative-free ap-
proach for sequentially optimizing stochastic black-box func-
tions. Standard BayesOpt, which has shown many successes
in machine learning applications, assumes a finite dimen-
sional domain which often is a parametric space. The pa-
rameter space is defined by the features used in the function
approximations which are often selected manually. There-
fore, the performance of BayesOpt inevitably depends on
the quality of chosen features. This paper proposes a new
Bayesian optimization framework that is able to optimize di-
rectly on the domain of function spaces. The resulting frame-
work, Bayesian Functional Optimization (BFO), not only ex-
tends the application domains of BayesOpt to functional op-
timization problems but also relaxes the performance depen-
dency on the chosen parameter space. We model the domain
of functions as a reproducing kernel Hilbert space (RKHS),
and use the notion of Gaussian processes on a real separa-
ble Hilbert space. As a result, we are able to define tradi-
tional improvement-based (PI and EI) and optimistic acquisi-
tion functions (UCB) as functionals. We propose to optimize
the acquisition functionals using analytic functional gradients
that are also proved to be functions in a RKHS. We evaluate
BFO in three typical functional optimization tasks: i) a syn-
thetic functional optimization problem, ii) optimizing activa-
tion functions for a multi-layer perceptron neural network,
and iii) a reinforcement learning task whose policies are mod-
eled in RKHS.

Introduction

Bayesian optimization is a derivative-free optimization
scheme and is approached from the viewpoint of Bayesian
theory (Jones, Schonlau, and Welch 1998; Brochu, Cora,
and De Freitas 2010). It frames the optimization prob-
lem of unknown functions as a sequential decision task.
These unknown functions are often costly to evaluate, es-
pecially in stochastic tasks, hence query points have to
be selected such that the total cost of evaluations is opti-
mized, for example, cost minimization in robotic control
tasks as thoroughly discussed by (Deisenroth, Neumann, and
Peters 2013), profit maximization in advertisement place-
ment problems (Pandey, Chakrabarti, and Agarwal 2007),
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etc.. Specifically, the goal is to optimize an unknown real-
valued objective function f(x) on some bounded subset X ,
mostly a subset of �d. At each round t, the optimizer can
only access a noisy evaluation yt by querying f(xt) at a
sample point xt. The target is to find the minimizer x∗
of the objective function while also minimizing the over-
all evaluation cost. To this end making decisions on an op-
timal next query point needs to integrate the information
of all previous queries. A common approach of BayesOpt
is to incorporate a Gaussian process prior as a probabilis-
tic surrogate model of the unknown function. New candi-
date points are then sampled based on the posterior distribu-
tion of the learned model. Hence, the decision making pro-
cess becomes a belief search problem. Many criteria can be
used to exploit the distribution of this learned model, for
example the probability of improvement (Kushner 1964),
the expected improvement (Močkus 1975), the confidence
bound criteria (Cox and John 1992; Srinivas et al. 2012), and
information-based approaches (Hennig and Schuler 2012;
Shahriari et al. 2014).

In this work, we are concerned with black-box optimiza-
tion of functional objectives. By modeling candidate func-
tions in reproducing kernel Hilbert space (RKHS) we en-
able BayesOpt to optimize in non-parametric, rich solution
spaces while inheriting the useful structures and properties
from a RKHS.

As a summary, our major contributions are three-fold:
First, we propose the novel Bayesian functional optimiza-
tion framework (BFO), that enables optimization in function
spaces that are potentially infinite-dimensional. To this end
BFO adopts a functional Gaussian process prior as a surro-
gate model for objective functionals, moreover we propose
three acquisition functionals to select which function should
be evaluated next: Probability of Improvement, Expected
Improvement, and iGP-UCB functionals (infinite GP-UCB).
Second, by assuming the domain of BFO is a RKHS HK

with a kernel K, we show that functional gradients of those
acquisition functionals can be derived analytically. More-
over, those functional gradients are functions in HK which
results in an efficient functional gradient update. Third, we
provide a cumulative regret bound for iGP-UCB.

There have recently been similar effort in proposing new
machine learning frameworks for learning on functional
data, such as functional regression by (Kadri et al. 2015),
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modeling policies for reinforcement learning in RKHS by
(Bagnell and Schneider 2003; Lever and Stafford 2015;
Vien, Englert, and Toussaint 2016), representing motion tra-
jectories in RKHS by (Marinho et al. 2016; Dong et al.
2016), or finding geodesic shortest paths for physical sys-
tems by (Kasim and Norreys 2016). Particularly, the last
work by (Kasim and Norreys 2016) is the closest to our
work in which they also tackle global functional optimiza-
tion problems. This method extends the Simultaneous Op-
timistic Optimisation (SOO) approach proposed by (Munos
2011) to optimize functionals, which however have to resort
to discretization. Another similar work by (Vien, Dang, and
Chung 2017) has also tried to extend CMA-ES to functional
optimization

Background

We first give a brief problem statement, then review back-
ground about Gaussian processes (GP) and BayesOpt with a
GP prior.

In Bayesian optimization (Močkus 1975) (BayesOpt), we
are interested in finding the maximum of a black-box func-
tion f : D → � on some bounded domain D, where D ⊆
�n. BayesOpt takes a probabilistic approach to model the
objective function f whose uncertainty quantification can be
exploited in making decisions on which query point x the
objective f(x) is evaluated next. Therefore, any BayesOpt
method essentially consist of two major components. Firstly,
a probabilistic surrogate model, often chosen to be a Gaus-
sian Process, to represent the belief over the unknown objec-
tive f(x), Secondly, an acquisition function which computes
a utility value for candidate evaluation points from the poste-
rior distribution in order to select the next optimal evaluation
point.

Gaussian Process

Using Bayesian methods, one can infer a probabilistic model
of f that can be queried for estimates of f(x), it’s con-
fidence, and correlation with nearby regions. A Gaussian
process (GP) prior is a generalized distribution over infi-
nite many Gaussian random variables, of which each fi-
nite subset is distributed jointly normal (Rasmussen 2006).
A GP is defined as GP(μ(·), k(·, ·)) with mean function
μ and covariance kernel k that is presumably bounded:
k(x, x′) ≤ 1, ∀x ∈ D. The kernel, i.e. covariance func-
tion, k encodes differentiability and smoothness properties
of samples f(x) ∼ GP(μ(x), k(x, ·)). Assuming that the
noise εt ∼ N (0, σ2) is i.i.d. Gaussian, the posterior over f
after t observations {xi, yi}ti=1 is Gaussian with mean, co-
variance, and variance as

μt(x) = kt(x)
�(Kt + σ2I)−1yt,

kt(x, x
′) = k(x, x′)− k�

t (x)(Kt + σ2I)−1kt(x
′),

σ2
t (x) = kt(x, x),

where yt = [y1, y2, · · · , yt]� is the vector of previous
observations, kt(x) = [k(x, x1), k(x, x2), · · · , k(x, xt))]

�
the vector of pairwise kernels between current and previous
query points, and Kt is the t × t Gram matrix of kernels

k(xi, xj), ∀i, j ∈ {1, 2, · · · , t}. For later analysis, a station-
ary kernel k(x, x′) = k̂(|x − x′|) is used. Common exam-
ples of a stationary kernel are the squared exponential and
Matérn kernels.

Bayesian Optimization: Acquisition Functions

We have discussed a probabilistic surrogate model used to
represent the belief over the unknown function f . We now
discuss the strategies to select a sequence of query points
x1:t by defining an acquisition function u : D → �.
Here we present and use three traditional acquisition func-
tions (Brochu, Cora, and De Freitas 2010): probability of
improvement (PI) (Kushner 1964), expected improvement
(EI) (Lizotte 2008), and an upper confidence bound criteria
(UCB) (Cox and John 1992; Auer, Cesa-Bianchi, and Fis-
cher 2002). We denote xbest, ybest = f(xbest) the best evalu-
ation until time t, and Φ(·) the cumulative distribution func-
tion of the standard normal distribution denoted by φ(·).

Probability of Improvement: This strategy selects the
query point that maximizes the probability of improvement
over the current best value, which is analytically computed
as

uPI(x) = Pr(f(x) > ybest) = Φ (γ(x)) (1)

where γ(x) = μt(x)−ybest
σt(x)

.
Expected Improvement: This strategy selects the query

point that maximizes the expected improvement over the
current best. Similarly, this criteria has the analytic form

uEI(x) = σt(x) (γ(x)Φ(γ(x)) + φ(γ(x))) . (2)

GP-UCB: this strategy selects the query point that max-
imizes the upper confidence bound criteria such that, when
meeting some rather mild conditions, the cumulative regret
is bounded, as introduced by (Srinivas et al. 2012).

uUCB(x) = μt(x) + β
1/2
t σt(x) (3)

where βt = ντt and ν is a hyperparameter. The selection
of ν = 1 and τt = 2 log(tn/2+2π2/3δ) (n being the di-
mensionality of the domain D) is shown to make GP-UCB
achieve no-regret with probability 1− δ.

There are a number of BayesOpt methods dealing with
very high-dimensional problems, for example learning
sparse additive model in high dimensions by (Tyagi, Gärtner,
and Krause 2014; Tyagi et al. 2016), using random em-
beddings on high-dimensions by (Wang et al. 2016), learn-
ing a lower dimensional subspace by (Djolonga, Krause,
and Cevher 2013). However, those methods work by as-
suming that the underlying problem is an inherently sim-
ple task (low-dimensional) but hidden in a very high dimen-
sional space. On the other hand, none of those methods di-
rectly work with problems on function domains (potentially
infinite-dimensional).

Functional Optimization: A Bayesian

Approach

We now present BFO, a principled Bayesian optimization
framework for both functional optimization tasks and opti-
mization problems on non-parametric domains.
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Algorithm 1 RKHS-REMBO
1: Generate a random bounded linear operator on RKHS,

T : �d → H
2: Define a bounded region set on Z ⊂ �d

3: Set D0 = ∅
4: while (not terminate) do
5: Select zt+1 = argmaxz∈Z u(z) (maximizing an ac-

quisition function on Z)
6: Sample yt+1 = f(Tzt+1) + εt+1

7: Update the data Dt+1 = Dt ∪ {zt+1, yt+1}
8: Tuning the kernel hyper-parameters of the GP on

the domain Z
9: end while

Problem Statement

We consider the problem of globally maximizing an un-
known objective functional f : Hk → �, where Hk is
a reproducing kernel Hilbert space with real-valued repro-
ducing kernel k : D × D → �, D ⊆ �, consisting of
span{k(x, ·) | x ∈ D} and it’s closure.

At each round t, a function ht ∈ H is selected, and a noisy
evaluation yt = f(ht)+εt is returned, where εt ∼ N (0, σ2).

Naive Approach

This section suggests one simple Bayesian optimization ap-
proach for the above problem, using the random embed-
ding idea from (Wang et al. 2016) as described in Algo-
rithm 1, called RKHS-REMBO (Bayesian Optimization on
RKHS with Random Embedding). Many previous paramet-
ric Bayesian optimization approaches might be extended to
tackle the above problem. However, we believe that those
extensions using more sophisticated methods like learn-
ing a lower dimensional subspace by (Djolonga, Krause,
and Cevher 2013), using the Karhunen-Loeve theorem (Jor-
gensen and Song 2007), or kernel learning (Wilson 2014))
might be non-trivial. Given a kernel function k, a random
bounded linear operator T is generated by first sampling
randomly d functions hi in RKHS: hi =

∑N
i=1 αik(xi, ·),

where αi ∈ �, xi ∈ D are sampled randomly. The
random bounded linear operator T is formed as T =
[h1, h2, . . . , hd]. One can consider T as a |H| × d matrix
(|H| is the dimensionality of H which is potentially infinite).
As T is constructed from a set of RKHS functions, we can
easily conclude that T is a bounded operator.

Similar to the original REMBO algorithm, RKHS-
REMBO assumes that the unknown function f has an in-
trinsically d-dimensional structure (where d must be treated
as a hyperparameter), instead of |H| which might be poten-
tially infinite. Therefore, RKHS-REMBO can only result in
a sub-optimal solution function h∗ that depends on a fixed
set of initially randomly sampled functions hi. However,
though this projection may approximate the function domain
crudely, it provides a simple and fast solution.

Bayesian Functional Optimization

Our proposed BFO framework is depicted in Algorithm 2.
BFO is constructed based on two choices: i) a GP prior to

track the belief over the unknown objective functional f(h)
and ii) an acquisition functional h : Hk → �.

Gaussian Process for Functional Domains There was
little effort in using GP for functional data as in work of (Shi
and Choi 2011) in which they define a GP kernel function on
the inputs of parametric form. However, we assume specifi-
cally that the input space is a RKHS Hk, which allows us to
directly define a GP kernel over functions in Hk.

We assume that a Gaussian process on a real separable
Hilbert space Hk with a scalar reproducing kernel k =
〈·, ·〉H models a prior distribution on the unknown functional
f(h), h ∈ Hk. A stochastic process f = {f(h), h ∈ Hk}
defined in a complete probability space (Ω,F , μ) is a Gaus-
sian process if f is a Gaussian family of random variables
such that cov(f(h), f(g)) = K(h, g), where K(·, ·) is re-
quired to be a positive semi-definite kernel K : Hk ×Hk →
�.

The kernel K(h, g), where h, g ∈ Hk, can be constructed
based on RKHS kernels k evaluated at support points from
the underlying RKHS function domain D. We provide two
simple functional GP kernels:

Polynomial kernel: K(h, g) = (〈h, g〉Hk
+ c1)

c2 (where
c1, c2 ≥ 0 are hyper-parameters). Hence if h and g the form:
h =

∑N
i=1 αik(x

(h)
i , ·), g =

∑M
i=1 βik(x

(g)
i , ·), then the

kernel K(h, g) can be computed as

K(h, g) =
( N,M∑

i=1,j=1

αiβjk(x
(h)
i , x

(g)
j ) + c1

)c2
.

Stationary kernel: This kernel involves a computation of
the distance ‖g− h‖2 = 〈g − h, g − h〉Hk

, which again can
be computed based on the evaluation of kernels k(·, ·) as

〈g − h, g − h〉Hk
=

N,N∑
i=1,j=1

αiαjk(x
(h)
i , x

(h)
j )

+

M,M∑
i=1,j=1

βiβjk(x
(g)
i , x

(g)
j )

− 2

N,M∑
i=1,j=1

αiβjk(x
(h)
i , x

(g)
j )

RBF kernel: An RBF kernel can easily be constricted us-
ing the stationary kernel as

K(g, h) = exp(−‖g − h‖2Hk
/2σ2).

Posterior update: With a positive definite kernel K, the
posterior over f is updated similarly to the standard GP. For
a data set of noisy evaluations yt = [y1, y2, · · · , yt]� and
sampled functions {h1, h2, · · · , ht}, the posterior is again a
GP distribution with mean functional μt(·) and covariance
kernel Kt(·, ·) as

μt(h) = kt(h)
�(Gt + σ2I)−1yt

Kt(h, h
′) = K(h, h′)− k�

t (h)(Gt + σ2I)−1kt(h
′)

σ2
t (h) = Kt(h, h)
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Algorithm 2 The BFO framework
1: Initialize D0 = ∅
2: Prior mean functional μ0 ∈ Hk

3: while (not terminate) do
4: Select ht+1 = argmaxh∈Hk

u(h) (maximizing the
acquisition functional on Hk)

5: Sparsify ht+1 to get a compact function h̃t+1

6: Sample yt+1 = f(h̃t+1) + εt+1

7: Update the data Dt+1 = Dt ∪ {h̃t+1, yt+1}
8: Tuning the hyper-parameters of the kernel, K :

Hk ×Hk → �
9: end while

where kt(h) = [K(h, h1),K(h, h2), h · · · ,K(h, ht))]
�,

and Gt is a t × t Gram matrix of functional kernels
K(hi, hj), ∀i, j ∈ {1, 2, · · · , t}.

Note that the above update is an extended Bayesian inter-
pretation of the non-Bayesian kernel regression method on
functional data as studied recently by (Kadri et al. 2015).

Acquisition Functionals We propose three acquisition
functionals: probability of improvement, expected improve-
ment, and iGP-UCB to select a function h to next evaluate
f(h). We denote hbest, ybest = f(hbest) the best evaluation
until time t.

Probability of Improvement (PI):

uPI(h) = Φ(γ(h))

where the functional γ is defined as

γ(h) =
μt(h)− f(hbest)

σt(h)

As Φ(·) is a monotonically increasing function, maximizing
PI can be replaced by just maximizing γ(h).

Expected Improvement (EI):

uEI(h) = σt(h)
[
γ(h)Φ(γ(h)) + φ(γ(h))

]
iGP-UCB:

uUCB(h) = μt(h) + β
1/2
t σt(h)

Optimizing the above acquisition functionals might be hard.
Fortunately, the functional gradient w.r.t functions on a
RKHS Hk with a reproducing kernel k can be derived ana-
lytically

We are now computing the functional gradients of those
acquisition functionals. Specifically, here we are stating the
functional gradients for the iGP-UCB acquisition functional
and RBF kernel K(h, h′) = exp(−‖h′ − h‖2Hk

/2σ2) 1 We
use the notion of the Fréchet derivative which is a derivative
on Banach spaces. Let V and W be Banach spaces, and U ∈
V be an open subset of V , then a function f : U → W
is called Fréchet differentiable at h ∈ U if there exists a
bounded linear operator Df |h : V → W such that

lim
g→0

‖f(h+ g)− f(h)−Df |h(g)‖W
‖g‖V = 0

1We would like to refer the reader to the supplemenary material
for the detailed analytic computation of the functional gradients of
the three acquisition functionals.

Assumption 1 Assume that each functional kernel
K(ht, h) has a Fréchet derivative Dht : Hk → �
According to (Chae 1985), when W is a real (or complex)
space, the Fréchet derivative becomes a function in Hk i.e.
Df |h ∈ Hk and Df |h(g) = 〈Df |h, g〉Hk

.

Lemma 1 The Fréchet derivative at h ∈ Hk of the RBF
kernel function K(ht, h) = exp(−‖ht − h‖2Hk

/2σ2) is

Dht|h : g �→〈K(ht, h)

σ2

(
ht − h

)
, g
〉
Hk

As we can see the Fréchet derivative Dht|h at h of the
RBF kernel is a function in Hk which support points are the
combined set of suport points from h and ht. Specifically,
assuming that h and ht have representation

h =

N1∑
i=1

αik(xi, ·), ht =

N2∑
i=1

βiK(x′
i, ·)

then Dht|h is written as

Dht|h(x) = K(ht, h)

σ2

N2∑
i=1

βiK(x′
i, x)

− K(ht, h)

σ2

N1∑
i=1

αik(xi, x)

where x, xi, x
′
i ∈ �n.

Lemma 2 The derivative of the mean and variance func-
tionals at h ∈ Hk are the linear operators Dμt|h : Hk →
�, and Dσ2

t |h : Hk → � such that

Dμt|h(g) = Dkt|h(g)(Gt + σ2I)−1yt

Dσ2
t |h(g) = Dh|h(g)− 2Dkt|h(g)�(Gt + σ2I)−1kt(h)

where Dkt|h is the Fréchet derivative of kt(h), and
Dh|h(g) is defined in Assumption 1. In addition, Dμt|h and
Dσ2

t |h are functions in Hk.

Proposition 1 The Fréchet derivative of the UCB acquisi-
tion functional is

DuUCB |h = Dμt|h + β1/2 1

σ2
t (h)

Dσ2
t |h

which is in Hk.

Optimizing the acquisition functional: The recursive gra-
dient update process starts with a randomly initialized func-
tion h{0} ∈ HK . The function h is computed iteratively as

h{l+1} = h{l} + αl(Du|h{l} + λh{l}) (4)

where αl is a step-size, we denote Du|h{l} the Fréchet
derivative of the acquisition functionals uUCB, uPI, or uEI.
There are three key insight about this process.

4174



1. The Lagrange function for acquisition functional opti-
mization (using box constraints): we assume that there
is a boundary on Hk that helps refrain global optimiza-
tion methods from relentlessly exploring. Specifically, Hk

consists of functions bounded by a constant C: ‖h‖Hk
≤

C. Therefore, we receive a functional optimization prob-
lem of a given acquisition function as

max
h∈Hk

u(h) s.t. ‖h‖Hk
≤ C (5)

We form the Lagrange function λ: maxh∈Hk
u(h) +

λ
2 (‖h‖2Hk

−C2). Thus, we propose to optimize this func-
tion to find the next query function h, hence receive a
functional gradient update as in Eq. 4. We treat λ as a
hyperparameter.

2. Because all Fréchet derivatives of three acquisition func-
tionals are in Hk, the recursive update in Eq. 4 also results
in functions h{l} in Hk. Moreover, its representation de-
pends on all support centres from h1:t and h{0}. Specifi-
cally, assuming that

hj =

Nl∑
i=1

α
{j}
i k(x

{j}
i , ·) ∀j ∈ (1, 2, · · · , t),

h{0} =

N∑
i=1

αik(xi, ·),

after l functional gradient updates in Eq. 4, h{l} might
have representation as

h{l} =
N∑
i=1

w0,iαik(xi, ·) +
t∑

j=1

Nj∑
i=1

wl−1,iα
{j}
i k(x

{j}
i , ·)

where wli are the weights of the function h{l}.

3. As realized by the above, the representation of the result-
ing optimal solution h∗ depends on fixed support cen-
tres x

{t}
i from previous sampled points ht and centres

xi from the initial function h{0}. Therefore, we propose
to initialize h{0} randomly by a randomly sampled num-
ber of samples N (large enough), and random samples
x1:N , α1:N to result in h{0} =

∑N
i=1 αik(xi, ·).

We use a multi-start strategy that reruns the above op-
timization process multiple times with randomly sampled
functions h{0} to assure h∗ is the global solution in opti-
mizing the acquisition functional.

As the final solution ht+1 = h{∗} might be a complex
function (Nt+1 large) (Step 4 in Algorithm 2), it might slow
down the update of our GP in RKHS. We suggest to sparsify
ht+1 before evaluating f(ht+1). Our paper uses the kernel
pursuit matching algorithm by (Vincent and Bengio 2002)
to sparsify h to be represented by only d centres, instead
of being N +

∑t
j=1 Nj . Sparsification is seen at Step 5 in

Algorithm 2. After each iteration, we tune the hyperparam-
eter (Step 8) of the kernel K (currently by maximizing the
marginal likelihood).

Figure 1: (left) MSE on 1D domain, (right) MSE on 2D do-
main

Theoretical Results The PI approach is known to be a
heuristic rule as discussed by (Jones 2001), and the EI ap-
proach was recently proved to converge by (Vazquez and
Bect 2010) and (Bull 2011) with limited assumptions about
a fixed Gaussian process prior of finite smoothness and
known smoothness of f , respectively. Therefore, we decide
to provide only a theoretical result for the BFO UCB (iGP-
UCB) method where the cumulative regret RT is a perfor-
mance metric. (Srinivas et al. 2012) provide cumulative re-
gret bounds that depend on the dimensionality of the input
space �n. We follow their proof and provide a new regret
bound suitable for our problem setting. The main difficulty
is to deal with the (potentially) infinite dimensional domain.
Many results of (Srinivas et al. 2012) can only hold with as-
suming finite dimensionality. First we define the maximum
information gain γT after T rounds as

γT = max
H⊂Hk,|H|=T

I(yH ; fH) =
1

2
log |I+ σ−2GT | (6)

where GT is the covariance matrix K(h, h′) for h, h′ ∈ H .
In the following theorem, we show the bound on the cumu-
lative regret for iGP-UCB.
Theorem 1 Define C1 = 8/ log(1 + σ−2), we have: RT ≤√
C1TβT γT + π2

6 , ∀T ≥ 1, with probability greater than
1 − δ, where βT = 2d0 log(rd0bT

2πt

√
log(2d0a)/δ) −

2d0 log(1−2εt2) in which d0, r, a, b are parameters depend-
ing on discretization of the search space and

∑T
t≥1 1/πt =

1, πt > 0.
For a sketch of the proof, we use the Stone-Weierstrass the-
orem twice in order to approximate any function f(h), ∀h ∈
Hk by a parametric function, which has a finite-dimensional
domain based on two stages. The first stage approximates
f by a finite set of basis {hi}di=1. This step is equivalent to
represent f in parametric form as f(h) ≈ ∑d

i=1 αiK(hi, ·).
The next stage is to approximate each function hi by a poly-
nomial of degree N and smaller. Any function f(h) is pa-
rameterized by a cross parameter space of coefficients of all
d polynomials and αi. Therefore our proof can inherit many
results of (Srinivas et al. 2012). A proof in detail is presented
in the supplementary material.

Experiment

We first evaluate the advantages of BFO on a range of ap-
plications which are also typical application domains for
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BayesOpt: i) a synthetic functional optimization problem, ii)
a hyperparameter optimization problem where we use BFO
to choose optimal activation functions of a neural network
for the MINIST dataset, and iii) policy search in reinforce-
ment learning.

We use RBF kernels k(x, x′) = exp(−‖x − x′‖/2σ2
1),

K(h, h′) = exp(−‖h − h′‖/2σ2
2), where σ1, σ2 are two

hyperparamters. The GP kernel hyperparamets σ2 is tuned
by maximizing the marginal data likelihood.

Functional Optimization: Synthetic Problems

We design two different tasks, n = 1 and n = 2, of an un-
known function h∗ : �n → �. Each function is a mixture of
two (multi-variate) Gaussians, respectively. All optimizers
are tasked to minimize

J =

xN∫
x0

(
h∗(x)− h(x)

)2
dx+ ε

≈ 1

N

N∑
i=1

(
h∗(xi)− h(xi)

)2
+ ε

as a noisy square distance to the unknown function h∗,
where x ∈ �n, ε ∼ N (0, σ2).

We compare its behavior with other base-line methods:
standard BayesOpt, RKHS-REMBO (Algorithm 1), and
functional gradient descent (assuming to know the true func-
tion h∗ and ignoring noise).

Functional gradient: Using functional gradient requires
to have access to the non-noisy ground-truth function h∗
from which J(h) can be approximately evaluated as stated
above (without noise ε). The functional gradient at h can be
computed as ∇hJ(h) =

∑N
i=1 2

(
h(xi) − h∗(xi)

)
K(xi, ·)

and thus the functional gradient update at iteration l is
h{l+1} ← h{l} − α∇hJ(h

{l}). A sparsification technique
(Vincent and Bengio 2002) can be used to achieve a compact
representation of h which renders the functional gradient ap-
proach an adaptive method too. This means the representa-
tion of h will be adaptively adapted to best approximate h∗.
Hence, discretization is required to be fine enough to achieve
good approximation.

Standard BayesOpt: We assume a parametric represen-
tation of h as a linear expansion of N features: h(x) =∑N

i=1 θiφi(x). We use RBF features φi(x) = exp(−‖x −
xi‖2/σ2) centered around N center points xi. Standard
BayesOpt optimizes over a search space of {θi, {xi}Ni=1}.

Results: For all optimizers (except the functional gradient
method), we use the same number N = 2 of features and
evaluate them on the two corresponding tasks, n = 1 and
n = 2. The bandwidth σ1 is set equal to the bandwidth of
the Gaussians in the ground-truth function h∗.

We report the mean squared error plot (MSE) J in Fig. 1,
together with the final best MSE in Table 1, both aver-
aged over 10 runs. The results show that BFO outperforms
all other methods (except the functional gradient which as-
sumes to know the ground-truth). RKHS-REMBO only op-
timizes on a fixed parameter space in which it can not find a

Figure 2: MNIST Dataset: (left) cross-entropy on validation
dataset, (right) standard deviations

good solution. Standard BayesOpt does not have this prob-
lem but is not able to deal with the different scaling of center
and weight spaces.

Table 1: Synthetic domain: MSE and standard deviations of
the best evaluation over 10 runs.

Methods 1D Domain 2D Domain
Functional Gradient 1.31e-6 ± 7.0e-05 2.9e-6 ±7.76e-7
BFO UCB 0.0086 ± 0.0036 0.0085 ±0.002
BFO PI 0.0026 ±0.0025 0.0058 ± 0.002
BFO EI 0.0027 ±0.0014 0.0056 ±0.003
BayesOpt UCB 0.0195 ±0.0086 0.0143 ±0.006
BayesOpt PI 0.0168 ± 0.0088 0.0131 ± 0.002
BayesOpt EI 0.0197 ±0.0070 0.0121 ±0.002
RKHS-REMBO UCB 0.0780 ±4.58e-6 0.0246 ± 0.0001
RKHS-REMBO PI 0.0780 ±1.38e-5 0.0246 ± 7.63e-5
RKHS-REMBO EI 0.0781 ±0.0001 0.0247 ± 0.0001

Hyperparameter Optimization for Neural
Networks: Choosing Activation Functions

The MNIST database consists of labeled 28x28 pixel
greyscale images of handwritten digits. It contains a test data
set of 10.000 data tuples and a training data set of 60.000
data tuples. We train a multilayer perceptron with 2 hid-
den layers containing 500 and 300 neurons. The network is
trained using the cross entropy loss and stochastic minibatch
gradient descent with batches of size 100, using TensorFlow
with the ADAM optimizer by (Kingma and Ba 2015).

We use three centers for the parametric methods, and also
sparsify the functions in BFO to three basis functions (cen-
ters in parametric view) to assure a compact representation
of the activation functions. We compare BFO to: i) the base-
line fixed sigmoid activation function, ii) tunable paramet-
ric activation functions (using RBF features), iii) standard
BayesOpt using UCB (GP-UCB). We selected the objective
functional for Bayesian functional optimization as the cross
entropy of the validation data set obtained by training the
MLP model with the query activation function. We report
the result in Fig. 2, and Table 2. The results clearly show
the benefit of our nonparametric BFO approach which out-
performs the existing parametric approaches, joint training
with tunable activation functions and standard BayesOpt.
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Table 2: MNIST Dataset: cross-entropy and standard deviations of the best evaluation over 10 runs.
Methods CE (val. data) Test CE (best) Test Acc. Activation (best)

Fixed Sigmoid 0.112 ± 0.006 0.097 97.06 %

Joint Training 0.093 ± 0.007 0.077 97.77%

BFO UCB 0.055± 0.005 0.060 98.06 %

BFO PI 0.054 ± 0.004 0.058 98.14 %

BFO EI 0.053± 0.002 0.059 98.26%

GP-UCB 0.070 ± 0.007 0.072 97.59%

Reinforcement Learning by Policy Search:
Inverted Pendulum

For simplicity, we assume a policy π as a Gaussian con-
troller with the mean function h ∈ H, a = h(s) = π(s)
where s is a state in the state space D, and a variance σ2.
For parametric policy approaches, h may be a linear function
of predefined features as h(s) = θ�Φ(s), where θ ∈ �N .
For each sample θ, we evaluate J(θ) = Eπ(θ)

(∑T
i=0 γ

iri

)
which is computed using Monte-Carlo simulations. Specif-
ically, Z trajectories are collected by executing π(θ), and
J(θ) ≈ 1

Z

∑Z
i=1 R(τi), where R(τi) is the ith return.

A simple application of BayesOpt for policy search is
to define a Euclidean kernel in parameter space (Brochu,
Cora, and De Freitas 2010). We compare our direct policy
search via BFO using iGP-UCB to standard BayesOpt pol-
icy search (Lizotte et al. 2007) (optimizing over a search
space of {θi}Ni=1, while si are evenly placed), BayesOpt-
A (optimizing over a search space of {θi, si}Ni=1), CMA-
ES (Heidrich-Meisner and Igel 2009), a parametric actor-
critic, and the actor-critic in RKHS (RKHS-AC) (Lever and
Stafford 2015) methods. In all experiments, we use the RBF
kernel where the bandwidths are set using the median-trick.
For the inverted pendulum domain we use the same settings
as in (Lever and Stafford 2015). We use N = 16 centres, i.e.
features, for all algorithms and set discout factor γ = 0.99
and a horizon H = 400.

The results of mean performance and it’s 95% confidence
are computed over 10 runs and reported in Fig. 3. We ob-
serve that all local methods such actor-critic and RKHS ac-
tor critic are not competitive as their performance improves
too slowly. Also the CMA-ES method is not very data effi-
cient, with a limited number of episodes it’s performance
remains non-competitive. On contrary, all Bayesian opti-
mization methods, iGP-UCB, GP-UCB, RKHS-REMBO
and adaptive BayesOpt, are very competitive. Their perfor-
mances improve quickly and they exploit data very effi-
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Figure 3: The Inverted Pendulum domain

ciently.

Conclusion

This paper proposes BFO, a Bayesian functional optimiza-
tion framework, for global functional optimization. We mod-
eled the function space as a reproducing kernel Hilbert space
which results in both, an efficient update of the functional
GP and simple optimization of the acquisition functional.
Combined with an efficient sparsification method we attain
compact and flexible solutions without slowing down the
functional GP update too much. Our experiments show that
BFO is very promising and able to represent complex solu-
tion functions compactly. Compared to other methods BFO
can not only theoretically handle functional optimization di-
rectly, but also practically does not need to rely on a prede-
fined set of features while bypassing the problem of handling
different scales in cross parameter spaces that might occur
with standard BayesOpt. We believe that it might be more
straightforward and convenient to separately argue about a
suited RKHS to represent candidate functions and a func-
tional GP kernel for measuring the similarity between those
functions than directly designing a parametric kernel for
standard BayesOpt in a parameterized task setting.
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