
Generating Music Medleys via
Playing Music Puzzle Games

Yu-Siang Huang,† Szu-Yu Chou,†‡ Yi-Hsuan Yang†
†Research Center for IT innovation, Academia Sinica, Taiwan

‡Graduate Institute of Networking and Multimedia, National Taiwan University, Taiwan

Abstract

Generating music medleys is about finding an optimal per-
mutation of a given set of music clips. Toward this goal, we
propose a self-supervised learning task, called the music puz-
zle game, to train neural network models to learn the sequen-
tial patterns in music. In essence, such a game requires ma-
chines to correctly sort a few multisecond music fragments.
In the training stage, we learn the model by sampling mul-
tiple non-overlapping fragment pairs from the same songs
and seeking to predict whether a given pair is consecutive
and is in the correct chronological order. For testing, we de-
sign a number of puzzle games with different difficulty lev-
els, the most difficult one being music medley, which requir-
ing sorting fragments from different songs. On the basis of
state-of-the-art Siamese convolutional network, we propose
an improved architecture that learns to embed frame-level
similarity scores computed from the input fragment pairs to
a common space, where fragment pairs in the correct order
can be more easily identified. Our result shows that the re-
sulting model, dubbed as the similarity embedding network
(SEN), performs better than competing models across differ-
ent games, including music jigsaw puzzle, music sequenc-
ing, and music medley. Example results can be found at our
project website, https://remyhuang.github.io/DJnet.

Introduction

Recent years have witnessed a growing interest in unsuper-
vised methods for sequential pattern learning, notably in the
computer vision domain. This can be approached by the so-
called self-supervised learning, which exploits the inherent
property of data for setting the learning target. For example,
(Misra et al. 2016), (Fernando et al. 2016) and (Lee et al.
2017) leveraged the temporal coherence of video frames as a
supervisory signal and formulated representation learning as
either an order verification or a sequence sorting task. (Lot-
ter, Kreiman, and Cox 2017), on the other hand, explored
prediction of future frames in a video sequence as the super-
visory signal for learning the structure of the visual world.
These prior arts demonstrate that learning discriminative vi-
sual features from massive unlabeled videos is possible.

From a technical standpoint, this paper studies how such
a self-supervised learning methodology can be extended to

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) (b) (c)

Figure 1: Similarity matrix between: (a) two identical music
fragments, (b) fragments from a song and its cover version
(i.e. the same song but different singer), (c) fragments from
two different songs of the same singer. The goal of the pro-
posed network is to learn patterns from such matrices.

audio, which has been less attempted. In particular, we fo-
cus on learning from music sequences. Music is known for
its multilevel, hierarchical organization, with higher-level
building blocks made up of smaller recurrent patterns (Wid-
mer 2016; Hudson 2011). While listening to music, human
beings can discern those patterns, make predictions on what
will come next, and hope to meet their expectations. Ask-
ing machines to do the same is interesting on its own, and it
poses interesting challenges that do not present, or have not
been considered, in the visual domain.

First, the input instances to existing models are usually
video frames (which are images) sampled from each video
sequence. Each frame can be viewed as a snapshot of a tem-
poral moment, and the task is to correctly order the frames
per video. In contrast, meaningful basic unit to be ordered in
music has to be an audio sequence itself. Therefore, the in-
put instances in our case are multisecond, non-overlapping
music fragments, which have a temporal dimension.

Second, existing works in the visual domain considered at
most four frames per video (Lee et al. 2017), mainly due to
the concern that the possible permutations increase exponen-
tially along with the number of sampled frames. However, as
a song is typically a few minutes long, we consider up to ten
(multisecond) music fragments per song.

Lastly, while it makes less sense to order video frames
sampled from different video sequences, for music it is in-
teresting and practically useful if we can find an ordering
of a bag of music fragments sampled from different songs.

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

2281

Indeed, music fragments of different songs, when properly
ordered, can be listened to consecutively with pleasure (Lin
et al. 2015), given that every pair of consecutive fragments
share or follow some harmonic or melodic patterns. For ex-
ample, Disc Jockeys (DJs) are professional audio engineers
who can nicely perform such a music medley generation
task. Therefore, we also include this task to evaluate the
performance of our model. In doing so, from an applica-
tion standpoint, this paper also contributes to the realization
of automatic music medley generation, an important step to-
ward making an AI DJ (Huang, Chou, and Yang 2017a). The
hope is that one day AI would possess certain level of mu-
sic connoisseurship and can serve as a DJ to create music
remixes or mashups professionally.

Drawing the analogy that a fragment is like a puzzle piece,
we propose to refer to the task of assembling multiple music
fragments in proper order as the music puzzle games. Similar
to previous work in the visual domain, we exploit the tempo-
ral coherence of music fragments as the supervisory signal
to train our neural networks via a music puzzle game. What’s
different is that we differentiate four aspects of a music puz-
zle game and investigate the performance of our models with
different types of games. The four aspects are: 1) number of
fragments to be ordered, 2) temporal length of the fragments
(whether the length is fixed or arbitrary), 3) whether there is
a clear cut at the boundary of fragment pairs, and 4) whether
the fragments are from the same song or not. For example,
other than uniformly sample a song for fragments, we also
employ downbeat tracking (Böck et al. 2016) to create mu-
sically meaningful fragments (Upham and Farbood 2013).

In view of the second challenge mentioned above, we pro-
pose to take fragment pairs as input to our neural network
models and lastly use a simple heuristic to decide the final
ordering. For a music puzzle game with n fragments, this
pair-wise approach requires our models to evaluate in total
2 · (n2

)
= n(n − 1) pairs, which is much fewer than the n!

number of possible permutations and accordingly opens up
the possibility to consider n > 4 fragments.

Moreover, in view of the first challenge mentioned above,
we propose an novel model, called the similarity embedding
network (SEN), to solve the music puzzle games. The main
idea is to compute frame-level similarity scores between
each pair of short-time frames from the two input fragments,
and then learn to embed the resulting similarity matrix (Serrà
et al. 2012) into a common space, where coherent and inco-
herent fragment pairs can be more easily distinguished.

The idea of learning from the similarity matrices has roots
in the so-called recurrence plot (Marwan et al. 2007), which
provides a way to visualize the periodic nature of a trajec-
tory (i.e. a time-series data) through a phase space. Given
two trajectories, we can similarly compute their point-by-
point (or frame-by-frame) similarity to mine patterns from
the resulting matrix. For our tasks, learning from the simi-
larity matrices is promising, for we can examine temporal
correspondence between fragments in more details, as sug-
gested by the example similarity matrices shown in Figure 1.
Our experiments show that SEN performs consistently better
than competing models across different music puzzle games.

Music Puzzle Games

Background and Significance

In academia, some researchers have investigated the design
of music-based puzzle games, mostly for education pur-
poses. A notable example is the work presented by (Hansen
et al. 2013), which experimented with a number of designs
of sound-based puzzle game to train the listening abilities of
visually impair people. A music clip was divided into sev-
eral fragments and a player had to rearrange them in order to
reconstruct the original song. For advanced players, they fur-
ther applied pitch and equalization shifts randomly on frag-
ments, requiring the players to detect those transpositions to
complete the puzzle. However, in this work a music clip was
divided into pieces at arbitrary timepoints. This way, there
may be no clear cut at the boundary of the fragments, pro-
viding strong temporal cues that make the game easier: when
the fragments are in incorrect order, the result will not only
sound unmusical but also unnatural.

More recently, (Smith et al. 2017) improved upon this
wok by dividing songs at downbeat positions, which of-
ten coincide with chord changes (Böck, Krebs, and Widmer
2016) and provides clearer cut among the fragments. More-
over, based on a “mashability” measure (Davies et al. 2014),
they proposed an algorithm to create cross-song puzzles for
more difficult games. They claimed that the game can train
the musical and logical reasoning of ordinary people.

Although these previous works are interesting, their focus
is on the design of the puzzle games for human beings, rather
than on training machines to solve such games. In contrast,
we let machine learn sequential patterns (and logic) in the
musical world in a self-supervised learning manner by play-
ing and solving such games.

Another benefit of experimenting with the music puzzle
games is that the input to such games are sequences (not
images). Therefore, similar network architecture may be ap-
plied to time series data in other domains as well.

In what follows, we firstly discuss the design of music
puzzle games for machines, and then present a mathematical
formulation of the learning problem.

Game Design

As shown in Table 1, we consider four aspects in designing
the music puzzle games. First, the number of fragments n
to be ordered; larger n implies more computational cost and
a more difficult game, as potentially more orderings of the
fragments would look plausible. Second, whether the length
of the fragments in a game is the same. Our machine model
has to deal with input sequences of arbitrary length, if the

Table 1: Characteristics of the music fragments that are to be
ordered by our model in various music puzzle games

Jigsaw Puzzle Sequencing Medley
number 3, 4, 6, 8 10 7–11
length fixed / arbitrary arbitrary arbitrary
boundary unclear / clear clear clear
from same song same song cross song

2282

Positive pairs

Negative pairs

Downbeat

R1

R2

R3

R1 R2

R2 R3

R1 R3

R3 R1

R2 R1

Data sampling Similarity Embedding Network

Input pairs Frame-by-frame
cosine similarity

Positive
or

Negative

(,)
(,)

(,)
(,)
(,)

(,)

Figure 2: Illustration of the proposed similarity embedding network and its application to solving music jigsaw puzzle.

length of the fragments is not fixed. Third, whether there
is a clear cut at the boundary of fragment pairs. Arbitrary
segmentation of a song may lead to obvious continuity at the
boundary of two fragments and make the game too easy. It is
conceivable that when the boundaries are clearer, the puzzle
game will be more difficult. Fourth, whether the fragments
are from the same song or not.

As also shown in Table 1, we consider three different mu-
sic puzzle games in this paper, with progressively increasing
level of difficulty. For music jigsaw puzzle, we create frag-
ments by dividing a 24-second music clip at either equally-
spaced or at downbeat-informed timepoints. Because we are
interested in comparing the performance of the proposed
SEN model against those proposed to solve video puzzles,
we vary the value of n from 3 to 8 in this game.

The second game is more difficult in that the fragments
are taken from a whole song. Moreover, each fragment rep-
resents a section of the song, such as the intro, verse, cho-
rus and bridge (Paulus, Mller, and Klapuri 2010; Nieto and
Bello 2016). The game is challenging in that the verse and
chorus section may repeat multiple times in a song, with
sometimes minor variations. The boundaries are clear, and
we use n = 10 fragments (sections) per song. In audio en-
gineering, the task of arranging sections in a sensible way is
referred to as music sequencing.

Lastly, we consider the music medley game, which aims
to put together a bag of short clips from different songs to
build a longer music piece (Lin et al. 2015). As the frag-
ments (clips) are from different songs, the boundaries are
also clear. This is different from the cross-song puzzle con-
sidered in (Smith et al. 2017). In music medley, we take one
fragment per song from m (= n) songs, and aim to create an
ordering of them. In contrast, in cross-song puzzle, we take
�n/m� fragments per song from m (�= n) songs and aim to
discern the origin of the fragments and get m orderings.

Problem Formulation

All the aforementioned games are about ordering things.
While solving an image jigsaw puzzle game, human beings
usually consider the structural patterns and texture informa-
tion as cues by comparing the puzzle pieces one by one
(Noroozi and Favaro 2016). There is no need to put all the
pieces in correct order all at once. As the number of permu-
tations grows exponentially with n, we formulate the learn-

ing problem as a binary classification problem and predict
whether a given pair of fragments is consecutive and is in
correct order.

In the training stage, all the fragments are segmented con-
secutively without overlaps per song, as shown in the left-
most part of Figure 2. For each song, we get a collection
of fragments {R1, · · · , Rn}, which are in the correct order.
Among the 2

(
n
2

)
possible fragments pairs, n− 1 of them are

in the correct order and are considered as the positive data,
P+ = {(Ri, Ri+1) | i ∈ {1, 2, . . . , n − 1}}. While all the
other possible pairs can be considered as the negative data,
we consider only three types of them:

⎧⎪⎨
⎪⎩
P(1)
− = {(Ri+1, Ri) | i ∈ {1, . . . , n− 1}} ,
P(2)
− = {(Ri, Ri+2) | i ∈ {1, . . . , n− 2}} ,
P(3)
− = {(Ri+2, Ri) | i ∈ {1, . . . , n− 2}} .

Pairs of the first type is consecutive but in incorrect order.
Pairs of the second and third types are not consecutive. The
negative data is the union of them: P− = P(1)

− ∪P(2)
− ∪P(3)

− .
Therefore, the ratio of positive and negative data |P+|/|P−|
is about 1/3. In our experiments, we also refer to data pairs
belonging to P+, P(1)

− , P(2)
− and P(3)

− as ‘R1R2,’ ‘R2R1,’
‘R1R3’ and ‘R3R1,’ respectively.1

Given a training set D = {(X, y) | X ∈ P, y ∈ {0, 1}},
where P is the union of P+ and P− from all the songs and
y whether a pair is positive or not, we learn the parameters θ
of a neural network fθ by solving:

min
θ

∑
(X,y)∈D

L(fθ(X), y) +R(θ), (1)

where L is a loss function (e.g. cross entropy) andR(θ) is a
regularization term for avoiding overfitting.

Global Ordering Given a data pair X = (Ra, Rb), a, b ∈
{1, . . . , n}, a �= b, the estimate fθ(X) is a value in [0, 1], due
to a softmax function. For each song in the validation set, we
need to get this estimate for all the data pairs, and seek to find

1We note that, in related work working on videos (Misra et al.
2016; Fernando et al. 2016; Lee et al. 2017), they treated R1R2
the same as R2R1, and likewise R1R2R3 the same as R3R2R1,
assuming that playing a short video clip in the reverse order is fine.

2283

Siamese
ConvNet

Embedding

CONCAT embeddings

Order verification

CONCAT feature maps

CONCAT pairwise features

Pairwise feature extraction

Embedding

Order classification

Similarity matrix

Order verification

ConvNet

(a) SN (b) OPN (c) CCSN (d) SEN

Siamese
ConvNet

Siamese
ConvNet

Siamese
ConvNet

CONCAT embeddings

Order verification

ConvNet

CONCAT embeddings

Feature
maps

Feature
maps

Figure 3: Four different network architectures used in our experiments: (a) A standard Siamese network (Misra et al. 2016)
for order verification (i.e. binary classification); (b) the order prediction network (Lee et al. 2017), which extracts pairwise
features from each embedding and concatenates all pairwise features for order classification (i.e. multiclass classification); (c)
the concatenated-convolutions Siamese network, which captures joint frames by concatenating all feature maps; and (d) the
proposed similarity embedding network, which learns structural patterns from the similarity matrices.

the correct global ordering of the fragments from these esti-
mates.2 While there may be other sophisticated ways doing
it, we find the following simple heuristic works quite well al-
ready: we evaluate the “fitness” of any ordering of the frag-
ments by summing the model output of the composing n−1
consecutive pairs. For example, the fitness for (Ra, Rb, Rc),
for n = 3, will be fθ(Ra, Rb) + fθ(Rb, Rc). We then sim-
ply pick the ordering with the highest fitness score as our
solution for the game for that song.

Network Architecture

Similarity Embedding Network (SEN)

A Siamese network (Bromley et al. 1994) is composed of
two (or more) twin subnetworks that share the same pa-
rameters. The subnetworks usually use convolutional layers
(but there are exceptions (Mueller and Thyagarajan 2016)).
The outputs of the last convolutional layer are concatenated
and then feed to the subsequent fully-connected layers. The
functions of the convolutional layers and the fully connected
layers are feature learning and classifier training, respec-
tively. Because Siamese networks can process multiple in-
puts at the same time, it is widely used in various metric
learning problems (Chopra, Hadsell, and LeCun 2005).

As shown in the middle of Figure 2, the proposed SEN
model also uses a convolutional Siamese network (Siamese
ConvNet) to learn features from spectrogram-like 2D fea-
tures of a pair of fragments. However, motivated by a re-

2Our model is trained by playing only the music jigsaw puzzle,
but in testing time the model will be applied to different games.

cent work (Luo, Schwing, and Urtasun 2016), which used a
product layer to compute the inner product between two rep-
resentations of a Siamese network, we propose to compute
the similarity matrix from the frame-by-frame output of the
last layer of the Siamese ConvNet, and further learn features
from the similarity matrix with a few more convoltutional
layers, as shown in the right hand side of Figure 2 (and Fig-
ure 3(d)). The output can be viewed as an embedding of the
similarity matrix, therefore the name of the network.

Given the output feature maps of the Siamese ConvNet,
Ga = hθ(Ra) ∈ RN×k, Gb = hθ(Rb) ∈ RM×k, where
hθ denotes the network up to the last layer of the Siamese
ConvNet, N and M the (temporal) length of the output and
k the dimension of the feature, the similarity matrix S ∈
RN×M is computed by the Cosine score:

Sij =
(
gT
a,igb,j

)
/
(‖ga,i‖22‖gb,j‖22

)
, (2)

where ga,i ∈ Rk is the i-th feature (slice) of Ga.
Because we want the resulting similarity matrix to capture

the temporal correspondence between the input fragments,
in SEN we use 1D convolutions along the temporal dimen-
sion (Liu and Yang 2016) for the Siamese ConvNet. More-
over, we set the stride size to 1 and use no pooling layers in
the Siamese ConvNet for SEN, to capture detailed temporal
information of the fragments.

Baselines

Siamese CNN (SN) A valid baseline is the pairwise
Siamese ConvNet, which takes the input fragment pairs and
learns a binary classifier for order verification.

2284

Concatenated-inputs CNN (CIN) An intuitive solver for
the music jigsaw puzzle is to concatenate the spectrogram-
like 2D features of the fragments along the time dimension,
and use a CNN (instead of an SN) for order verification.
We suppose this model can catch the weird boundary of an
incorrectly ordered fragment pair.

Concatenated-convolutions Siamese Network (CCSN)
This is a state-of-the-art network for image feature learn-
ing (Wang et al. 2016). Given the feature maps from the
last convolutional layers of a Siamese ConvNet, we can sim-
ply concatenate them along the depth dimension (instead of
computing the similarity matrix) and then use another stack
of convolutional layers to learn features. As shown in Fig-
ure 3(c), the only difference between CCSN and SEN lies in
how we extract information from the Siamese ConvNet.

Triplet Siamese Network (TSN) & Order Prediction Net-
work (OPN) The state-of-the-art algorithms in solving
video puzzle games use a list-wise approach instead of a
pair-wise approach. The TSN model (Misra et al. 2016) is
simply an expansion of SN by taking three inputs instead
of two. In contrast, the OPN model (Lee et al. 2017), de-
picted in Figure 3(b), takes all the n fragments at the same
time, aggregates the features from all possible feature pairs
for feature learning, and seeks to pick the best global or-
dering out of the n! possible combinations via a multiclass
classification problem.

Implementation Details

As done in many previous works (Dieleman and Schrauwen
2014), we compute the spectrograms by sampling the songs
at 22,050 Hz and using a Hamming window of 2,048 sam-
ples and hop size 512 samples. We then transform the spec-
trograms into 128-bin log mel-scaled spectrograms and use
that as input to the networks, after z-score normalization.

Unless otherwise specified, in our implementation all the
Siamese ConvNets use 1D convolutional filters (along the
time dimension), with the number of filters being 128, 256,
512, respectively, and the filter length being 4. For SEN and
CCSN, the convolutional filters for the subsequent ConvNet
are 64, 128, 256, respectively, followed by 3 by 3 maximum
pooling and the filter size is also 3 by 3. Here, SEN uses
2D convolutions, while CCSN uses 1D convolutions. Except
for TSN and OPN, we use a global pooling layer (which
is written as ‘CONCAT’ in Figure 3) after the ConvNet in
SEN, CCSN, CIN, and the Siamese ConvNet in SN. The di-
mension of the two fully-connected layers after this pooling
layer are all set to 1,024. All networks use rectified linear
unit (ReLU) as the activation function everywhere. Lastly,
all the models are trained using stochastic gradient descent
with momentum 0.9, with batch size setting to 16.

Experiments

Data sets

Any music collection can be used in our puzzle games, since
we do not need any human annotations. In this paper, we use
an in-house collection of 31,377 clips of Pop music as our
corpus. All these clips are audio previews downloaded from

the Internet, with unknown starting point in each song the
audio preview was extracted from. All these clips are longer
than 24 seconds, so we consider only the first 24 seconds per
clip for simplicity of the model training process. Moreover,
we randomly pick 6,000 songs as validation set, 6,000 songs
for testing, and the remaining 19,377 clips for training.

Different data sets are used as the test set for different mu-
sic puzzle games. For music jigsaw puzzle, we simply use
the test set of the in-house collection. For music sequenc-
ing, we use the popular music subset of the RWC database
(Goto et al. 2002), which contains 100 complete songs with
manually labeled section boundaries (Goto 2006).3 We di-
vide songs into fragments according to these boundaries.
The number of resulting fragments per song ranges from
11 to 34. For simplicity, we consider only the first ten frag-
ments (sections) per song. For music medley, we collect 16
professionally-compiled medleys of pop music (by human
experts) from YouTube. Each medley contains 7 to 11 dif-
ferent short music clips, whose length vary from 5 to 30 sec-
onds. For reproducibility, we have posted the YouTube links
of these medleys in our project website.

We need to perform downbeat tracking for the in-house
collection. To this end, we use the implementation of a state-
of-the-art recurrent neural network available in the Python
library madmom4 (Böck et al. 2016). After getting the down-
beat positions, we randomly choose some of them so that
each fragment is about �24/n� seconds in length.

Result on 3-Piece Fixed-length Jigsaw Puzzle

As the first experiment, we consider the n = 3 jigsaw puz-
zle game, using 1,000 clips randomly selected from the test
set of the in-house collection. Accordingly, we train all the
neural networks (including the baselines) by playing n = 3
jigsaw puzzles using the training set of the same data set. All
the clips are segmented at equally-spaced timepoints. There-
fore, the length of fragments is fixed to 8 seconds. This cor-
responds to the simplest setting in Table 1.

We employ the pairwise accuracy (PA) and global ac-
curacy (GA) as our performance metrics. For an ordering
of n fragments, GA requires it to be exactly the same as
the groundtruth one, whereas PA takes the average of the
correctness of the n − 1 composing pairs. For example, or-
dering (R1,R2,R3) as (R2,R3,R1) would get 0.5 PA (for the

3https://staff.aist.go.jp/m.goto/RWC-MDB/AIST-Annotation/
4https://github.com/CPJKU/madmom

Table 2: The pairwise accuracy and global accuracy on n =
3 fixed-length jigsaw puzzle.

Method pairwise global
accuracy accuracy

SN 0.851 0.825
CCSN (Wang et al. 2016) 0.872 0.840
CIN 0.912 0.864
TSN (Misra et al. 2016) 0.911 0.890
OPN (Lee et al. 2017) 0.929 0.916
SEN (proposed) 0.996 0.994

2285

Table 3: The accuracy on music jigsaw puzzles with dif-
ferent segmentation method (fixed-length or downbeat in-
formed) and different number of fragments. Pairwise accu-
racy is outside the brackets and global accuracy is inside.

n SN CIN SEN

fix
ed

3 0.851 (0.825) 0.912 (0.864) 0.996 (0.994)
4 0.752 (0.641) 0.844 (0.722) 0.990 (0.982)
6 0.609 (0.304) 0.761 (0.455) 0.989 (0.977)
8 0.514 (0.110) 0.682 (0.229) 0.985 (0.953)

do
w

nb
ea

t 3 0.781 (0.692) 0.912 (0.863) 0.995 (0.991)
4 0.681 (0.472) 0.871 (0.761) 0.995 (0.987)
6 0.536 (0.171) 0.764 (0.499) 0.991 (0.971)
8 0.449 (0.056) 0.680 (0.297) 0.990 (0.961)

pair (R2,R3) is correct) and 0 GA.
The result is shown in Table 2. The performance of the

baseline models seem to correlate well with their sophisti-
cation, with SN performing the worst (0.825 GA) and OPN
(Lee et al. 2017) performing the best (0.916 GA). The com-
parison between SN and TSN (Misra et al. 2016) implies that
more inputs offers more information. Moreover, the results
in GA and PA seem to be highly correlated.

More importantly, by comparing the result of SEN against
the baseline models, we see that SEN outperforms the others
by a great margin, reaching almost 100% accuracy for both
metrics. In particular, the performance gap between CCSN
and SEN suggests that learning from the similarity matrix
seems to be an important design.

Result on Variable-length Jigsaw Puzzle

Next, we consider music jigsaw puzzles with variable-length
fragments. Thanks to the global pooling layer, in our im-
plementation SEN, SN and CIN can take input of arbitrary
length, even if the length of the training fragments is differ-
ent from the length of the testing fragments. Moreover, the
pair-wise strategy allows these three models to tackle n > 4
puzzle games, while some other models such as OPN can-
not. Therefore, we only consider SEN, SN and CIN in the
following experiments.

We create different games by varying n from 3, 4, 6 to 8,
using the uniformly segmented fragments from the in-house
data set. The length of the fragments is hence 8, 6, 4, 3 sec-
onds, respectively. Among them, the n = 8 game is the most
challenging one, partly due to the number of fragments and
partly due to their shorter duration (implying less informa-
tion per fragment). We use the same SEN, SN and CIN mod-
els trained by solving n = 3 jigsaw puzzles. In addition, we
aim at comparing the result of using different segmentation
methods to process both the training and test clips. There-
fore, we re-train the SEN, SN and CIN models trained by
solving n = 3 jigsaw puzzles segmented at downbeat po-
sitions, and apply them to also downbeat-informed jigsaw
puzzles with different values of n.

Table 3 shows the result. We can see that the result of SN
and CIN both decrease quite remarkably as the value of n
increases, and that the downbeat-informed games are indeed
slightly more challenging than the fixed-length games, pos-
sibly due to the clarity at the boundary. When n = 8, the PA

Table 4: The accuracy of SEN on three kinds of puzzle game
for two segmentation methods.

game fixed-length downbeat-informed
puzzle (n = 8) 0.985 (0.953) 0.990 (0.961)
sequencing 0.789 (0.440) 0.937 (0.790)
medley 0.945 (0.688) 0.961 (0.750)

and GA of SN drop to 0.514 and 0.110, whereas the PA and
GA of CIN drop to 0.682 and 0.229. However, the accuracy
of the SEN model remains high even when n = 8 (0.985 PA
and 0.953 GA), suggesting that SEN can work quite robustly
against various music jigsaw puzzles.

Result on Music Sequencing and Music Medley

Lastly, we evaluate the performance of SEN on music se-
quencing and music medley, which are supposed to be more
challenging than jigsaw puzzles. We do not consider SN and
CIN here, for their demonstrated poor performance in n = 8
jigsaw puzzles. Instead, we compare two SEN models, one
trained with uniform segmentation (n = 3) and the other
with downbeat-informed segmentation (n = 3).

From Table 4, we can see that these two games are in-
deed more challenging than jigsaw puzzles. When using a
SEN model trained with uniform segmentation, the GA can
drop to as low as 0.440 for music sequencing and 0.688 for
music medley. However, more robust result can be obtained
by training SEN using downbeat-informed segmentation:
the GA would be improved to 0.790 and 0.750 for the two
games, respectively. This is possibly because the downbeat-
informed segmentation can avoid SEN from learning only
low-level features at the boundary of fragments.

We perform an error analysis looking into the incorrect
prediction in the music sequencing game, which has some
musically meaningful insights. A song is composed of sev-
eral sections, such as intro (I), verse (V), chorus (C) and
bridge (B), with some variations such as Va and Vb. A cor-
rect global ordering of one of the songs in RWC is: I-Va-
Ba-Vb-Cpre-Ca-Bb-Va-Vc-Cpre. For this song, the esti-
mated ordering of SEN is: I-Bb-Va-Vc-Cpre-Ca-Va-Ba-
Vb-Cpre. We can use a numerical notation and represent
our result as 1-7-8-9-10-6-2-3-4-5. We can see that the
local prediction of 7-8-9-10 and 2-3-4-5 is in correct or-
der. Moreover, these two passages are fairly similar (both
have the structure V-Cpre). Therefore, the predicted order-
ing may sound right as well. Indeed, we found that most of
the incorrect predictions are correct in local ordering.

We use user-created medleys as the groundtruth in the
medley game, but as the creation of a medley is an art, dif-
ferent orderings may sound right. Therefore, we encourage
readers to visit our project website to listen to the result.

Ablation Analysis

We assess the effect of various design of downbeat-informed
SEN by evaluating ablated versions. Table 5 shows the result
when we (from left to right): i) replace cosine similarity in
Eq. (2) by inner product, ii) increase the stride of the convo-
lutions in Siamese ConvNet from 1 to 2, iii) use only global

2286

Table 5: The result of a few ablated version of SEN for different music puzzle games.

game Inner
product

Conv
stride 2

Global P
(mean)

Global P
(max)

R2R1
only

R1R3
only

R3R1
only All

puzzle 0.90 (0.69) 0.65 (0.17) 0.96 (0.87) 0.98 (0.93) 0.84 (0.57) 0.97 (0.87) 0.96 (0.86) 0.99 (0.96)
sequencing 0.74 (0.38) 0.54 (0.06) 0.81 (0.49) 0.92 (0.76) 0.62 (0.22) 0.81 (0.46) 0.91 (0.69) 0.94 (0.79)
medley 0.88 (0.50) 0.73 (0.13) 0.81 (0.56) 0.93 (0.69) 0.86 (0.44) 0.93 (0.69) 0.90 (0.63) 0.96 (0.75)

Figure 4: Embeddings of different data pairs learned by (from left to right) SEN, CCSN and SN, respectively. The embeddings
are projected to a 2D space for visualization via t-SNE (Maaten and Hinton 2008). The figure is best viewed in color.

Similarity Matrix Feature from c4 Feature from c6

Figure 5: Visualizations of the features learned from the c4
and c6 layers of SEN for two pairs of fragments.

mean pooling or global max pooling (we use the concatena-
tion of mean, max and standard deviation in our full model),
and iv) use one type of negative data only. Most of these
changes decrease the accuracy of SEN. Some observations:
• Calculating the similarity matrix using the inner product

cannot guarantee that the similarity scores are in the range
of [0, 1] and this hurts the accuracy of SEN.

• Setting the stride size larger can speed up the training pro-
cess, but doing so losses much temporal information.

• Max pooling alone works quite well for the global pool-
ing layer, but it is even better to also consider mean and
standard deviation.

• Using R2R1 as the negative data alone is far from suffi-
cient. Actually, both R1R3 only and R3R1 only seem to

work better than R2R1 only. The best result (especially in
GA) is obtained by using all three types of negative pairs.

What the SEN Model Learns?

Figure 4 shows the embeddings (output of the last fully-
connected layer) of different data pairs learned by SEN,
CCSN and SN, respectively. We can clearly see that the pos-
itive and negative pairs can be fairly easily distinguished by
the embeddings learned by SEN. Moreover, SEN can even
distinguish R2R1 (consecutive) from R1R3 and R3R1 (non-
consecutive). This is an evidence of the effectiveness of SEN
in learning sequential structural patterns.

Finally, Figure 5 shows the features from the first (c4) and
last convolution (c6) layers in the ConvNet of SEN, given
two randomly chosen pairs (the first row is R1R2 and the
second row is R1R3). We see that the filters detect different
patterns and textures from the similarity matrices.

Conclusion

In this paper, we have presented a novel Siamese network
called the similarity embedding network (SEN) for learning
sequential patterns in a self-supervised way from similarity
matrices. We have also demonstrated the superiority of SEN
over existing Siamese networks using different types of mu-
sic puzzle games, including music medley generation.

In our evaluation, however, music medley generation is
viewed as just one of the evaluation tasks. In future work,
we will focus more on the music medley generation task it-
self. For example, a listening test should be conducted for
subjective evaluation. We also plan to deeply investigate the
features or patterns our model learns for generating med-
leys and correlate our findings with those reported in related
work on automatic music mashup (Davies et al. 2014) and
playlist sequencing (Bittner et al. 2017). We also want to

2287

investigate thumbnailing methods (Huang, Chou, and Yang
2017b; Kim et al. 2017) to pick fragments from different
songs, and methods such as beat-match and cross-fade (Bit-
tner et al. 2017) to improve the transition between clips.

References

Bittner, R. M.; Gu, M.; Hernandez, G.; Humphrey, E. J.; Je-
han, T.; McCurry, P. H.; and Montecchio, N. 2017. Auto-
matic playlist sequencing and transitions. In Proc. Int. Soc.
Music Information Retrieval Conf.
Böck, S.; Korzeniowski, F.; Schlüter, J.; Krebs, F.; and Wid-
mer, G. 2016. madmom: a new Python audio and music
signal processing library. In Proc. ACM MM, 1174–1178.
Böck, S.; Krebs, F.; and Widmer, G. 2016. Joint beat and
downbeat tracking with recurrent neural networks. In Proc.
Int. Soc. Music Information Retrieval Conf., 255–261.
Bromley, J.; Guyon, I.; Lecun, Y.; Sckinger, E.; and Shah, R.
1994. Signature verification using a “siamese” time delay
neural network. In Proc. Annual Conf. Neural Information
Processing Systems.
Chopra, S.; Hadsell, R.; and LeCun, Y. 2005. Learning a
similarity metric discriminatively, with application to face
verification. In Proc. IEEE Conf. Computer Vision and Pat-
tern Recognition, 539–546.
Davies, M. E.; Hamel, P.; Yoshii, K.; and Goto, M. 2014.
AutoMashUpper: Automatic creation of multi-song music
mashups. IEEE/ACM Trans. Audio, Speech and Language
Processing 22(12):1726–1737.
Dieleman, S., and Schrauwen, B. 2014. End-to-end learning
for music audio. In Proc. IEEE Int. Conf. Acoustics, Speech
and Signal Processing, 6964–6968.
Fernando, B.; Bilen, H.; Gavves, E.; and Gould, S. 2016.
Self-supervised video representation learning with odd-one-
out networks. arXiv preprint arXiv:1611.06646.
Goto, M.; Hashiguchi, H.; Nishimura, T.; and Oka, R. 2002.
RWC music database: Popular, classical and jazz music
databases. In Proc. Int. Soc. Music Information Retrieval
Conf., 287–288.
Goto, M. 2006. AIST annotation for the RWC music
database. In Proc. Int. Soc. Music Information Retrieval
Conf., 359–360.
Hansen, K. F.; Hiraga, R.; Li, Z.; and Wang, H. 2013. Mu-
sic puzzle: An audio-based computer game that inspires to
train listening abilities. In Proc. Advances in Computer En-
tertainment. Springer. 540–543.
Huang, Y.-S.; Chou, S.-Y.; and Yang, Y.-H. 2017a. DJnet:
A dream for making an automatic DJ. In Proc. ISMIR, late-
breaking demo paper.
Huang, Y.-S.; Chou, S.-Y.; and Yang, Y.-H. 2017b. Music
thumbnailing via neural attention modeling of music emo-
tion. In Proc. APSIPA.
Hudson, N. J. 2011. Musical beauty and information com-
pression: Complex to the ear but simple to the mind? BMC
research notes 4(1):9.

Kim, A.; Park, S.; Park, J.; Ha, J.-W.; Kwon, T.; and Nam, J.
2017. Automatic DJ mix generation using highlight detec-
tion. In Proc. ISMIR, late-breaking demo paper.
Lee, H.-Y.; Huang, J.-B.; Singh, M.; and Yang, M.-H. 2017.
Unsupervised representation learning by sorting sequences.
arXiv preprint arXiv:1708.01246.
Lin, Y.-T.; Liu, I.-T.; Jang, J.-S. R.; and Wu, J.-L. 2015.
Audio musical dice game: A user-preference-aware medley
generating system. ACM Trans. Multimedia Comput. Com-
mun. Appl. 11(4):52:1–52:24.
Liu, J.-Y., and Yang, Y.-H. 2016. Event localization in music
auto-tagging. In Proc. ACM MM, 1048–1057.
Lotter, W.; Kreiman, G.; and Cox, D. 2017. Deep predic-
tive coding networks for video prediction and unsupervised
learning. In Proc. Int. Conf. Learning Representations.
Luo, W.; Schwing, A. G.; and Urtasun, R. 2016. Efficient
deep learning for stereo matching. In Proc. IEEE Conf.
Computer Vision and Pattern Recognition, 5695–5703.
Maaten, L. v. d., and Hinton, G. 2008. Visualizing data
using t-SNE. J. Machine Learning Research 9:2579–2605.
Marwan, N.; Romano, M. C.; Thiel, M.; and Kurths, J.
2007. Recurrence plots for the analysis of complex systems.
Physics reports 438(5):237–329.
Misra, I.; Zitnick, C. L.; Hebert, M.; and . 2016. Shuffle and
learn: Unsupervised learning using temporal order verifica-
tion. In Proc. European Conf. Computer Vision, 527–544.
Mueller, J., and Thyagarajan, A. 2016. Siamese recurrent
architectures for learning sentence similarity. In Proc. AAAI,
2786–2792.
Nieto, O., and Bello, J. P. 2016. Systematic exploration of
computational music structure research. In Proc. Int. Soc.
Music Information Retrieval Conf., 547–553.
Noroozi, M., and Favaro, P. 2016. Unsupervised learning
of visual representations by solving jigsaw puzzles. In Proc.
European Conf. Computer Vision, 69–84. Springer.
Paulus, J.; Mller, M.; and Klapuri, A. 2010. State of the art
report: Audio-based music structure analysis. In Proc. Int.
Soc. Music Information Retrieval Conf., 625–636.
Serrà, J.; Müller, M.; Grosche, P.; and Arcos, J. L. l. 2012.
Unsupervised detection of music boundaries by time series
structure features. In Proc. AAAI, 1613–1619.
Smith, J. B.; Kato, J.; Fukayama, S.; Percival, G.; and Goto,
M. 2017. The CrossSong Puzzle: Developing a logic puzzle
for musical thinking. J. New Music Research 1–16.
Upham, F., and Farbood, M. 2013. Coordination in musi-
cal tension and liking ratings of scrambled music. In Proc.
Meeting of the Society for Music Perception and Cognition.
Wang, F.; Zuo, W.; Lin, L.; Zhang, D.; and Zhang, L. 2016.
Joint learning of single-image and cross-image representa-
tions for person re-identification. In Proc. IEEE Conf. Com-
puter Vision and Pattern Recognition, 1288–1296.
Widmer, G. 2016. Getting closer to the essence of music:
The Con Espressione manifesto. ACM Trans. Intell. Syst.
Technol. 8(2):19:1–19:13.

2288

