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Abstract

Given a pre-trained CNN without any testing samples, this
paper proposes a simple yet effective method to diagnose fea-
ture representations of the CNN. We aim to discover repre-
sentation flaws caused by potential dataset bias. More specif-
ically, when the CNN is trained to estimate image attributes,
we mine latent relationships between representations of dif-
ferent attributes inside the CNN. Then, we compare the mined
attribute relationships with ground-truth attribute relation-
ships to discover the CNN’s blind spots and failure modes
due to dataset bias. In fact, representation flaws caused by
dataset bias cannot be examined by conventional evaluation
strategies based on testing images, because testing images
may also have a similar bias. Experiments have demonstrated
the effectiveness of our method.

Introduction
Given a convolutional neural network (CNN) that is pre-
trained to estimate image attributes (or labels), how to diag-
nose black-box knowledge representations inside the CNN
and discover potential representation flaws is a crucial is-
sue for deep learning. In fact, there is no theoretical solution
to identifying good and problematic representations in the
CNN. Instead, people usually just evaluate a CNN based on
the accuracy obtained using testing samples.

In this study, we focus on representation flaws caused
by potential bias in the collection of training samples (Tor-
ralba and Efros 2011). As shown in Fig. 1, if an attribute
usually co-appears with certain visual features in training
samples, then the CNN may be learned to use the co-
appearing features to represent this attribute. When the used
co-appearing features are not semantically related to the tar-
get attribute, we consider these features as biased representa-
tions. This idea is related to the disentanglement of the local,
bottom-up, and top-down information components for pre-
diction (Wu, Xia, and Zhu 2007; Yang, Wu, and Zhu 2009;
Wu and Zhu 2011). We need to clarify correct and prob-
lematic contexts for prediction. CNN representations may
be biased even when the CNN achieves a high accuracy on
testing samples, because testing samples may have a similar
bias.
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Figure 1: Biased representations in a CNN. Considering
potential dataset bias, a high accuracy on testing images
cannot always ensure that a CNN learns correct represen-
tations. The CNN may use unreliable co-appearing con-
texts to make predictions. For example, we manually mod-
ify mouth appearances of two faces by masking mouth re-
gions or pasting another mouth, but such modifications do
not significantly change prediction scores for the lipstick at-
tribute. We show heat maps of inference patterns of the lip-
stick attribute, where patterns with red/blue colors are pos-
itive/negitive with the attribute score. The CNN mistakenly
considers unrelated patterns as contexts to infer the lipstick.
We propose a method to automatically discover such biased
representations from a CNN without any testing images.

In this paper, we propose a simple yet effective method
that automatically diagnoses representations of a pre-trained
CNN without given any testing samples. I.e., we only use
training samples to determine the attributes whose represen-
tations are not well learned. We discover blind spots and
failure modes of the representations, which can guide the
collection of new training samples.

Intuition, self-compatibility of network representa-
tions: Given a pre-trained CNN and an image I , we use the
CNN to estimate attribute A for I . We also mine inference
patterns1 of the estimation result, which are hidden in conv-

1We regard a neural pattern as a group of units in a channel of
a conv-layer’s feature map, which are activated and play a crucial
role in the estimation of the attribute A.
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Figure 2: Overview of the method. Given a biased dataset for training where the smiling and black hair attributes usually
appear on faces with certain appearances of eyes or noses, the CNN may mistakenly use eye or nose features to represent the
two attributes. Biased representations are difficult to discover when testing samples are also biased. In this study, we mine
relationships between attributes. Conflicts between the mined and ground-truth relationships indicate potential representation
problems.

layers of the CNN. We can regard the mined inference pat-
terns as exact representations of the attribute A in the CNN.
Then, based on inference patterns, we compute the relation-
ship between each pair of attributes (Ai, Aj), i.e. identifying
whether Ai is positively/negatively/not related to Aj .

The intuition is simple, i.e. according to human’s com-
mon sense, we set up several ground-truth relationships be-
tween some pairs of attributes as rules to diagnose CNN rep-
resentations. The mined attribute relationships should well
fit the ground truth; otherwise, the representation is proba-
bly not well learned. Let us take a CNN that is learned to
estimate face attributes for example. As shown in Fig. 2, the
smiling attribute is supposed to be represented by features
(patterns), which appear on the mouth region in conv-layers.
Whereas, the black hair attribute should be inferred by fea-
tures extracted from hairs. Therefore, the attribute relation-
ship “smiling is not related to the black hair” is trustworthy
enough to become a ground truth. However, the CNN may
use eye/nose features to represent the two attribute, because
these attributes always co-appear with specific eye/nose ap-
pearances in a biased dataset. Thus, we will mine a specific
relationship between the two attributes, which conflicts with
the ground truth.

Our method: Given a pre-trained CNN, we mine rela-
tionships between each pair of attributes according to their
inference patterns. Then, we annotate some ground-truth
attribute relationships. For example, the heavy makeup at-
tribute is positively related to the attractive attribute; black
hair and smiling are not related to each other. We compute
the Kullback-Leibler (KL) divergence between the mined
relationships and ground-truth relationships to discover at-
tributes that are not well learned, including both blind spots
and failure modes of attribute representations.

In fact, how to define ground-truth relationships is still
an open problem. We can ask different people to label at-
tribute relationships in their personal opinions to approach
the ground truth. More importantly, our method is compati-
ble with various types of ground-truth distributions. People
can define their ground truth w.r.t. their tasks as constraints
to examine the network. Thus, our method is a flexible and
convincing way to discover representation bias at the level

of human cognition.
The annotation cost of our method is usually much lower

than end-to-end learning of CNNs. Our annotation cost is
O(n2), where n denotes the number of attribute outputs. In
contrast, it usually requires thousands or millions of samples
to learn a new CNN in real applications.

Why is the proposed method important? As a com-
plement to using testing samples for evaluation, our zero-
shot diagnosis of a CNN is of significant values in applica-
tions:
• A high accuracy on potentially biased testing samples

cannot prove correct representations of a CNN.
• Potential bias cannot be fully avoided in most datasets.

Especially, some attributes (e.g. smiling) mainly describe
specific parts of images, but the dataset (Liu et al. 2015;
Patterson et al. 2014) only provides image-level annota-
tions of attributes for supervision without specifying re-
gions of interests, which makes the CNN more sensitive
to dataset bias.
More crucially, the level of representation bias is not nec-
essary to be proportional to the dataset bias level. We need
to diagnose the actual CNN representations.

• In conventional studies, correcting representation flaws
caused by either dataset bias or the over-fitting problem
is a typical long-tail problem. If we blindly collect new
training samples without being aware of failure modes of
the representation, it would require massive new samples
to overcome the bias problem. Our method provides a new
perspective to solve the long-tail problem.

• Unlike methods of CNN visualization/analysis (Zeiler
and Fergus 2014; Mahendran and Vedaldi 2015; Si-
monyan, Vedaldi, and Zisserman 2014; Ribeiro, Singh,
and Guestrin 2016) that require people to one-by-one
check the representation of each image, our method dis-
covers all biased representations in a batch.
Contribution: In this study, to the best of our knowl-

edge, we, for the first time, propose a method to discover po-
tentially biased representations hidden in a pre-trained CNN
without testing samples. Our method mines blind spots and
failure modes of a CNN in a batch manner, which can guide
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the collection of new samples. Experiments have proved the
effectiveness of the proposed method.

Related work
Visualization of CNNs: In order to open the black
box of a CNN, many methods (Zeiler and Fergus 2014;
Mahendran and Vedaldi 2015; Simonyan, Vedaldi, and Zis-
serman 2014; Aubry and Russell 2015; Liu, Shen, and
van den Hengel 2015; Dosovitskiy and Brox 2016) have
been developed to visualize and analyze patterns of response
units in a CNN. Some methods (Zeiler and Fergus 2014;
Mahendran and Vedaldi 2015; Simonyan, Vedaldi, and Zis-
serman 2014) back-propagate gradients w.r.t. a given unit to
pixel values of an image, in order to obtain an image that
maximizes the score of the unit. These techniques mainly
visualize simple patterns. As mentioned in (Farhadi et al.
2009), attributes are an important perspective to model im-
ages, but it is difficult to visualize a complex attribute (e.g.
the attractive attribute).

Given a feature map produced by a CNN, Dosovitskiy
et al. (Dosovitskiy and Brox 2016) trained a new up-
convolutional network to invert the feature map to the origi-
nal image. Similarly, this approach was not designed for the
visualization of a single attribute output.

Interpreting semantic meanings of CNNs: Going be-
yond the “passive” visualization of neural patterns, some
studies “actively” retrieve mid-level patterns from conv-
layers, which potentially corresponds to a certain obj-
ect/image part. Zhou et al. (Zhou et al. 2015; 2016) mined
patterns for “scene” semantics from feature maps of a CNN.
Simon et al. discovered objects (Simon and Rodner 2015)
from CNN feature maps in an unsupervised manner, and re-
trieved patterns for object parts in a supervised fashion (Si-
mon, Rodner, and Denzler 2014). Zhang et al. (Zhang et al.
2016) used a graphical model to organize implicit mid-level
patterns mined from a CNN, in order to explain the pattern
hierarchy inside conv-layers in a weakly-supervised manner.
(Goyal et al. 2016) used a gradient-based method to inter-
pret visual question-answering models. Zhang et al. (Zhang
et al. 2018) transformed CNN representations to an explana-
tory graph, which represents the semantic hierarchy hidden
inside a pre-trained CNN.

Model diagnosis: Many methods have been developed
to diagnose representations of a black-box model. (Adler
et al. 2016) extracted key features for model outputs. The
LIME method proposed by Ribeiro et al. (Ribeiro, Singh,
and Guestrin 2016) and gradient-based visualization meth-
ods (Fong and Vedaldi 2017; Selvaraju et al. 2017) extracted
image regions that were responsible for each network out-
put, in order to interpret the network representation.

Unlike above studies diagnosing representations for each
image one by one, many approaches aim to evaluate all
potential attribute/label representations for all images in a
batch. Lakkaraju et al. (Lakkaraju et al. 2017) and Zhang
et al. (Zhang et al. 2017b; 2017a) explored unknown
knowledge hidden in CNNs via active annotations and ac-
tive question-answering. Methods of (Bansal, Farhadi, and
Parikh 2014; Zhang et al. 2014) computed the distributions

of a CNN’s prediction errors among testing samples, in or-
der to summarize failure modes of the CNN. However, we
believe that compared to (Bansal, Farhadi, and Parikh 2014;
Zhang et al. 2014), it is of larger value to explore evi-
dence of failure cases from mid-layer representations of a
CNN. (Ross, Hughes, and Doshi-Velez 2017) required peo-
ple to label dimensions of input features that were related
to each output according to common sense, in order to learn
a better model. Hu et al. (Hu et al. 2016) designed some
logic rules for network outputs, and used these rules to reg-
ularize the learning of neural networks. In our research,
we are inspired by Deng et al. (Deng et al. 2014), which
used label graph for object classification. We use ground-
truth attribute relationships as logic rules to harness mid-
layer representations of attributes. (Wu, Xia, and Zhu 2007;
Yang, Wu, and Zhu 2009; Wu and Zhu 2011) tried to iso-
late and diagnose information from local, bottom-up, or top-
down inference processes. More specially, (Wu and Zhu
2011) proposed to separate implicit local representations and
explicit contextual information used for prediction. Follow-
ing this direction, this is the first study to diagnose unreli-
able contextual information from CNN representations w.r.t.
dataset bias.

Active learning: Active learning is a well-known strat-
egy for detecting “unknown unknowns” of a pre-trained
model. Given a large number of unlabeled samples, exist-
ing methods mainly select samples on the decision bound-
ary (Vijayanarasimhan and Grauman 2011) or samples that
cannot well fit the model (Long and Hua 2015; Zhang et al.
2017b), and require human users to label these samples.

Compared to active-learning approaches, our method
does not require any additional unlabeled samples to test
the model. More crucially, our method looks deep inside the
representation of each attribute to mine attribute relation-
ships; whereas active learning is closer to black-box test-
ing of model performance. As discussed in (Suh, Zhu, and
Amershi 2016), unless the initial training set contains at least
one sample in each possible mode of sample features, ac-
tive learning may not exhibit high efficiency in model re-
finement.

Algorithm
Problem description
We are given a CNN that is trained using a set of images
I with attribute annotations. The CNN is designed to esti-
mate n attributes of an image, denoted by A1, A2, . . . , An.
Meanwhile, we also have a certain number of ground-truth
relationships between different attributes, denoted by a rela-
tionship graph G∗ = ({Ai},E∗). Each edge (Ai, Aj) ∈ E∗
represents the relationship between Ai and Aj . Note that it
is not necessary for G∗ to be a complete graph. We only se-
lect trustworthy relationships as ground truth. The goal is to
identify attributes that are not well learned and to discover
blind spots and failure modes in attribute representation.

Given an image I ∈ I, let Y I
i and Y I,∗

i denote the at-
tribute value of Ai estimated by the CNN and the ground-
truth annotation for Ai. In order to simplify the notation, we
omit superscript I and use notations of Yi and Y ∗

i in most

4466



sections, except in Section .
In different applications, people use multiple ways to de-

fine attributes (or labels), including binary attributes (Yi ∈
{−1,+1}) and continuous attributes (e.g. Yi ∈ [−1,+1] and
Yi ∈ (−∞,+∞)). We can normalize all these attributes to
the range of Yi ∈ (−∞,+∞) for simplification2. To sim-
plify the introduction, without loss of generality, we con-
sider Y ∗

i > 0 as the existence of a certain attribute Ai; oth-
erwise not. Consequently, we flip the signs of some ground-
truth annotations to ensure that we use positive values, rather
than negative values, to represent the activation of Ai.

Mining attribute relationships
Attribute representation: Given an image I ∈ I and a
target attribute Ai, we select the feature map xI of a cer-
tain conv-layer of the CNN to represent Ai and compute Y I

i .
Since the CNN conducts a series of convolution and ReLu
operations on xI to compute Y I

i , we can approximate Y I
i as

a linear combination of neural activations in xI .

Y I
i ≈ (vI

i )
TxI + βI

i , vI
i = ρi ◦ νI

i (1)

where vI
i denotes a weight vector, and βI

i is a scalar for bias.
In the above equation, parameters νI

i and βI
i reflect inher-

ent piecewise linear representations of Y I
i inside the CNN,

whose values have been fixed when the CNN and the image
are given. We will introduce the estimation of νI

i and βI
i

later. The target parameter here is ρi ∈ {0, 1}N , which is a
sparse mask vector. It means that we select a relatively small
number of reliable neural activations from xI as inference
patterns of Ai and filters out noises. ◦ denotes element-wise
multiplication between vectors. We can regard ρi as a prior
spatial distribution of neural activations that are related to
attribute Ai. For example, if Ai represents an attribute for
noses, then we expect ρi to mainly represent nose regions.
Note that except ρi, parameters νI

i and βI
i are only oriented

to image I due to ReLu operations in the CNN.
We can compute the inherent piecewise linear gradient

w.r.t. xI , i.e. νI
i via gradient back propagation.

νI
i =

∂Yi

∂x

∣
∣
∣
x=xI

=
∂Yi

∂xM

∂xM

∂xM−1
· · · ∂xm+2

∂xm+1

∂xm+1

∂x

∣
∣
∣
x=xI

(2)
where the CNN contains M conv-layres (including fully-
connected layers), and xk denotes the output of the k-th
conv-layer (x def

= xm corresponds to the m-th conv-layer).
We can further compute the value of βI

i based on the full rep-
resentation without pattern selection Y I

i = (νI
i )

TxI + βI
i .

Inspired by the LIME method (Ribeiro, Singh, and
Guestrin 2016), the loss of mining inference patterns is sim-
ilar to a Lasso selection:

ρ̂i = argmin
ρi

EI∈I

[L(Y I
i ,ρi)

]
+ L(ρi) (3)

2Given annotations of continuous attributes Y ∗
i ∈ (−∞,+∞),

we can define L-2 norm loss L(Yi, Y
∗
i ) = (Y ∗

i − Yi)
2 to train

the CNN. Given annotations of binary attributes for training Y ∗
i ∈

{−1,+1}, we can use the logistic log loss L(Yi, Y
∗
i ) = log(1 +

exp(−Yi ·Y ∗
i )) to train the CNN. In this way, Yi can be considered

as an attribute estimation whose range is (−∞,+∞).

where L(Y I
i ,ρi) measures the fidelity of the representation

on image I , and L(ρi) denotes the representation complex-
ity. We can simply formulate L(Y I

i ,ρi) = [(vI
i )

TxI +βI
i −

Y I
i ]

2, and L(ρi) = λ‖ρi‖1, where ‖ · ‖1 denotes L-1 norm,
and λ is a constant. Based on the above equation, ρ̂i can be
directly estimated using a greedy strategy.

Attribute relationships: For each pair of attributes Ai

and Aj , we define a cosine distance �I
ij

def
=

(vI
j )

TvI
i

‖vI
j‖‖vI

i ‖
to rep-

resent their attribute relationship. If Ai and Aj are positively
related, vi will approximate to vj , i.e. �I

ij will be close to 1.
Similarly, if Ai and Aj are negatively related, then �I

ij will
be close to -1. If Ai and Aj are not closely related, then vj

and vi will be almost orthogonal, thus �I
ji ≈ 0.

The actual representation of an attribute in a CNN is
highly non-linear, and the linear representation in Eq. (1)
is just a local mode oriented to a specific image I . When
we compute the gradient νI

i = ∂Yi

∂xI , the ReLu operation
blocks irrelevant information in gradient back-propagation,
thereby obtaining a local linear representation. It is possible
to cluster νI

i of different images into several local modes of
the representation. Expect extreme cases mentioned in (Koh
and Liang 2017), these local modes are robust to most small
perturbations in the image I .

Diagnosis of CNN representations

Given each image I ∈ I, we compute �I
ij to represent the

relationship between Ai and Aj w.r.t. the image I . In this
way, we use the distribution of �I

ij among all training im-
ages in I, denoted by Q(�ij |Ai, Aj), to represent the overall
attribute relationship3. Fig. 3 shows the mined distributions
of Q(�ij |Ai, Aj) for different pairs of attributes.

Besides the observation distribution Q, we also manu-
ally annotate a number of ground-truth attribute relation-
ships G∗, and define a distribution for each ground-truth at-
tribute relationship P(�ij |Ai, Aj). People can label several
types of ground-truth relationships for (Ai, Aj) ∈ E∗, lij ∈
L = {L1, L2, . . .}, to supervise the diagnosis of CNN rep-
resentations. Let (Ai, Aj) ∈ E∗ be labeled with lij = L∗.
We assume the ground-truth distribution P(�ij |Ai, Aj) ∼
N (μL∗ , σ2

L∗) follows a Gaussian distribution. We assume
most pairs of attributes are well learned, so we can compute
μL∗ and σ2

L∗ as the mean and the variation of �ij , respec-
tively, among all pairs of attributes that are labeled with L∗.
In this way, biased representations correspond to outliers of
�ij w.r.t the ground-truth distribution.

We can compute the KL-divergence between P and Q,

3Without loss of generality, we modify attribute annotations to
ensure Y ∗

i = +1 rather than Y ∗
i = −1 to indicate the existence

of a certain attribute. We find that the CNN mainly extracts com-
mon patterns from positive samples as inference patterns to rep-
resent each attribute. Thus, we compute distributions P and Q
for (Ai, Aj) among the samples in which either Y ∗

i = +1 or
Y ∗
j = +1. Similarly, in Experiment 3, we also ignored samples

with Y ∗
i = Y ∗

j = −1 to compute the entropy for the competing
method.
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Figure 3: Histograms of �ij to describe distributions of Q(�ij |Ai, Aj) for different pairs of attributes. The horizontal axis
indicates the value of �ij . Note that the vertical axis indicates the number of samples in the histogram, which is not the
density of Q(�ij |Ai, Aj). In the first, second, third, and fourth rows, we show the mined distributions for attribute pairs that
are labeled with “definitely positive relationships,” “probably positive relationships,” “not-related relationships,” and “probably
negative relationships,” respectively.

KL(P‖Q), to discover biased representations.

KLAiAj =

∫
Ω

P(�ij |Aj , Ai) log
P(�ij |Aj , Ai)

Q(�ij |Aj , Ai)
d�ij (4)

KLAi=
∑

j:(Ai,Aj)∈E∗

∫
Ω

P(�ij , Aj |Ai) log
P(�ij , Aj |Ai)

Q(�ij , Aj |Ai)
d�ij (5)

=
∑

j:(Ai,Aj)∈E∗
P (Aj |Ai)KLAiAj

where P (Aj |Ai) = 1/deg(Ai) is a constant given the de-
gree of Ai. We approximately set Ω = [−1, 1], because
P(�ij |Aj , Ai) ≈ 0 when |�ij | > 1 in real applications.
We believe that if KLAi is high, Ai is probably not well
learned.

Blind spots & failure modes: Each pair of attributes
(Ai, Aj) ∈ E∗ with a high KLAiAj

may have two alter-
native explanations. The first explanation is that (Ai, Aj)
represents a blind spot of the CNN. I.e. (Ai, Aj) should be
positively/negatively related to each other according to the
ground-truth, but the CNN has not learned many inference
patterns that are shared by both Ai and Aj . In this case, the
CNN does not encode the inference relationship between Ai

and Aj .
The alternative explanation is that (Ai, Aj) represents a

failure mode. If the mined relationship is that Ai is strongly

positively related to Aj , which conflicts with the ground-
truth relationship. Then, samples with opposite ground-truth
annotations for Ai and Aj , Y ∗

i · Y ∗
j <0 may correspond to a

failure mode in attribute estimation. Note that these samples
belong to two modes, i.e. the modes of Y ∗

i > 0, Y ∗
j < 0

and Y ∗
i < 0, Y ∗

j >0. We simply select the mode with fewer
samples as a failure mode. Similarly, if the CNN incorrectly
encodes a negative relationship between (Ai, Aj), then we
select a failure mode from candidates of (Y ∗

i > 0, Y ∗
j > 0)

and (Y ∗
i <0, Y ∗

j <0).
In practise, we determine blind spots and failure modes

as follows. Given a pair of attributes (Ai, Aj) with a high
KLAiAj

, if |EI [�
I
ij ]| < 0.2 and |EI [�

I
ij ] − μlij | > 0.2,

then (Ai, Aj) correspond to a blind spot. If |EI [�
I
ij ]|> 0.2

and |EI [�
I
ij ] − μlij |> 0.2, we extract a failure mode from

(Ai, Aj).

Experiments
Dataset: We tested the proposed method on the Large-
scale CelebFaces Attributes (CelebA) dataset (Liu et al.
2015) and the SUN Attribute database (Patterson et al.
2014). The CelebA dataset contains more than 200K
celebrity images, each with 40 attribute annotations. In order
to simplify the story, we first used annotations of face bound-
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Ground truth attribute
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Mined attribute
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SUN Attribute
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CelebA
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positive
negative

not

Figure 4: The mined and ground-truth attribute relationships. We mine attribute relationships based on CNNs that are trained
using the CelebA dataset and the SUN Attribute database. Most attributes are well learned, so most of the mined relationships
well fit the ground-truth. The edge color indicates EP or Q[�ij ]. The yellow/gray/cyan color indicates the positive/no/negative
relationship between attributes. For clarity, we randomly draw 300 edges of the relationship graph.

ing boxes provided in the dataset to crop face regions from
original images, and then used the cropped faces as input to
learn a CNN. The SUN database contains 14K scene images
with 102 attributes, but most attributes only appear in very
few images. Thus, we selected 24 attributes with minimum
scores of max(#(Y ∗

i > 0),#(Y ∗
i < 0)) as target attributes

for experiments, where #(Y ∗
i > 0) denotes the number of

positive annotations of Ai among all images. Furthermore,
in the SUN dataset, value ranges for ground-truth attribute
annotations are Y ∗

i ∈ [0, 1]. We modified the ground-truth
to binary annotations Y ∗,new

i = sign(Y ∗
i − 0.5) for sim-

plicity.
Implementation details: In this study, we used the

AlexNet (Krizhevsky, Sutskever, and Hinton 2012) as the
target CNN, which contains five conv-layers and three fully-
connected layers. We tracked inference patterns of an at-
tribute through different conv-layers, and we used inference
patterns in the first conv-layer for CNN diagnosis. It is be-
cause that feature maps in lower conv-layers have higher res-
olutions and that inference patterns in lower conv-layers are
better localized than higher conv-layers. Although low-layer
patterns mainly represent simple shapes (e.g. edges), edges
on black hairs and edges describing smiling should be local-

ized at different positions.
For the CelebA dataset, we defined five types of at-

tribute relationships4, i.e. lij ∈ {definitely negative,
probably negative, not related, probably positive,
definitely positive}4. We obtained μdefinitely positive >
μprobably positive > . . . > μdefinitely negative. For the SUN
dataset, we defined two types of attribute relationships, i.e.
lij ∈ {negative, positive}. We manually annotated 18 prob-
ably positive relationships, 549 not-related relationships, 21
probably negative relationships, and 9 definitely negatively
relationships in the CelebA dataset. In the SUN dataset, we
labeled a total of 83 positive relationships and 63 negative
relationships.

Experiment 1, mining potentially biased attribute rep-
resentations: We trained two CNNs using images from the
CelebA dataset and those from the SUN dataset, respec-
tively. Then, we diagnosed attribute representations of the
CNNs. Fig. 4 compares the mined and the ground-truth at-
tribute relationships.

4“Definitely negative” is referred to as exclusive attributes, e.g.
black hair and blond hair. Whereas, “probably” means a high prob-
ability. For example, a heavy makeup person is probably attractive.
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Figure 5: The mined KL-divergences KLAi
of different attributes. Attributes with lower KL-divergences are better learned.

  

Figure 6: KL divergence of attribute relationships computed on datasets that are biased at different levels τ . Red curves show
the average performance.

Our method is not sensitive to a small number of er-
rors in ground-truth relationship annotations. It is because
as shown in Fig. 4, for each attribute, we compute multi-
ple pairwise relationships between this attribute and other
attributes. A single inaccurate relationship will not signifi-
cantly affect the result. Similarly, because we calculate the
KL divergence among all training images, KL divergence re-
sults in Fig. 5 are robust to noise and appearance variations
in specific images. The low error rate of attribute estimation
is not necessarily equivalent to good representations. Error
rates for the “wearing lipstick” and “double chin” attributes
are only 8.1% and 4.5%, which are lower than the average
error 11.1%. However, these two attributes have the top-4
representation biases.

As shown in Fig. 7, when the CNN uses patterns in in-
correct positions to represent the attribute, we will probably
obtain a significant KL divergence.

Experiment 2, testing the proposed method on manu-
ally biased datasets: In this experiment, we manually bi-
ased training sets to learn CNNs. We used our method to
explore the relationship between the dataset bias and the rep-
resentation bias in the CNNs.

From each of the CelebA and the SUN datasets, we ran-
domly selected 10 pairs of attributes. Then, for each pair
of attributes, (Ai, Aj), we biased the distribution of Ai and
Aj’s ground-truth annotations to produce a new training set,
as follows. Given a parameter τ (0 ≤ τ ≤ 1) that denotes
the bias level, we randomly removed τ · NY ∗

i Y ∗
j <0

samples
from all samples whose ground-truth annotations Y ∗

i and Y ∗
j

were opposite, where NY ∗
i Y ∗

j <0
denotes the number of sam-

ples that satisfied Y ∗
i Y

∗
j <0.

Initially, for each pair of attributes (Ai, Aj), we gener-
ated a fully biased training set with τ = 1, and our method

mined a significant KL divergence of KLAiAj
. We then

gradually added samples with Y ∗
i Y

∗
j < 0 to reduce the

dataset bias τ , and learned new CNNs based on the new
training sets. Fig. 6 shows the decrease of the KL diver-
gence when the dataset bias τ was reduced. Given each of
the 10 pairs of attributes, we generated four biased datasets
by applying four values of τ ∈ {0.25, 0.5, 0.75, 1.0}. In
this way, we obtained 40 biased CelebA datasets (τ ∈
{0.25, 0.5, 0.75, 1.0}) and another 30 biased SUN Attribute
datasets (τ ∈ {0.5, 0.75, 1.0}) to learn 70 CNNs. Fig. 6
shows KL divergences mined from these CNNs.

The experiment demonstrates that large KL divergences
successfully reflected potentially biased representations, but
the level of annotation bias was not proportional to the level
of representation bias. When we reduced the annotation bias
τ , the corresponding KL divergence usually decreased. At
the meanwhile, CNN representations had different sensitive-
ness to different types of annotation bias. Small bias w.r.t.
some pairs of attributes (e.g. heavy makeup and pointy nose)
led to huge representation bias. Whereas, the CNN was ro-
bust to annotation biases of other pairs of attributes. For ex-
ample, it was easy for the CNN to extract correct inference
patterns for male and oval face, so small annotation bias of
these two attributes did not cause a significant representation
bias (see the lowest gray curve in Fig. 6(left)).

Experiment 3, the discovery of blind spots and failure
modes: In this experiment, we mined blind spots and fail-
ure modes. We obtained five blind spots from the CNN for
the CelebA dataset, i.e. the CNN did not encode positive
relationships between attractive and each of earrings, neck-
tie, and necklace, the negative relationship between chubby
and oval face, and the negative relationship between bangs
and wearing hat. We list blind spots with top-10 KL diver-
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Figure 7: Good and bad representations of CNNs. (left) For a failure mode, we show heat maps of inference patterns of the two
attributes in the failure mode. Red/blue colors on faces show the patterns that increase/decrease the attribute score. Red circles
indicate incorrect representations, where the CNN mistakenly uses incorrect inference patterns to represent the attribute. (right)
Well learned attribute representations.

0 0.5

Figure 8: Top-10 failure modes of a CNN trained using the CelebA dataset. The top-left table shows average accuracy decrease
caused by failure modes. Each sub-figure illustrates the accuracy decrease caused by a failure mode (Y ∗

u = a, Y ∗
v = b) mined

by our method.

gences that were mined from the CNN for the SUN Attribute
database in Table 2. For example, the CNN did not learn a
strong negative relationship between man-made and vegeta-
tion as expected, because man-made and vegetation co-exist
in many training images. This is a typical dataset bias, and
the dataset should contain more images that have only one
of the two attributes.

We mined failure modes with top-N KL divergences. We
compared our method with an entropy-based method for
the discovery of failure modes. The competing method only
used distributions of ground-truth annotations to predict po-
tential failure modes of the CNN. For each pair of attributes
(Ai, Aj), its failure mode was defined as the mode corre-
sponding to the least training samples among all the four
mode candidates (Y ∗

i = +1, Y ∗
j = +1), (Y ∗

i = +1, Y ∗
j =

−1), (Y ∗
i = −1, Y ∗

j = +1), (Y ∗
i = −1, Y ∗

j = −1). The
significance of the failure mode was computed as the en-
tropy of the joint distribution of (Y ∗

i , Y
∗
j ) among train-

ing samples4. Then, we selected failure modes with top-N
entropies as results. To evaluate the effectiveness of fail-
ure modes, we tested the CNN using testing images. Let
(Y ∗

u = a, Y ∗
v = b) (a, b ∈ {−1,+1}) be a failure mode

and Acc(Yu|IY ∗
u=a) denote the accuracy for estimating Au

on testing images with Y ∗
u = a. Then, [Acc(Yu|IY ∗

u =a) +
Acc(Yv|IY ∗

v =b)]/2 measures the accuracy on ordinary im-

ages, and [Acc(Yu|IY ∗
u =a,Y ∗

v =b) +Acc(Yv|IY ∗
u =a,Y ∗

v =b)]/2
measures the accuracy on images with the failure modes.
Fig. 8 compares the accuracy decrease caused by the top-
10 failure modes mined by our method and the accuracy
decrease caused by the top-10 failure modes produced by
the competing method. Table 1 shows accuracy decreases
caused by different numbers of failure modes. It showed that
our method extracted more reliable failure modes. Fig. 7 fur-
ther visualizes biased representations corresponding to some
failure modes. Intuitively, failure modes in Fig. 8 also fit bi-
ased co-appearance of two attributes among training images.

Justification of the methodology: Incorrect representa-
tions are usually caused by dataset bias and the over-fitting
problem. For example, if A1 often has a positive annota-
tion when A2 is labeled positive (or negative), the CNN may
use A2’s features as a contextual information to describe
A1. However, in real applications, it is difficult to predict
whether the algorithm will suffer from such dataset bias be-
fore the learning process. For example, when the conditional
distribution P (Y ∗

1 |Y ∗
2 > 0) is biased (e.g. P (Y ∗

1 > 0|Y ∗
2 >

0) > P (Y ∗
1 < 0|Y ∗

2 > 0)) but P (Y ∗
1 |Y ∗

2 < 0) has a bal-
ance distribution, it is difficult to predict whether the CNN
will consider A1 and A2 are positively related to each other.

Let us discuss two toy cases of this problem for simplifi-
cation. Let us assume that the CNN mainly extracts common
features from positive samples with Y ∗

2 > 0 to represent A2,
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CelebA dataset
Accuracy in Accuracy in Decrease of

ordinary images failure modes accuracy
top-5 Entropy-based 74.10 60.37 13.73

Our method 73.81 40.22 33.59
top-10 Entropy-based 69.22 58.85 10.37

Our method 72.29 46.43 25.85
top-15 Entropy-based 67.49 56.44 11.05

Our method 68.05 47.95 20.10
top-20 Entropy-based 68.06 57.32 10.73

Our method 66.94 46.57 20.37
top-25 Entropy-based 68.24 59.79 8.45

Our method 67.06 49.23 17.83
SUN Attribute database

top-40 Entropy-based 63.36 35.89 27.47
Our method 68.65 38.98 29.68

top-50 Entropy-based 59.29 35.62 23.67
Our method 65.73 38.86 26.87

Table 1: Average accuracy decrease caused by top-N failure
modes, which were mined from the CNN for the CelebA
dataset (N = 5, 10, 15, 20, 25) and the CNN for the SUN
Attribute database (N = 40, 50). We compare the entropy-
based method with our method.

and regards negative samples with Y ∗
2 < 0 as random sam-

ples without sharing common features. In this case, the con-
ditional distribution P (Y ∗

1 |Y ∗
2 > 0) will probably control

the relationships between A1 and A2. Whereas, if the CNN
mainly extracts features from negative samples with Y ∗

2 < 0
to represent A2, then the attribute relationship will not be
sensitive to the conditional distribution P (Y ∗

1 |Y ∗
2 > 0).

Therefore, as shown in Fig. 8 and Table 1, our method
is more effective in the discovery of failure modes than the
method based on the entropy of annotation distributions.

Summary and discussion
In this paper, we have designed a method to explore inner
conflicts inside representations of a pre-trained CNN with-
out given any additional testing samples. This study focuses
on an essential yet commonly ignored issue in artificial in-
telligence, i.e. how can we ensure the CNN learns what we
expect it to learn. When there is a dataset bias, the CNN may
use unreliable contexts to represent an attribute. Our method
mines failure modes of a CNN, which can potentially guide
the collection of new training samples. Experiments have
demonstrated the high correlations between the mined KL
divergences and dataset bias and shown the effectiveness in
the discovery of failure modes.

In this paper, we used Gaussian distributions to approxi-
mate ground-truth distributions of attribute relationships to
simplify the story. However, our method can be extended
and use more complex distributions according to each spe-
cific application. In addition, it is difficult to say all dis-
covered representation biases are “definitely” incorrect rep-
resentations. For example, the CNN may use rosy cheeks
to identify the wearing lipstick attribute, but these two at-
tributes are “indirectly” related to each other. It is problem-
atic to annotate the two attributes are either positively related
or not related to each other. The wearing necktie attribute is

directly related to the male attribute, but is indirectly related
to the mustache attribute, because the necktie and the mus-
tache describe different parts of the face. If we label wear-
ing necktie is not related to mustache, then our method will
examine whether the CNN uses mustache as contexts to de-
scribe the necktie. Similarly, if we consider such an indirect
relationship as reliable contexts, we can simply annotate a
positive relationship between necktie and mustache. More-
over, if neither the “not-related” relationship nor the posi-
tive relationship between the two attributes is trustworthy,
we can simply ignore such relationships to avoid the risk of
incorrect ground truth. In the future work, we would encode
ground-truth attribute relationships as a prior into the end-to-
end learning of CNNs, in order to achieve more reasonable
representations.
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