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Abstract

We present HARP, a novel method for learning low dimen-
sional embeddings of a graph’s nodes which preserves higher-
order structural features. Our proposed method achieves this
by compressing the input graph prior to embedding it, effec-
tively avoiding troublesome embedding configurations (i.e.
local minima) which can pose problems to non-convex op-
timization.
HARP works by finding a smaller graph which approximates
the global structure of its input. This simplified graph is used
to learn a set of initial representations, which serve as good
initializations for learning representations in the original, de-
tailed graph. We inductively extend this idea, by decompos-
ing a graph in a series of levels, and then embed the hierarchy
of graphs from the coarsest one to the original graph.
HARP is a general meta-strategy to improve all of the state-
of-the-art neural algorithms for embedding graphs, including
DeepWalk, LINE, and Node2vec. Indeed, we demonstrate that
applying HARP’s hierarchical paradigm yields improved im-
plementations for all three of these methods, as evaluated on
classification tasks on real-world graphs such as DBLP, Blog-
Catalog, and CiteSeer, where we achieve a performance gain
over the original implementations by up to 14% Macro F1.

Introduction

From social networks to the World Wide Web, graphs are a
ubiquitous way to organize a diverse set of real-world infor-
mation. Given a network’s structure, it is often desirable to
predict missing information (frequently called attributes or
labels) associated with each node in the graph. This missing
information can represent a variety of aspects of the data –
for example, on a social network they could represent the
communities a person belongs to, or the categories of a doc-
ument’s content on the web.

Because many information networks can contain billions
of nodes and edges, it can be intractable to perform complex
inference procedures on the entire network. One technique
which has been proposed to address this problem is dimen-
sionality reduction. The central idea is to find a mapping
function which converts each node in the graph to a low-
dimensional latent representation. These representations can
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(a) Can 187 (b) LINE (c) HARP

(d) Poisson 2D (e) LINE (f) HARP

Figure 1: Comparison of two-dimensional embeddings from
LINE and our proposed method, for two distinct graphs. Ob-
serve how HARP’s embedding better preserves the higher
order structure of a ring and a plane.

then be used as features for common tasks on graphs such as
multi-label classification, clustering, and link prediction.

Traditional methods for graph dimensionality reduction
(Belkin and Niyogi 2001; Roweis and Saul 2000; Tenen-
baum, De Silva, and Langford 2000) perform well on small
graphs. However, the time complexity of these methods are
at least quadratic in the number of graph nodes, makes them
impossible to run on large-scale networks.

A recent advancement in graph representation learning,
DeepWalk (Perozzi, Al-Rfou, and Skiena 2014) proposed
online learning methods using neural networks to address
this scalability limitation. Much work has since followed
(Cao, Lu, and Xu 2015; Grover and Leskovec 2016; Perozzi
et al. 2017; Tang et al. 2015). These neural network-based
methods have proven both highly scalable and performant,
achieving strong results on classification and link prediction
tasks in large networks.

Despite their success, all these methods have several
shared weaknesses. Firstly, they are all local approaches –
limited to the structure immediately around a node. Deep-

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

2127



Walk (Perozzi, Al-Rfou, and Skiena 2014) and Node2vec
(Grover and Leskovec 2016) adopt short random walks to
explore the local neighborhoods of nodes, while LINE (Tang
et al. 2015) is concerned with even closer relationships
(nodes at most two hops away). This focus on local structure
implicitly ignores long-distance global relationships, and the
learned representations can fail to uncover important global
structural patterns. Secondly, they all rely on a non-convex
optimization goal solved using stochastic gradient descent
(Goldberg and Levy 2014; Mikolov et al. 2013) which can
become stuck in a local minima (e.g. perhaps as a result
of a poor initialization). In other words, all previously pro-
posed techniques for graph representation learning can ac-
cidentally learn embedding configurations which disregard
important structural features of their input graph.

In this work, we propose HARP, a meta strategy for em-
bedding graph datasets which preserves higher-order struc-
tural features. HARP recursively coalesces the nodes and
edges in the original graph to get a series of succes-
sively smaller graphs with similar structure. These coalesced
graphs, each with a different granularity, provide us a view
of the original graph’s global structure. Starting from the
most simplified form, each graph is used to learn a set of
initial representations which serve as good initializations for
embedding the next, more detailed graph. This process is re-
peated until we get an embedding for each node in the orig-
inal graph.

We illustrate the effectiveness of this multilevel paradigm
in Figure 1, by visualizing the two-dimension embeddings
from an existing method (LINE (Tang et al. 2015)) and our
improvement to it, HARP(LINE). Each of the small graphs
we consider has an obvious global structure (that of a ring
(1a) and a grid (1d)) which is easily exposed by a force
direced layout (Hu 2005). The center figures represent the
two-dimensional embedding obtained by LINE for the ring
(1b) and grid (1e). In these embeddings, the global struc-
ture is lost (i.e. that is, the ring and plane are unidenti-
fiable). However, the embeddings produced by using our
meta-strategy to improve LINE (right) clearly capture both
the local and global structure of the given graphs (1c, 1f).

Our contributions are the following:

• New Representation Learning Paradigm. We propose
HARP, a novel multilevel paradigm for graph representa-
tion which seamlessly blends ideas from the graph draw-
ing (Fruchterman and Reingold 1991) and graph repre-
sentation learning (Perozzi, Al-Rfou, and Skiena 2014;
Tang et al. 2015; Grover and Leskovec 2016) communi-
ties to build substantially better graph embeddings.

• Improved Optimization Primitives. We demonstrate
that our approach leads to improved implementations of
all state-of-the-art graph representation learning methods,
namely DeepWalk (DW), LINE and Node2vec (N2V). Our
improvements on these popular methods for learning la-
tent representations illustrate the broad applicability of
our hierarchical approach.

• Better Embeddings for Downstream Tasks. We demon-
strate that HARP(DW), HARP(LINE) and HARP(N2V)
embeddings consistently outperform the originals on clas-

sification tasks on several real-world networks, with im-
provements as large as 14% Macro F1.

Problem Formulation

We desire to learn latent representations of nodes in a
graph. Formally, let G = (V,E) be a graph, where V is
the set of nodes and E is the set of edges. The goal of
graph representation learning is to develop a mapping func-
tion Φ : V �→ R

|V |×d, d � |V |. This mapping Φ de-
fines the latent representation (or embedding) of each node
v ∈ V . Popular methods for learning the parameters of
Φ (Perozzi, Al-Rfou, and Skiena 2014; Tang et al. 2015;
Grover and Leskovec 2016) suffer from two main disadvan-
tages: (1) higher-order graph structural information is not
modeled, and (2) their stochastic optimization can fall vic-
tim to poor initialization.

In light of these difficulties, we introduce the hierarchi-
cal representation learning problem for graphs. At its core,
we seek to find a graph, Gs = (Vs, Es) which captures the
essential structure of G, but is smaller than our original (i.e.
|Vs| << |V |, |Es| << |E|). It is likely that Gs will be easier
to embed for two reasons. First, there are many less pairwise
relationships (|Vs|2 versus |V |2) which can be expressed in
the space. As the sample space shrinks, there is less variation
in training examples – this can yield a smoother objective
function which is easier to optimize. Second, the diameter
of Gs may be smaller than G, so algorithms with a local
focus can exploit the graph’s global structure.

In summary, we define the hierarchical representation
learning problem in graphs as follows:

Given a large graph G(V,E) and a function f , which embeds
G using initialization θ, f : G× θ �→ ΦG,

Simplify G to a series of successively smaller graphs
G0 . . . GL,

Learn a coarse embedding ΦGL
= f(GL, ∅),

Refine the coarse embedding into ΦG by iteratively applying
ΦGi = f(Gi,ΦGi+1), 0 ≤ i < L.

Method

Here we present our hierarchical paradigm for graph repre-
sentation learning. After discussing the method in general,
we present a structure-preserving algorithm for its most cru-
cial step, graph coarsening.

Algorithm: HARP
Our method for multi-level graph representation learning,
HARP, is presented in Algorithm 1. It consists of three parts
- graph coarsening, graph embedding, and representation re-
finement - which we detail below:

1. Graph Coarsening (line 1): Given a graph G, graph
coarsening algorithms create a hierarchy of successively
smaller graphs G0, G1, · · · , GL, where G0 = G. The
coarser (smaller) graphs preserve the global structure of
the original graph, yet have significantly fewer nodes and
edges. Algorithms for generating this hierarchy of graphs
will be discussed in detail below.
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(a) Edge Collapsing. (b) Edge Collapsing fails to collapse stars. (c) Star Collapsing.

Figure 2: Illustration of graph coarsening algorithms. 2a: Edge collapsing on a graph snippet. 2b: How edge collapsing fails to
coalesce star-like structures. 2c: How star collapsing scheme coalesces the same graph snippet efficiently.

Algorithm 1 HARP(G,Embed())
Input:

graph G(V,E)
arbitrary graph embedding algorithm EMBED()

Output: matrix of vertex representations Φ ∈ R
|V |×d

1: G0, G1, · · · , GL ← GRAPHCOARSENING(G)
2: Initialize Φ′

GL
by assigning zeros

3: ΦGL
← EMBED(GL,Φ

′
GL

)
4: for i = L− 1 to 0 do
5: Φ′

Gi
← PROLONGATE(ΦGi+1 , Gi+1, Gi)

6: ΦGi
← EMBED(Gi,Φ

′
Gi
)

7: end for
8: return ΦG0

2. Graph Embedding on the Coarsest Graph (line 2-3): The
graph embedding is obtained on the coarsest graph GL

with the provided graph embedding algorithm. As the size
of GL is usually very small, it is much easier to get a high-
quality graph representation.

3. Graph Representation Prolongation and Refinement (line
4-7): We prolong and refine the graph representation from
the coarsest to the finest graph. For each graph Gi, we
prolong the graph representation of Gi+1 as its initial em-
bedding Φ′

Gi
. Then, the embedding algorithm Embed()

is applied to (Gi,Φ
′
Gi
) to further refine Φ′

Gi
, resulting in

the refined embedding ΦGi
. We discuss this step in the

embedding prolongation section below.

4. Graph Embedding of the Original Graph (line 8): We re-
turn ΦG0 , which is the graph embedding of the original
graph.

We can easily see that this paradigm is algorithm inde-
pendent, relying only on the provided functions Embed().
Thus, with minimum effort, this paradigm can be incorpo-
rated into any existing graph representation learning meth-
ods, yielding a multilevel version of that method.

Graph Coarsening

In Algorithm 2, we develop a hybrid graph coarsening
scheme which preserves global graph structural information
at different scales. Its two key parts, namely edge collaps-
ing and star collapsing, preserve first-order proximity and
second-order proximity (Tang et al. 2015) respectively. First-
order proximity is concerned with preserving the observed
edges in the input graph, while second-order proximity is

Algorithm 2 GraphCoarsening(G)
Input: graph G(V,E)
Output: Series of Coarsened Graphs G0, G1, · · · , GL

1: L ← 0
2: G0 ← G
3: while |VL| ≥ threshold do
4: L ← L+ 1
5: GL ← EDGECOLLAPSE(STARCOLLAPSE(G))
6: end while
7: return G0, G1, · · · , GL

based on the shared neighborhood structure of the nodes.
Edge Collapsing. Edge collapsing (Hu 2005) is an effi-

cient algorithm for preserving first-order proximity. It se-
lects E′ ⊆ E, such that no two edges in E′ are incident
to the same vertex. Then, for each (ui, vi) ∈ E′, it merges
(ui, vi) into a single node wi, and merge the edges incident
to ui and vi. The number of nodes in the coarser graph is
therefore at least half of that in the original graph. As il-
lustrated in Figure 2a, the edge collapsing algorithm merges
node pairs (v1, v2) and (v3, v4) into supernodes v1,2 and v3,4
respectively, resulting in a coarser graph with 2 nodes and 1
edge. The order of merging is arbitrary; we find different
merging orders result in very similar node embeddings in
practice.

Star Collapsing. Real world graphs are often scale-free,
which means they contain a large number of star-like struc-
tures. A star consists of a popular central node (sometimes
referred to as hubs) connected to many peripheral nodes. Al-
though the edge collapsing algorithm is simple and efficient,
it cannot sufficiently compress the star-like structures in a
graph. Consider the graph snippet in Figure 2b, where the
only central node v7 connects to all the other nodes. As-
sume the degree of the central node is k, it is clear that the
edge collapsing scheme can only compress this graph into
a coarsened graph with k − 1 nodes. Therefore when k is
large, the coarsening process could be arbitrarily slow, takes
O(k) steps instead of O(log k) steps.

One observation on the star structure is that there are
strong second-order similarities between the peripheral
nodes since they share the same neighborhood. This leads
to our star collapsing scheme, which merges nodes with the
same neighbors into supernodes since they are similar to
each other. As shown in Figure 2c, (v1, v2), (v3, v4) and
(v5, v6) are merged into supernodes as they share the same
neighbors (v7), generating a coarsened graph with only k/2
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nodes.
Hybrid Coarsening Scheme. By combining edge col-

lapsing and star collapsing, we present a hybrid scheme for
graph coarsening in Algorithm 2, which is adopted on all
test graphs. In each coarsening step, the hybrid coarsening
scheme first decomposes the input graph with star collaps-
ing, then adopts the edge collapsing scheme to generate the
coalesced graph. We repeat this process until a small enough
graph (with less than 100 vertices) is obtained.

Embedding Prolongation

After the graph representation for Gi+1 is learned, we pro-
long it into the initial representation for Gi. We observe that
each node v ∈ Gi+1 is either a member of the finer represen-
tation (v ∈ Gi), or the result of a merger, (v1, v2, · · · , vk) ∈
Gi. In both cases, we can simply reuse the representation of
the parent node v ∈ Gi - the children are quickly separated
by gradient updates.

Complexity Analysis

In this section, we discuss the time complexity of
HARP(DW) and HARP(LINE) and compare with the
time complexity of DeepWalk and LINE respectively.
HARP(N2V) has the same time complexity as HARP(DW),
thus it is not included in the discussion below.
HARP(DW): Given the number of random walks γ, walk
length t, window size w and representation size d, the
time complexity of DeepWalk is dominated by the train-
ing time of the Skip-gram model, which is O(γ|V |tw(d +
dlog|V |)). For HARP(DW), coarsening a graph with |V |
nodes produces a coarser graph with about |V |/2 nodes.
The total number of nodes in all levels is approximately
|V |∑log2|V |

i=0 ( 12 )
i = 2|V |. Therefore, the time complex-

ity of HARP(DW) is O(|V |) for copying binary tree and
O(γ|V |tw(d+dlog|V |)) for model training. Thus, the over-
all time complexity of HARP(DW) is also O(γ|V |tw(d +
dlog|V |)).
HARP(LINE): The time complexity of LINE is linear to the
number of edges in the graph and the number of iterations
r over edges, which is O(r|E|). For HARP(LINE), coars-
ening a graph with |E| nodes produces a coarsened graph
with about |E|/2 edges. The total number edges in all levels
is approximately |E|∑log2|E|

i=0 ( 12 )
i = 2|E|. Thus, the time

complexity of HARP(LINE) is also O(r|E|).

Experiment

In this section, we provide an overview of the datasets and
methods used for experiments and evaluate the effectiveness
of our method on challenging multi-label classification tasks
in several real-life networks. We further illustrate the scala-
bility of our method and discuss its performance with regard
to several important parameters.

Datasets

Table 1 gives an overview of the datasets used in our exper-
iments.

Name DBLP Blogcatalog CiteSeer

# Vertices 29,199 10,312 3,312
# Edges 133,664 333,983 4,732
# Classes 4 39 6
Task Classification Classification Classification

Table 1: Statistics of the graphs used in our experiments.

• DBLP (Perozzi et al. 2017) – DBLP is a co-author graph
of researchers in computer science. The labels indicate the
research areas a researcher publishes his work in. The 4
research areas included in this dataset are DB, DM, IR,
and ML.

• BlogCatalog (Tang and Liu 2009) – BlogCatalog is a net-
work of social relationships between users on the Blog-
Catalog website. The labels represent the categories a
blogger publishes in.

• CiteSeer (Sen et al. 2008) – CiteSeer is a citation network
between publications in computer science. The labels in-
dicate the research areas a paper belongs to. The papers
are classified into 6 categories: Agents, AI, DB, IR, ML,
and HCI.

Baseline Methods

We compare our model with the following graph embedding
methods:

• DeepWalk — DeepWalk is a two-phase method for em-
bedding graphs. Firstly, DeepWalk generates random
walks of fixed length from all the vertices of a graph.
Then, the walks are treated as sentences in a language
model and the Skip-Gram model for learning word em-
beddings is utilized to obtain graph embeddings. Deep-
Walk uses hierarchical softmax for Skip-gram model op-
timization.

• LINE — LINE is a method for embedding large-scale net-
works. The objective function of LINE is designed for pre-
serving both first-order and second-order proximities, and
we use first-order LINE for comparison. Skip-gram with
negative sampling is used to solve the objective function.

• Node2vec — Node2vec proposes an improvement to the
random walk phase of DeepWalk. By introducing the re-
turn parameter p and the in-out parameter q, Node2vec
combines DFS-like and BFS-like neighborhood explo-
ration. Node2vec also uses negative sampling for optimiz-
ing the Skip-gram model.

For each baseline method, we combine it with HARP and
compare their performance.

Parameter Settings

Here we discuss the parameter settings for our models and
baseline models. Since DeepWalk, LINE and Node2vec are
all sampling based algorithms, we always ensure that the
total number of samples seen by the baseline algorithm is
the same as that of the corresponding HARP enhanced algo-
rithm.
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Figure 3: The ratio of nodes/edges of the coarsened graphs to
that of the original test graphs. For disconnected graphs, the
graph coarsening result on the largest connected component
is shown.

DeepWalk. For DeepWalk and HARP(DW), we need to
set the following parameters: the number of random walks γ,
walk length t, window size w for the Skip-gram model and
representation size d. In HARP(DW), the parameter setting
is γ = 40, t = 10, w = 10, d = 128. For DeepWalk, all the
parameters except γ are the same as in HARP(DW). Specifi-
cally, to ensure a fair comparison, we increase the value of γ
for DeepWalk. This gives DeepWalk a larger training dataset
(as large as all of the levels of HARP(DW) combined). We
note that failure to increase γ in this way resulted in substan-
tially worse DeepWalk (and Node2vec) models.

LINE. For HARP(LINE), we run 50 iterations on all graph
edges on all coarsening levels. For LINE, we increase the
number of iterations over graph edges accordingly, so that
the amount of training data for both models remain the same.
The representation size d is set to 64 for both LINE and
HARP(LINE).

Node2vec. For HARP(N2V), the parameter setting is γ =
40, t = 10, w = 10, d = 128. Similar to DeepWalk, we
increase the value of γ in Node2vec to ensure a fair compar-
ison. Both in-out and return hyperparameters are set to 1.0.
For all models, the initial learning rate and final learning rate
are set to 0.025 and 0.001 respectively.

Graph Coarsening

Figure 3 demonstrates the effect of our hybrid coarsening
method on all test graphs. The first step of graph coarsen-
ing for each graph eliminates about half the nodes, but the
number of edges only reduce by about 10% for BlogCata-
log. This illustrates the difficulty of coarsening real-world
graphs. However, as the graph coarsening process contin-
ues, the scale of all graphs drastically decrease. At level 8,
all graphs have less than 10% nodes and edges left.

Visualization

To show the intuition of the HARP paradigm, we set
d = 2, and visualize the graph representation generated by
HARP(LINE) at each level.

Figure 4 shows the level-wise 2D graph embeddings ob-
tained with HARP(LINE) on Poisson 2D. The graph layout
of level 5 (which has only 21 nodes) already highly resem-
bles the layout of the original graph. The graph layout on
each subsequent level is initialized with the prolongation of
the previous graph layout, thus the global structure is kept.

(a) Level 7 (b) Level 6 (c) Level 5

(d) Level 4 (e) Level 3 (f) Level 2

(g) Level 1 (h) Level 0 (i) Input

Figure 4: Two-dimensional embeddings generated with
HARP(LINE) on different coarsening levels on Poisson 2D.
Level 7 denotes the smallest graph, while level 0 denotes the
original graph. The last subfigure is the graph layout gener-
ated by a force-direct graph drawing algorithm.

Multi-label Classification

We evaluate our method using the same experimental pro-
cedure in (Perozzi, Al-Rfou, and Skiena 2014). Firstly, we
obtain the graph embeddings of the input graph. Then, a por-
tion (TR) of nodes along with their labels are randomly sam-
pled from the graph as training data, and the task is to predict
the labels for the remaining nodes. We train a one-vs-rest lo-
gistic regression model with L2 regularization on the graph
embeddings for prediction. The logistic regression model is
implemented by LibLinear (Fan et al. 2008). To ensure the
reliability of our experiment, the above process is repeated
for 10 times, and the average Macro F1 score is reported.
The other evaluation metrics such as Micro F1 score and ac-
curacy follow the same trend as Macro F1 score, thus are not
shown.

Table 2 reports the Macro F1 scores achieved on DBLP,
BlogCatalog, and CiteSeer with 5%, 50%, and 5% labeled
nodes respectively. The number of class labels of BlogCat-
alog is about 10 times that of the other two graphs, thus
we use a larger portion of labeled nodes. We can see that
our method improves all existing neural embedding tech-
niques on all test graphs. In DBLP, the improvements in-
troduced by HARP(DW), HARP(LINE) and HARP(N2V) are
7.8%, 3.0% and 0.3% respectively. Given the scale-free na-
ture of BlogCatalog, graph coarsening is much harder due to
a large amount of star-like structures in it. Still, HARP(DW),
HARP(LINE) and HARP(N2V) achieve gains of 4.0%, 4.6%
and 4.7% over the corresponding baseline methods respec-
tively. For CiteSeer, the performance improvement is also
striking: HARP(DW), HARP(LINE) and HARP(N2V) out-
performs the baseline methods by 4.8%, 13.6%, and 2.8%.

To have a detailed comparison between HARP and the
baseline methods, we vary the portion of labeled nodes
for classification, and present the macro F1 scores in Fig-
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Figure 5: Detailed multi-label classification result on DBLP, BlogCatalog, and CiteSeer.

Algorithm Dataset
DBLP BlogCatalog CiteSeer

DeepWalk 57.29 24.88 42.72
HARP(DW) 61.76∗ 25.90∗ 44.78∗

Gain of HARP[%] 7.8 4.0 4.8

LINE 57.76 22.43 37.11
HARP(LINE) 59.51∗ 23.47∗ 42.95∗

Gain of HARP[%] 3.0 4.6 13.6

Node2vec 62.64 23.55 44.84
HARP(N2V) 62.80 24.66∗ 46.08∗

Gain of HARP[%] 0.3 4.7 2.8

Table 2: Macro F1 scores and performance gain of HARP
on DBLP, BlogCatalog, and CiteSeer in percentage. * indi-
cates statistically superior performance to the corresponding
baseline method at level of 0.001 using a standard paired
t-test. Our method improves all existing neural embedding
techniques.

ure 5. We can observe that HARP(DW), HARP(LINE) and
HARP(N2V) consistently perform better than the corre-
sponding baseline methods.

DBLP. For DBLP, the relative gain of HARP(DW) is
over 9% with 4% labeled data. With only 2% labeled data,
HARP(DW) achieves higher macro F1 score than Deep-

Walk with 8% label data. HARP(LINE) also consistently
outperforms LINE given any amount of training data, with
macro F1 score gain between 1% and 3%. HARP(N2V)
and Node2vec have comparable performance with less than
5% labeled data, but as the ratio of labeled data increases,
HARP(N2V) eventually distances itself to a 0.7% improve-
ment over Node2vec. We can also see that Node2vec gen-
erally has better performance when compared to DeepWalk,
and the same holds for HARP(N2V) and HARP(DW). The
difference in optimization method for Skip-gram (negative
sampling for Node2vec and hierarchical softmax for Deep-
Walk) may account for this difference.

BlogCatalog. As a scale-free network with complex
structure, BlogCatalog is challenging for graph coarsening.
Still, by considering both first-order proximity and second-
order proximity, our hybrid coarsening algorithm generates
an appropriate hierarchy of coarsened graphs. With the same
amount of training data, HARP(DW) always leads by at
least 3.0%. For HARP(LINE), it achieves a relative gain of
4.8% with 80% labeled data. For HARP(N2V), its gain over
Node2vec reaches 4.7% given 50% labeled nodes.

Citeseer. For CiteSeer, the lead of HARP(DW) on Macro
F1 score varies between 5.7% and 7.8%. For HARP(LINE),
its improvement over LINE with 4% labeled data is an
impressive 24.4%. HARP(N2V) also performs better than
Node2vec on any ratio of labeled nodes.
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Figure 6: Runtime analysis.

Scalability

We already shown that introducing HARP does not affect
the time complexity of the underlying graph embedding al-
gorithms. Here, we compare the actual run time of HARP en-
hanced embedding algorithms with the corresponding base-
line methods on all test graphs. All models run on a sin-
gle machine with 128GB memory, 24 CPU cores at 2.0GHZ
with 20 threads. As shown in Figure 6a, applying HARP typ-
ically only introduces an overhead of less than 10% total
running time. The time spent on sampling and training the
Skip-gram model dominates the overall running time.

Additionally, we learn graph embeddings on Erdos-Renyi
graphs with node count ranging from 100 to 100,000 and
constant average degree of 10. In Figure 6b, we can observe
that the running time of HARP increases linearly with the
number of nodes in the graph. Also, when compared to the
corresponding baseline method, the overhead introduces by
the graph coarsening and prolongation process in HARP is
negligible, especially on large-scale graphs.

Related Work

The related work is in the areas of graph representation
learning and graph drawing, which we briefly describe here.
Graph Representation Learning. Most early methods
treated representation learning as performing dimension re-
duction on the Laplacian and adjacency matrices (Belkin
and Niyogi 2001; Cox and Cox 2000; Tenenbaum, De Silva,
and Langford 2000). These methods work well on small
graphs, but the time complexity of these algorithms is too
high for the large-scale graphs commonly encountered to-
day.

Recently, neural network-based methods have been pro-
posed for constructing node representation in large-scale
graphs. Deepwalk (Perozzi, Al-Rfou, and Skiena 2014)
presents a two-phase algorithm for graph representation
learning. In the first phase, Deepwalk samples sequences
of neighboring nodes of each node by random walking on
the graph. Then, the node representation is learned by train-
ing a Skip-gram model (Mikolov et al. 2013) on the random
walks. A number of methods have been proposed which ex-
tend this idea. First, several methods use different strategies
for sampling neighboring nodes. LINE (Tang et al. 2015)
learns graph embeddings which preserve both the first-order
and second-order proximities in a graph. Walklets (Per-
ozzi et al. 2017) captures multiscale node representation on
graphs by sampling edges from higher powers of the graph

adjacency matrix. Node2vec (Grover and Leskovec 2016)
combines DFS-like and BFS-like exploration within the ran-
dom walk framework. Second, matrix factorization methods
and deep neural networks have also been proposed (Cao, Lu,
and Xu 2015; Ou et al. 2016; Wang, Cui, and Zhu 2016;
Abu-El-Haija, Perozzi, and Al-Rfou 2017) as alternatives to
the Skip-gram model for learning the latent representations.

Although these methods are highly scalable, they all rely
on optimizing a non-convex objective function. With no
prior knowledge of the graph, the latent representations are
usually initialized with random numbers or zero. With such
an initialization scheme, these methods are at risk of con-
verging to a poor local minima. HARP overcomes this prob-
lem by introducing a multilevel paradigm for graph repre-
sentation learning.
Graph Drawing. Multilevel layout algorithms are popular
methods in the graph drawing community, where a hier-
archy of approximations is used to solve the original lay-
out problem (Fruchterman and Reingold 1991; Hu 2005;
Walshaw 2003). Using an approximation of the original
graph has two advantages - not only is the approximation
usually simpler to solve, it can also be extended as a good
initialization for solving the original problem. In addition
to force-directed graph drawing, the multilevel framework
(Walshaw 2004) has been proved successful in various graph
theory problems, including the traveling salesman problem
(Walshaw 2001), and graph partitioning (Karypis and Ku-
mar 1998).

HARP extends the idea of the multilevel layout to neural
representation learning methods. We illustrate the utility of
this paradigm by combining HARP with three state-of-the-
art representation learning methods.

Conclusion

Recent literature on graph representation learning aims at
optimizing a non-convex function. With no prior knowledge
of the graph, these methods could easily get stuck at a bad
local minima as the result of poor initialization. Moreover,
these methods mostly aim to preserve local proximities in
a graph but neglect its global structure. In this paper, we
propose a multilevel graph representation learning paradigm
to address these issues. By recursively coalescing the in-
put graph into smaller but structurally similar graphs, HARP
captures the global structure of the input graph. By learn-
ing graph representation on these smaller graphs, a good
initialization scheme for the input graph is derived. This
multilevel paradigm is further combined with the state-of-
the-art graph embedding methods, namely DeepWalk, LINE,
and Node2vec. Experimental results on various real-world
graphs show that introducing HARP yields graph embed-
dings of higher quality for all these three methods.

In the future, we would like to combine HARP with other
graph representation learning methods. Specifically, as Skip-
gram is a shallow method for representation learning, it
would be interesting to see if HARP also works well with
deep representation learning methods. On the other hand,
our method could also be applied to language networks, pos-
sibly yielding better word embeddings.
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