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Abstract

We investigate the task of automatic dietary assessment:
given meal images and descriptions uploaded by real users,
our task is to automatically rate the meals and deliver ad-
visory comments for improving users’ diets. To address this
practical yet challenging problem, which is multi-modal and
multi-task in nature, an end-to-end neural model is proposed.
In particular, comprehensive meal representations are ob-
tained from images, descriptions and user information. We
further introduce a novel memory network architecture to
store meal representations and reason over the meal represen-
tations to support predictions. Results on a real-world dataset
show that our method outperforms two strong image caption-
ing baselines significantly.

Introduction

Chronic diseases such as cardiovascular diseases, type 2 di-
abetes, metabolic syndromes and cancers are the leading
killers in developed countries and have been increasingly
rampant in developing nations (Alwan 2011). Nowadays,
obesity, diabetes and hypertension are even common among
children. Improving diets is a solution to this epidemics of
metabolic diseases that are inundating the world (Roberts
and Barnard 2005). Any successful strategy to improve a
person’s diet and lifestyle is expected to pay off with im-
proved health in the long term.

Since mobile devices are ubiquitous today and deeply im-
pact daily life, dietary interventions conducted by mobile ap-
plications hold the promise for long-term diet management
(Rebedew 2014; Goyal et al. 2017). An example of these
applications is shown in Figure 1. Here users can upload an
image and append a short description for reporting the meal
they are consuming, and dietitians can respond to the users
with a meal rating (a single quantitative score for rating the
meal from very unhealthy to very healthy) and detailed com-
ments. Compared to traditional dietary advisory methods,
mobile applications are more accessible and well-suited for
dietary intervention.

However, relying on manual assessments by dietitians is
both expensive and time-consuming. To this end, tools that
can assist dietitians or even automate the advisory process
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Figure 1: Application example. Dietitians respond to the
users with meal ratings and comments.

can be highly useful. In this paper, we introduce a new prob-
lem, utilizing algorithms to automatically assess uploaded
images and descriptions for diet management. The problem
is challenging in several aspects:

• The algorithm has to handle multiple modalities. In ad-
dition to their images and text descriptions, meals should
also be evaluated based on user information (e.g. less salt
should be taken by users with hypertension), user charac-
teristics such as gender, age, blood sugar level and smok-
ing or not must be considered.

• The problem is multi-task innate in that the algorithm
needs to provide both meal ratings and advisory com-
ments, which should be instructive for diet management.

• User-uploaded data are highly diverse. Diversities in food
cultures and cooking styles bring in challenges for im-
age evaluation. In addition, the descriptions can be writ-
ten with poor grammatical quality, and user information
mainly consists of categorical variables, which are highly
sparse in practice.

Motivated by the success of neural models for feature
representations (Krizhevsky, Sutskever, and Hinton 2012;
Hochreiter and Schmidhuber 1997; Karpathy and Fei-Fei
2015; He and Chua 2017), we devise a multi-modal multi-
task learning framework to solve the problem. In particular,
we utilize a convolutional neural network (Simonyan and
Zisserman 2014), a bidirectional long short term memory
(Schmidhuber 2005) and a neural factorization machine (He
and Chua 2017) to extract features from an image, a descrip-
tion and their corresponding user information, respectively.
The three feature representations are concatenated to obtain
a comprehensive meal representation for assessment.
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In addition, since historical meal information can provide
valuable contextual clues for predictions (e.g. what kind of
food that the users usually consume, such as western food
and Asian food), we devise a new memory network archi-
tecture (Weston, Chopra, and Bordes 2014) to hold histori-
cal meal information. A background meal representation is
obtained by attending over memory networks. The meal rep-
resentation enhanced by the background meal representation
are fed into prediction layers. Finally, we apply a long short
term memory decoder for generating comments.

Experiments on a real-world dataset show that our model
outperforms two strong image captioning baseline models
significantly. Furthermore, case studies indicate that our al-
gorithm can reliably generate meal ratings and comments.

Our contributions are twofold:

• To our knowledge, we are the first to use both meal ratings
and comments for dietary assessment.

• We propose a novel end-to-end framework for automatic
dietary assessment, utilizing multiple modalities as in-
puts. A novel memory network architecture is devised,
which holds users’ historical meal information and pro-
vides supporting evidences for online predictions.

Related Work

Dietary Assessment: There is a stream of work utilizing
images for dietary assessment. Dehais et al. (2015) utilize
dish detection and image segmentation techniques to recog-
nize food categories and portion sizes from images. Liang
et al. (2017) utilize R-CNN to estimate calories from im-
ages. Hassannejad et al. (2017) design a pipeline system,
which consults a nutrient database to generate comments af-
ter food and portion size recognitions, employing some pre-
defined templates. Our work is different from existing work
in three aspects. (1) We propose using both meal ratings
and advisory comments for dietary assessment, instead of
solely recognizing food categories, portion sizes or calories.
The advisory comments are generated with a long short term
memory, thus being more customized and flexible compared
to template-based methods. (2) Our work is an end-to-end
framework, reducing error propagations in pipeline systems.
(3) We utilize multiple modalities (images, descriptions and
user information) for predictions.

Our work is also related to previous work on multi-modal
learning, multi-task learning and memory networks.

Multi-modal Learning: Predicting image ratings and
comments using multiple modalities are related to multi-
modal fusion and translation, respectively. Multi-modal fu-
sion aims to join information from two or more modalities to
perform predictions (classification or regression). For exam-
ple, Chen and Jin (2015) explore methods utilizing bi-LSTM
to fuse audio and visual signals for predicting values of the
emotion dimensions, arousal and valence. Yang et al. (2016)
fuse visual, audio and textual features for video classifica-
tions.

Multi-modal translation aims to translate one or more in-
put modalities to another modality. Barbu et al. (2012) pro-
pose a pipeline framework to generate natural sentences
for describing videos. Mansimov et al. (2015) introduce

an attentional model to generates images from natural lan-
guage descriptions. Relatedly, image captioning (Karpathy
and Fei-Fei 2015; Xu et al. 2015) generates descriptions
from images.

Different from the above work, we build a multi-task
learning framework, which jointly predicts meal ratings and
comments from images, descriptions and user information.

Multi-task Learning jointly learns multiple tasks to im-
prove the generalization performance of all tasks (Zhang and
Yang 2017). Here we focus on neural models. One stream
of work assumes that each task has its own set of parame-
ters, and the parameters of the tasks are regularized to cap-
ture task relations. Duong (2015) use l2 norm for regulariza-
tion, while Yang et al. (2016) introduces trace norm. Another
stream of work achieves multi-task learning by parameter
sharing. Nam and Han (2016) propose using convolutional
neural networks as shared layers for visual tracking. Liu,
Qiu and Huang (2016) utilize LSTM as shared layers for
text classification. Our work belongs to the second stream of
work, where two tasks (meal ratings and comments) share
meal representations.

Memory Networks reason with inference components
combined with a long-term memory component. Weston et
al. (2014) devise a memory network to explicitly store the
entire input sequences for question answering. An end-to-
end memory network is further proposed by Sukhbaatar et
al. (2015) by storing embeddings of input sequences, which
requires much less supervision compared to Weston et al.
(2014). Kumar et al. (2016) introduces a general dynamic
memory network, which iteratively attends over episodic
memories to generate answers. Xiong et al. (2016) extends
Kumar et al. (2016) by introducing a new architecture to
cater image inputs and better capture input dependencies.
In similar spirits, our memory network stores meal repre-
sentations for obtaining background meal representation by
attention.

Problem Definition

Formally, the input scenario contains a user S, with user in-
formation P , who uploads an image I and a description D.
The image I is of shape h × w × c (h, w and c are image
height, weight and channel, respectively). The description
D is a sequence of words d1, d2...d|D|, each di being drawn
from a vocabulary V . The user information P is a vector
of size n. Our task is to automatically assess the inputs, ob-
taining a numerical meal rating G and a detailed advisory
comment E, which is a sequence of words e1, e2...e|E|, and
e1 and e|E| are a special START and a special END token,
respectively.

Feature Extraction

Figure 2 shows the feature extraction models for images, de-
scriptions and user information.

Image Features

Our model for image feature extraction is shown in Figure 2
(a). Given an image I ∈ Rh×w×c uploaded by a user S, we
use VGG-19 (Simonyan and Zisserman 2014) to extract its
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(c) User information fea-
ture

Figure 2: Feature extraction models

image feature. The basic idea of VGG-19 is to use a series of
convolution and pooling layers followed by fully connected
layers. We take the output I ′ from the last pooling layer,
which is of shape, h′ × w′ × c′. As a result, I ′ divides the
image into h′ × w′ local regions, each local region I ′i being
represented as a c′ dimensional feature vector.

Not all local regions contribute equally for predictions.
The local regions corresponding to food objects should be
paid more attention to. Neural attention (Bahdanau and Ben-
gio 2014) has been shown useful for tasks such as machine
translation (Bahdanau and Bengio 2014), reading compre-
hension (Cheng, Dong, and Lapata 2016) and image cap-
tioning (Xu et al. 2015). Formally, the inputs to the atten-
tion mechanism are a query and a set of key-value pairs,
where the query, keys, values are all vectors. The output is
calculated as a weighted sum of the value vectors, where
the weights are obtained by calculating the similarities (e.g.
cosine similarities) between the query and the keys. In this
paper, keys are equal to their corresponding values.

We leverage user descriptors as queries for calculating the
weights of the local regions, which are introduced to explic-
itly capture user characteristics, parametrized by a matrix
N ∈ RK×m. Suppose that there are m users in the train-
ing set, the user descriptor of each user corresponds to one
column of N , denoted as NS ∈ RK for a user S. The user
descriptors are automatically learned during training. Dur-
ing testing, for users not appearing in the training set, we
use the average of the m user descriptors in N as his/her
user descriptors.

We use the user descriptor NS (the query) to attend over
the h′ ×w′ local regions I ′i (the keys/values) for obtaining a
representation of I . Since I ′i and NS may not be of the same
lengths, we apply additive attention (Bahdanau and Bengio
2014), which uses a feed-forward network with a single hid-
den layer. Formally, The image feature f(I) is calculated as:

f(I) =

h′×w′∑

i=1

aiI
′
i s.t.

h′×w′∑

i=1

ai = 1 (1)

The weight ai reflects the importance of I ′i with respect

to NS and is evaluated as:

li = vT tanh(ANS +QI ′i)

ai =
exp(li)∑h′×w′

j=1 exp(lj)

(2)

Here A ∈ R2K×K , Q ∈ R2K×c′ and v ∈ R2K are pa-
rameters of additive attention. A and Q linearly project Ni

and ht to a hidden layer of length 2K, respectively. The pro-
jected space is set as 2K empirically, since we find it ben-
eficial to project the vectors into a larger layer. v serves as
the output layer. Softmax is applied to normalize li. We use
f(I) ∈ Rc′ as the image feature.

Textual Features

Our model for textual features is shown in Figure 2 (b).
Given a description D upload by a user S, its word sequence
d1, d2...d|D| is fed into a word embedding layer to obtain
embedding vectors x1, x2...x|D|. The word embedding layer
is parameterized by an embedding matrix Ew ∈ RK×|V |,
where K is the embedding dimension, and |V | is the vocab-
ulary size.

To acquire a semantic representation of D, Long Short-
Term Memory (LSTM) (Hochreiter and Schmidhuber 1997)
is utilized to transform embedding vectors x1, x2...x|D| to
a sequence of hidden states h1, h2...h|D|. We use the vari-
ation of Hochreiter and Schmidhuber (1997), which takes
advantages of an input gate, a forget gate and an output gate,
denoted as it, ft and ot, respectively, to control information
flow. A LSTM cell incrementally consumes one input xt at
each time step t. Given an xt, the previous hidden state ht−1

and cell state ct−1, the LSTM cell computes the next hidden
state ht and the next cell state ct as:

it = σ(W (i)xt + U (i)ht−1 + b(i))

ft = σ(W (f)xt + U (f)ht−1 + b(f))

ot = σ(W (o)xt + U (o)ht−1 + b(o))

ut = tanh(W (u)xt + U (u)ht−1 + b(u))

ct = it � ut + ft � ct−1

ht = ot � tanh(ct)



Here, σ denotes the sigmoid function and � is the
element-wise multiplication.

A bidirectional extension (Schmidhuber 2005) is applied
to capture sentence-level semantics both left-to-right and
right-to-left. As a result, two sequences of hidden states are

obtained, denoted as
�

h1,
�

h2...
�

h|D| and
�

h1,
�

h2...
�

h|D|, respec-

tively. We concatenate
�

ht and
�

ht at each time step to obtain
the final hidden states h1, h2...h|D|, which are of sizes 2K.

To select the most salient words from a description,
we use NS as the query to attend over hidden states
h1, h2...h|D|, using Equation 1 and 2 to obtain a final tex-
tual feature vector f(D) ∈ R2K .

User Information Features

Since the meals are evaluated based on user information, a
user information feature f(S) is obtained for S. Our model
for user information feature extraction is shown in Figure 2
(c).

User information consists of a variety of categorical vari-
ables (e.g. gender, occupation, disease, smoking or not). A
common practice is to convert these categorical variables to
a set of binary features via one-hot encoding (Shan, Hoens,
and Jiao 2016). However, the resultant first-order user infor-
mation feature P ∈ Rn can be highly sparse. To remedy the
problem, it is essential to take advantage of the interactions
between features. To this end, factorization machines (Ren-
dle 2010) can be a promising family of algorithms, which
learns feature interactions from raw data automatically. Neu-
ral factorization machine improves over naive factorization
machines and has been proven to be effective in capturing
high-order feature interactions (He and Chua 2017). Given
P , it utilizes a bi-pooling layer parametrized by a feature
embedding matrix B ∈ RK×n to capture second-order in-
teractions:

bi-pooling(P ) =

n∑

i=1

n∑

j=i+1

PiBi � PjBj (3)

Here Pi and Pj are the ith and jth features of P , respec-
tively. The ith column of B is the feature embedding Bi of
Pi. Thus, Bi and Bj are feature embeddings correspond-
ing to Pi and Pj , respectively. bi-pooling(P ) ∈ RK is the
second-order feature representation.

To capture higher-order interactions, we further apply two
fully connected hidden layers with tanh activation function
on bi-pooling(P ), obtaining a high-order user information
feature f(S) ∈ RK .

Reasoning with Memory Network

We concatenate f(I), f(D) and f(S) to obtain a meal rep-
resentation, f(I,D, S) ∈ R(c′+3K). Further, we assume
that users’ historical meal information is highly instructive,
since valuable background evidences such as eating habits
and written styles of descriptions are revealed. Thus, reason-
ing capabilities on historical meal information can be help-
ful. Memory networks (Weston, Chopra, and Bordes 2014;
Sukhbaatar et al. 2015) have been shown effective in storing
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Figure 3: Memory network for reasoning

evidences for question answering. In this paper, we devise
a novel memory network architecture shown in Figure 3,
which stores historical meal representations to support on-
line predictions.

Formally, a memory network MS ∈ R(c′+3K)×|S| is in-
troduced for each user S, where |S| denotes the number of
meals uploaded by S.

Memory Network: Suppose that f(I,D, S) is the ith
meal uploaded by S, we directly set f(I,D, S) as the ith
column of MS . Formally,

MS
i = f(I,D, S) (4)

As a result, the columns of MS are historical meal represen-
tations, ordered by their upload time.

Dealing with Data Scarcity: Data scarcity is common
among inactive users. We propose using the memory net-
works of the most similar users to enhance the memory net-
work MS with few columns. The similarity of two memory
networks, MS and MS′

is calculated as:

sim(MS ,MS′
) =

∑|S|
i

∑|S′|
j MS

i ·MS′
j

|S||S′|

=

∑|S|
i MS

i

|S| ·
∑|S′|

j MS′
j

|S′|

(5)

where · denotes dot product. The similarity value is the av-
erage dot product between the columns of MS and MS′

.
We utilize the r memory networks with the largest similar-
ities and concatenate the r memory networks with MS to
enhance it. We denote the concatenation result as MS

+.
Since calculating the similarities between each pair of

memory networks is expensive, we use locality sensitive
hashing (LSH) (Shrivastava and Li 2014) to approximately
obtain the similarities. As sim(MS ,MS′

) is the dot prod-

uct between
∑|S|

i MS
i

|S| and
∑|S′|

j MS′
j

|S′| in Equation 5, for each

MS′
, its representation

∑|S′|
j MS′

j

|S′| is indexed to LSH ta-

bles. For a query
∑|S|

i MS
i

|S| , the r most similar memory net-
works measured by dot product are obtained in sub-linear
time complexity (Shrivastava and Li 2014), which greatly
improves efficiency in practice.



When a memory network is large, we simply use the most
recently uploaded meals (meals uploaded in the last three
months are preserved, empirically) as historical information.

Obtaining a Background Meal Representation: Given
a meal representation f(I,D, S), we obtain a background
mean representation C(I,D, S) to support the prediction by
attending over its enhanced memory MS

+:

C1(I,D, S) = MS
+softmax((MS

+)
T f(I,D, S))

C2(I,D, S) = MS
+softmax((MS

+)
TC1(I,D, S))

......

CL(I,D, S) = MS
+softmax((MS

+)
TCL−1(I,D, S))

(6)

Dot product attention (Vaswani and Shazeer 2017) is ap-
plied here, which is faster and more space-efficient com-
pared to additive attention, since it can be implemented us-
ing highly optimized matrix multiplication. Dot products
are performed between f(I,D, S) and each column of MS

+
and the scores are normalized using the softmax function.
C1(I,D, S) is a weighted sum of MS

+’s columns. The pro-
cess repeats until the Lth-step reasoning state CL(I,D, S)
is obtained. We use multiple step reasoning in that it has
been proven that the memory network may need to be con-
sulted several times to obtain contextual information (Xiong,
Merity, and Socher 2016).

In summary, each meal representation f(I,D, S) is stored
into MS using Equation 4. MS is enhanced to MS

+ by find-
ing its most similar memory networks using LSH. Finally,
CL(I,D, S) is obtained by attending over MS

+.

Prediction

We utilize element-wise addition of the meal representa-
tion and its background meal representation, f(I,D, S) +
CL(I,D, S) for predictions, denoted as f+(I,D, S) ∈
R(c′+3K). Meal rating and comment are jointly learned,
since the two tasks can benefit from multi-task learning. The
reasons are twofold: (1) Multi-task learning acts as a regu-
larizer, which reduces the risk of overfitting (Nam and Han
2016). (2) The two tasks are closely related and data are aug-
mented implicitly by joint learning (Wang and Zhang 2017).

Meal Rating

We introduce a prediction layer for estimating meal ratings,
parametrized by a vector z ∈ R(c′+3K) and a bias bmr ∈ R.
Formally, meal rating estimations are calculated as:

Ĝ = zT f+(I,D, S) + bmr (7)

The mean square error is used as the loss function:

lossmr = (G− Ĝ)2 (8)

Meal Comment

Motivated by the success of LSTM in machine translation
(Bahdanau and Bengio 2014), image captioning (Karpa-
thy and Fei-Fei 2015) and abstractive summarization (Wang
and Zhang 2017), we utilize LSTM to generate comments.
During training, we condition the generative process on

# user # record description rating comment

283 42733 9.3 ± 3.2 1.7 ± 0.29 27.6 ± 4.2

Table 1: Dataset statistics

f+(I,D, S) (i.e. using f+(I,D, S) as LSTM’s initial cell
state c0). In addition, we sequentially input comment E’s
word sequence e1, e2...e|E|−1 to LSTM, obtaining hidden
states h1, h2...h|E|−1. For each hi, we generate a probabil-
ity distribution over the vocabulary V :

pi = softmax(Wmchi + bmc) (9)

where hi ∈ R(c′+3K), and Wmc ∈ R|V |×(c′+3K) and
b ∈ R|V | . The probability of word ej in pi, denoted as
pi(ej), represents the probability of generating ej in the ith
step. The loss function maximizes the log probabilities of
e2...e|E| in p1...p|E|−1, respectively:

lossmc =

|E|−1∑

i=1

logpi(ei+1) (10)

During testing, to generate a comment, we condition on
f+(I,D, S) and use the special START token as the first
input. Next, we pick the word with the maximum probability
as the next word and use it as the second input. The process
repeats until the END token is picked.

Joint Learning

To jointly learn the meal rating and meal comment tasks, we
minimize the following joint loss function, which linearly
interpolates lossmr and lossmc, controlled by λ:

loss = lossmr − λlossmc (11)

Experiments

Dataset and Preprocessing

Our dataset is obtained from a mobile application for diet
management, which allows users to create their accounts
with personal information and report their diets by tak-
ing photos and attaching text descriptions. A dietitian team
evaluates the uploaded photos and descriptions by rating
the meals between 0 (very unhealthy) and 3 (very healthy)
and attaching their detailed comments about the ratings.
The dataset statistics are shown in Table 1, which ranges
from 06/07/2016 to 09/01/2017. There are 283 anony-
mous users for privacy. The users uploaded 42, 733 meals,
which are evaluated by dietitians. The attached descriptions
have an average length of 9.3 words, and its standard devi-
ation is 3.2. The averages of dietitian ratings and comments
are 1.7 points and 27.6 words, respectively.

We resize the images to 448 × 448 × 3. For the descrip-
tions, since the texts are noisy, we use NLTK1 to perform
spelling error correction and text normalization. For user
information, we fill out missing values by setting them as
average values (numerical variables) or values with maxi-
mum frequencies (categorical variables). Next, we use one-
hot encoding to transform the variables into first-order user

1http://www.nltk.org/
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Figure 4: Effect of lambda on MAE and ROUGE-1

Figure 5: Effect of L on MAE and ROUGE-1

information vectors, which are of sizes 1574. We select 70%,
10% and 20% of the meals as training, development and test-
ing sets, respectively, according to their upload time, since
our algorithm intends to evaluate future meals according to
users’ historical activities.

Model Settings

For the images, we take out the outputs from the last pooling
layer of VGG-19, which are of sizes 14×14×512. Thus, the
outputs divide each image into 14× 14 local regions, which
are of lengths 512. For the descriptions, the vocabulary size
is set as 10, 000. K is empirically set as 200. We extend these
memory networks that have fewer than 40 columns with its
3 most similar memory networks.

We use stochastic gradient descent with mini batch sizes
of 50. Dropout (Krizhevsky, Sutskever, and Hinton 2012) is
used to avoid overfitting, and the dropout rate is set as 0.5.
We use AdaGrad as the optimizer, and the initial learning
rate for AdaGrad is set as 0.5. Also, the gradient clipping
(Karpathy and Fei-Fei 2015) is adopted to prevent gradient
exploding and vanishing, where gradients larger than 5 are
rescaled. All experiments are conducted on a PC with a Intel
3.4 GHz CPU, a 4 GB memory and a 8 GB 1080 GPU.

We use the mean absolute error (the lower, the better),
|G− Ĝ|, denoted as MAE to evaluate the goodness of meal
ratings. ROUGE-12 (Lin 2004) (the higher, the better) is
used to evaluate meal comments. Here Rouge-n measures
the n-gram recall between a algorithm-generated meal com-
ment Ê and a dietitian comment E.

2https://github.com/andersjo/pyrouge/tree/master/tools/
ROUGE-1.5.5

Method MAE ROUGE-1
BRNN - 0.247
BRNN+mr 0.473 0.258
BRNN+all 0.458 0.278
SAT - 0.263
SAT+mr 0.462 0.274
SAT+all 0.442 0.285
MMDA-att-mem 0.452 0.265
MMDA-mem 0.424 0.285
MMDA-mc 0.403 -
MMDA-mr - 0.317
MMDA 0.387* 0.335*

Table 2: Meal rating and comment prediction. * denotes sta-
tistical significance using t-test (p < 0.01), compared to the
second best.

Sensitivity Test

We study how to set the loss controller λ in Equation 11 and
the number of reasoning steps L in Equation 6.

Study of λ: We set the reasoning step L = 3 and tune λ
in [0.005, 0.01, 0.05, 0.1, 0.2, 0.4, 0.8], recording MAE and
ROUGE-1 on the development set. The results are shown in
Figure 4.

When λ is small, the algorithm resembles single-task
learning (i.e. optimizing meal ratings). With the increase of
λ, MAE of meal ratings become smaller, which sheds light
on the effectiveness of multi-task learning, while peaking at
0.1. In addition, ROUGE-1 keeps going up, but the slopes
decrease. Thus, we set λ = 0.1 in the experiments.

Study of L: We change reasoning steps from 1 to 6 and
record MAE and ROUGE-1 on the development set. The re-
sults are shown in Figure 5.

We observe that when L = 3, both MAE an ROUGE-1
achieve the best performances. It indicates that more hops
can be useful for capturing more abstract contextual infor-
mation to improve performances. However, when L > 3, the
model becomes over-fitted, leading to worse performances.
As a result, we use L = 3 in the experiments.

Quantitative Results

For comparison, we use two image captioning methods
(Karpathy and Fei-Fei 2015; Xu et al. 2015) as baselines.

BRNN is our implementation of Karpathy et al. (2015),
which utilizes a region convolutional neural network to ex-
tract image features of sizes 4096 and a recurrent neural net-
work (RNN) for generating comments.

SAT is our implementation of Xu et al. (2015), which ex-
tends BRNN using a attention model. SAT utilizes a convo-
lutional neural network to obtain 14×14 local regions, each
of lengths 512, and attends over these local regions when
generating comments with LSTM.

BRNN+mr and SAT+mr are our extensions to generate
meal ratings. For BRNN, we simply input the 4096 feature
vectors to Equation 7 for generating ratings. For BRNN, the
initial memory state and hidden state of LSTM generated
from the average of 14× 14 local regions are fed into Equa-
tion 7.
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(a) Mee Hoon with fish
comment: Proportion be-
tween mee hoon and veg-
etables is nice and the fish
portion contains omega
3, that is good for your
heart! rating: 2.8

(b) Salmon with veg
for lunch
comment: A nice com-
bine of salmon and
vegetable. It would be
better to have a small
portion of brown rice.
rating: 2.6

(c) Having hotpot buffet
with three friends
comment: Thank you for
your meal log! The fat is
high and portion is large.
Try to eat less. rating: 0.4

(d) McDonald’s lunch
comment: McDonald’s is
not a good choice! Lack
of fibre. The fat and salt
are bad for heart. Try
some salads! rating: 0.5

Figure 6: Case study

Since the above baselines only utilize image features
for prediction, we take out the pre-trained description and
user information features, f(D) and f(S) from our algo-
rithm and employ these features to enhance BRNN+mr and
SAT+mr. We enhance the image features by concatenating
it with f(D) and f(S) to extend BRNN+mr. For SAT+mr,
at each attention step, we concatenate the image features
with f(D) and f(S). In addition, we append the average
of 14 × 14 local regions with f(D) and f(S), when gen-
erating the initial memory state and hidden state of LSTM.
We denote these two algorithms as BRNN+all and SAT+all,
respectively.

We also compare the results with several variants of our
algorithm, denoted as MMDA:

MMDA-att-mem removes attention and memory net-
work modules for predictions. The 14 × 14 local regions
and LSTM hidden states h1, h2...h|D| are averaged to gen-
erate image and description features, respectively. The fea-
tures are concatenated and fed into Equation 7 and 9 for gen-
erating ratings and comments directly.

MMDA-mem removes memory network module. Only
meal representations are fed into the prediction layers.

MMDA-mc is an multi-modal single-task baseline, which
removes the layers for meal comment predictions.

MMDA-mr is an multi-modal single-task baseline, which
removes the layers for meal rating predictions.

The results on the test set are shown in Figure 2.
BRNN+mr and SAT+mr outperforms BRNN and SAT, re-
spectively, which confirms the effectiveness of multi-task
learning on reducing over-fitting and providing additional
information. BRNN+all and SAT+all further outperforms
BRNN+mr and SAT+mr, respectively, which shows that
multi-modal learning can improve diet assessment. In ad-
dition, SAT, SAT+mr and SAT+all can achieve better per-
formance compared to BRNN, BRNN+mr and BRNN+all,
respectively, which reveals the effectiveness of attentional
model in extracting features.

For our algorithms, MMDA-att-mem performs worst.
MMDA-mem improves over MMDA-att-mem by attention
over images and texts. MMDA outperforms MMDA-mem
by a large margin, which confirms that historical meal in-

formation is instructive, and the memory network can effec-
tively provide background information. In addition, MMDA
outperforms MMDA-mc and MMDA-mr, which further
confirms the efficacy of multi-task learning.

Case Study

We perform a case study and randomly select some exam-
ples shown in Figure 6 (user information is not displayed
for privacy). We observe that our algorithm can generate rea-
sonable ratings and comments, which are instructive for diet
management. Another observation is that the comments and
ratings are predicted, considering user information (e.g. in
Figure 6 (d), the effects on the heart are mentioned since the
user has a history of heart-related diseases).

We also manually check the memory network columns,
which contribute the most to background meal representa-
tions in each reasoning step. One observation is that differ-
ent columns are selected in each reasoning step. With more
reasoning steps, the selected columns become more abstract
(less similar to the input meals) compared to the columns
selected in the former steps. Another observation is that the
selected columns can provide instructive information (e.g.
since the burger is wrapped in paper and the description
is not detailed in Figure 6 (d), more concrete McDonald’s
meals are selected), which sheds light on the effectiveness
of memory networks for enhancing meal representations.

Conclusion

We have investigated a multi-modal multi-task framework
for automatic dietary assessment. Compared to previous di-
etary assessment methods, we utilize multiple modalities
(images, descriptions and user information) as inputs and
propose a novel end-to-end framework to give users both
meal ratings and comments. In addition, a novel memory
network architecture is devised to enable reasoning capa-
bilities over historical meal information. Results on a real-
world dataset show that our method is highly competitive,
thus providing a tool for automating the advisory process.
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