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Abstract

Understanding politics is challenging because the politics
take the influence from everything. Even we limit ourselves
to the political context in the legislative processes; we need
a better understanding of latent factors, such as legislators,
bills, their ideal points, and their relations. From the mod-
eling perspective, this is difficult 1) because these observa-
tions lie in a high dimension that requires learning on low di-
mensional representations, and 2) because these observations
require complex probabilistic modeling with latent variables
to reflect the causalities. This paper presents a new model to
reflect and understand this political setting, NIPEN, includ-
ing factors mentioned above in the legislation. We propose
two versions of NIPEN: one is a hybrid model of deep learn-
ing and probabilistic graphical model, and the other model is
a neural tensor model. Our result indicates that NIPEN suc-
cessfully learns the manifold of the legislative bill’s text, and
NIPEN utilizes the learned low-dimensional latent variables
to increase the prediction performance of legislators’ votings.
Additionally, by virtue of being a domain-rich probabilis-
tic model, NIPEN shows the hidden strength of the legisla-
tors’ trust network and their various characteristics on casting
votes.

Introduction

Recent developments in machine learning have enabled a
deeper understanding of human behavior in diverse contexts.
These advances include divulging intentions and sentiments
in dialogs (Bertero et al. 2016); predicting purchases from
online markets (Chong et al. 2017); recommending movies
to friends (Shah, Rao, and Ding 2017); and discovering so-
cial network links between individuals (Guo, Zhang, and
Yorke-Smith 2015). The recent machine learning models
provide the contexts of these behaviors, which have been
regarded as the latent aspects of human behavior.

One latent modeling of human behavior can be a form of
complex Bayesian probabilistic models, a.k.a. probabilistic
graphical model (PGM). The modelers used graphical nota-
tions, embedding the probabilistic variables and their causal-
ities, to represent the key factors and their relations. For in-
stance, latent Dirichlet allocation (LDA) models the genera-
tive process of documents, i.e. the composition of topics at
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large, a main topic of documents, and a word selection when
describing a topic (Blei, Ng, and Jordan 2003).

Another effort in modeling the latent variable is improv-
ing the quality of the latent representation of the data. While
the above probabilistic models focused on the contextual
modeling, the latent variables reside in a high dimensional
and nonlinear space, so the learning of the latent variables
have been limited. For example, the stacked de-noising au-
toencoder (SDAE) (Vincent et al. 2010) learns this mani-
fold space through encoding the noised inputs into the low
dimensional latent representations; and reconstructing the
original inputs with the latent representations with neural
network layers. Further advances have made through casting
this autoencoding mechanism to the variational inference
approaches, and a variational autoencoder (VAE) (Kingma
and Welling 2014) optimizes the variational distribution of
the latent representations with neural networks.

Supported by the two research advances, one distinct re-
search direction has been merging the latent representation
learning and the probabilistic graphical model on human be-
havior. Collaborative deep learning (CDL) (Wang, Wang,
and Yeung 2015) is one example merging SDAE with a
probabilistic model of matrix factorization that often used
to explain and predict the human behavior of recommen-
dations. Whereas CDL gives a clear passway on how we
can further develop various models of human behavior with
support from the deep learning, different application do-
mains require different latent modeling, so the model struc-
ture needs to be further customized and expanded.

This paper introduces Neural Ideal Point Estimation Net-
work (NIPEN) which models the generative process of po-
litical voting by estimating ideal points in diverse legisla-
tive aspects with learning the low dimensional representa-
tions from neural networks. Specifically, we propose two
versions of NIPEN. The first version, NIPEN-PGM is a
hybrid model by representing the contextual causalities as
a PGM, and by learning the low dimensional representa-
tions with multi-layered perceptron (MLP) autoencoders,
i.e. SDAE and VAE. The second version, NIPEN-Tensor, is
a neural tensor model that substitutes the PGM part with the
neural tensor model. NIPEN-Tensor could be viewed as a
generalized version of NIPEN-PGM. NIPEN-Tensor mod-
els the legislative voting with the tensor composition and
the nonlinear operations between diverse legislative factors
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Figure 1: The summarized procedure of NIPEN. NIPEN predicts the votes with the combination of contents and network
analyses. We can interpret not only an individual legislator’s ideal points but also trust networks between legislators

while NIPEN-PGM assumes the marginalization and the lin-
earized operation in the same modeling part.

Second, NIPEN is the most comprehensive model in the
latent modeling of the political domain. Assuming that we
model a voting process of legislators, NIPEN is the first
model of unifying 1) the voting behavior, 2) the network in-
fluence between congressmen, 3) the political ideal point of
bills and congressmen, 4) the textual topic of bills, and 5) the
relative strength of network influence and ideal points when
casting a vote. Some of these latent variables have been seen
in other models, (Gerrish and Blei 2012; Gu et al. 2014;
Chaney, Blei, and Eliassi-Rad 2015), but not as the uni-
fied model to depict a whole political picture. Since di-
verse factors, such as the contents of the bill and the hu-
man relations, greatly influence the voting (Cohen and Mal-
loy 2014), an effective modeling of the legislative voting re-
quires an integrated model, such as NIPEN. We show that
NIPEN recorded significant performance improvements in
all metrics compared to existing models. We also show vari-
ous qualitative analyses that can only obtained via this com-
prehensive model. The entire procedures and analyses of
NIPEN is summarized by Figure 1.

Previous Research

Modeling Political Network and Ideal Points

Network analyses and ideal point estimation have been
widely studied in computer science and quantitative polit-
ical science for its importance. In the line of political net-
work analyses, most studies analyzed co-sponsorship data
(Faust and Skvoretz 2002; Fowler 2006). Faust and Skvoretz
(2002) clarified the topological structures in the network of
the U.S. Senate (1973-1974), and they found that the net-
work among U.S. Senator in 93rd Congress is O-star, I-
star and Trans structure (Faust and Skvoretz 2002). Fowler
(2006) inferred the relationship in U.S. Congress (1973-
2004) by measuring the centrality to find the most central
legislators (Fowler 2006). In the community of ideal point
estimation, Poole and Rosenthal (1985) proposed a nonl-
inear logit model to account for political choices of legis-
lators (Poole and Rosenthal 1985). However, it was a one-

dimensional estimation, and the analysis could not identify
what the ideal dimension stands for. To overcome the lim-
itation, Clinton et al. (2004) proposed a multi-dimensional
ideal point estimation model, but these models still remained
at the simple logit model extensions (Heckman and Snyder
Jr 1996; Clinton, Jackman, and Rivers 2004).

With the advance of topic modeling, multi-dimensional
ideal point models were developed, and these models pro-
vide more accurate interpretations on the ideal points. Ger-
rish and Blei (2012) proposed an issue-adjusted model (Ger-
rish and Blei 2012) with the labeled LDA (Ramage et al.
2009), and Yupeng et al. (2014) proposed a topic-factorized
ideal point model (TFIPM) (Gu et al. 2014) with probabilis-
tic latent semantic analysis (PLSA) (Hofmann 1999) to esti-
mate the ideal points of legislators based on roll-call data.
Further extensions of TFIPM have made through includ-
ing available domain data. For instance, Islam et al. (2016)
proposed SCIPM by including co-sponsorship networks be-
tween judges in the supreme court (Islam et al. 2016). These
works have remained in the extension of the probabilistic
graphical model without the innovation from the deep learn-
ing community, which our work extends 1) the probabilis-
tic graphical model with variational autoencoders and 2) the
neural tensor model for the causality modeling of the leg-
islative voting.

Collaborative Filtering and Deep Learning

Collaborative Filtering is a recommendation algorithm that
considers the relationship between users and items (Koren,
Bell, and Volinsky 2009). One of representative approach is
a matrix factorization which factorizes the rating matrix as
user latent and item latent factors.Recently, the deep learn-
ing has initiated two theoretic developments. First, the ma-
trix factorization itself is a low-dimensional representation
method because of its latent vector learning, so does the au-
toencoding in the deep learning. For example, Sedhain et
al. (2015) proposed Autorec (Sedhain et al. 2015), a basic
autoencoder based CF algorithm, and Autorec outperforms
other state-of-the-art MF algorithms like LLORMA (Lee et
al. 2013). Wu et al. (2016) expand Autorec by concatenating
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a user latent variable to the rating input information in the
encoder part of Autorec (Wu et al. 2016). Li et al. (2015)
adopted two autoencoders corresponding to users and items
(Li, Kawale, and Fu 2015), and they showed the interac-
tion mechanism between the two autoencoders by using the
marginalized SDAE (Chen et al. 2012). Second, the matrix
factorization is related to the low-dimensional feature rep-
resentation by adding the representation of the model as the
distilled version of the side information. For instance, Wang
et al. (2015) proposed a collaborative deep learning (CDL)
which combines SDAE with MF (Wang, Wang, and Yeung
2015). Furthermore, Ying (2016) proposed a model of col-
laborative deep ranking which combines ranking with algo-
rithm and SDAE (Ying et al. 2016). Wang et al. (2017) pro-
posed the relational deep learning with SDAE to link predic-
tion between items (Wang, Shi, and Yeung 2017).

Method
This section introduce the detailed descriptions of NIPEN-
PGM and NIPEN-Tensor in turn.

NIPEN with Probabilistic Graphical Model and
Autoencoders

Figure 2 describes the model structure of NIPEN-PGM. We
start the detailed description from the bill low dimension
modeling part, which is the bill plate with the d ∈ D sub-
script. We apply either VAE or SDAE to learn the low di-
mensional representation, or topic, of zdk1 with the observed
bill’s text wdv . zdk can be extracted through the probabilistic
encoder, qφ with parameter φ and decoder, pθ with parame-
ter θ. The bill’s latent representation has two components:the
bill’s topic proportion zdk and the latent offset ξdk, and we
model the combination of the two component as the below.

ydk = ξdk + zdk, ξkd ∼ N(0, λ−1
y )

Since the bill itself and the bill’s text may have two different
latent variables, ξdk becomes the offset between the bill’s
latent representation and the bill’s topic proportion.

From the defined bill’s latent representation ydk, we
model how the bill’s latent representation generates the vot-
ing observation rud. Here, u ∈ U is the dimension of the
legislators. We assumed that a legislator cast votes consid-
ering three latent factors: the bill’s latent representation ydk,
the bill’s ideal point adk, and the legislator’s ideal point xuk.

adk ∼ N(0, λ−1
u ), xuk ∼ N(0, λ−1

u )

Now, we define NIPEN-PGM without the network factor.
This voting procedure is modeled as Eq. (1) where ηd is a
bias value of a legislative bill, and σ is a sigmoid function.
Eq. (1) is designed to increase the probability of voting YEA
when the ideal points of the bill and the legislator have the
same sign; and when an ideal-aligned dimension of the ydk
is high. Additionally, ηd indicates whether the bill is more
broadly accepted or not, regardless of ideal points.

p(rud = 1) = σ(
K∑

k=1

ydkadkxuk + ηd) (1)

1d, u, and k mean each document, legislator, topic respectively.
Small subscripts indicate the row and column index in order.

Legislator
Ideal points

Legislator
Network
Strength

Latent of 
Bill

Bill
Ideal points

Legislative
Bill

Voting

Figure 2: Graphical model representation of NIPEN-PGM

Finally, we add the network component to NIPEN-PGM.
The interest of a particular legislative group could be an im-
portant factor in the voting process. Following this impli-
cation, we modeled the network between two legislators as
below. Before the network modeling, we limited the network
influence between the legislators sharing the same term, and
this neighbor set, Iu, is defined as a neighborhood of legis-
lator, u.

τuu′ ∼ N(0, λ−1
τ ) αu ∼ N(0, λ−1

α ) βu ∼ N(0, λ−1
α )

The legislator u’s voting is affected by two terms. The first
term is the ideal alignment modeled in Eq. (1). The second
term is the voting record of the neighbor legislator, ru′d, and
the second term is also weighted by the network strength,
τuu′ , between the two legislators. Since this is a linear sum-
mation, τuu′ will model the degree of voting agreement be-
tween two legislators. These two terms are unified with scal-
ing parameters αu and βu. The purpose of modeling αu and
βu is analyzing whether a certain legislator is influenced
more either from the bill or from the network in casting
votes. Eq. 2 is the overall voting formulation of NIPEN-
PGM.

p(rud = 1) = σ(αu(
∑
k

ydkadkxuk + ηd)

+ βu(
∑
u′∈Iu

τuu′ru′d))
(2)

NIPEN with Neural Tensor Model

Existing models, including NIPEN-PGM, do not directly
model the relationships between the topics, which means
that there is no cross-operiation between the dimension of
K. Some cases, i.e. correlated topic model (Lafferty and Blei
2006), model the correlation between topics via the logistic
normal distribution, but this is not an operation modeling of
topic influences, rather the variable modeling of topic co-
variance. The recent introduction of neural tensor models
(Socher et al. 2013) enable the cross-operations between the
latent topic dimension. This topic cross-operation can model
the legislator’s ideal point non-linear influences when two
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Figure 3: Neural network view of NIPEN-Tensor. The con-
tents part is connected with the blue line (with content scal-
ing parameter αu ), and the network part is connected with
the purple line (with the network scaling parameter βu ).

topics are combined within a bill. Here, we propose NIPEN-
Tensor to incorporate the cross-topic influence in casting a
vote, which could not be modeled in NIPEN-PGM. NIPEN-
Tensor and NIPEN-PGM are similar in the parts of docu-
ment and influence network modeling. The only different
part is the voting decision modeled as Eq. 2 which multiplies
the factors per a topic and marginalizes. NIPEN-Tensor con-
siders that the multiplication per a topic should be changed
to consider the nonlinear effect from the topic set, not a sin-
gle topic. Therefore, we represent the previous topic-wise
multiplcaiton of ydkadkxuk as a tensor E, and this tensor
still treats the topic dimension to be independent. Then, we
apply a fully-connected layer to cross-operate the topic di-
mension of E, and the neural network has C that is the out-
put of the cross-operation. The overall structure and formu-
lation for the NIPEN-Tensor are shown in Figure 3 and Eq.
3, respectively.

Eudk = xukydkzdk

Ẽudl = tanh(
∑
k

EudkW
(T1)
kl + b

(T1)
l )

Cud =
∑
k

ẼudlW
(T2)
l1 + ηd

Nud =
∑
u′∈U

τuu′vu′d

p(rud = 1) = σ(αuCud + βu

∑
u′∈Iu

Nu′d)

(3)

W (T1), b(T1),W (T2) are weights and biases applied to Eudk,
Ẽudl tensor. In particular, W (T1) ∈ RK×K models the cor-
relation between topics, and W (T2) ∈ RK×1 models the
influence of each topic on the voting. Since the signs of
xuk, ydk, and adk are important, we use tanh instead of
ReLU (Rectified linear unit) to transform the outputs non-
linearly.

Parameter Inference of NIPEN

The parameters of both NIPENs are enumerated in the pre-
vious section, and we learn the parameters in two folds:
learning the autoencoder to represent the bill’s topic and
the CF, alternatively. The first set of parameters related
to autoencoders is ψ(1) = (θ, φ); and the second set
of parameters related with the legislative-CF is ψ(2) =
(y, a, η, x,W (T1),W (T2), b(T1), τ, α, β).

The overall inference algorithm of both NIPENs fol-
lows the maximization of variational evidence lower bound
with two assumptions. Following CDL, the first assump-
tion is connecting the autoencoder and CF through ξ, and
the strength is controlled by the variance of ξ, which is λy .
When learning ψ(1), we apply the stochastic gradient varia-
tional Bayes (SGVB) estimator.

Second, we assumed that the variational distribution of
ψ(2) as a point mass for simplicity, so the parameters of
the variational distribution are updated by each casted vote
record, which is traditional Bayesian belief updates. Specifi-
cally, the likelihood of the posterior is presented as the lower
bound in the below. Then, the lower bound, which has real-
ized values of qφ(z|w), pθ(z) and an observed input, has
only ψ(2), so the gradient method can find the maximum a-
posteriori, or MAP, of ψ(2). As a summary, the objective
function of both NIPENs is specified as follows:

LNIPEN = −DKL(qφ(z|w)‖pθ(z)) + 1

L

L∑
l=1

log pθ(w|zl)

+
λf

2

∑
(u,d),rud �=0

1 + rud
2

log p(rud = 1)

+
λf

2

∑
(u,d),rud �=0

1− rud
2

log p(rud = −1)

− λy

2

D∑
d=1

‖yd − zd‖22 −
λu

2
(‖a‖2F + ‖x‖2F )

− λτ

2
(‖τ‖2F )−

λα

2
(‖α‖22 + ‖β‖22)

Similar to (Wang and Blei 2011; Wang, Wang, and Yeung
2015), the parameters related with the autoencoder and the
legislative-CF are infered by coordinate ascents which maxi-
mizes LNIPEN . For legislative-CF related parameters ψ(2),
we take the gradient of LNIPEN w.r.t each parameters given
the current θ and φ. Given the legislative-CF related param-
eters ψ(2), we infer the autoencoder related parameters by
computing ∇ψ(1)LNIPEN . We utilized the Tensorflow li-
brary (Abadi et al. 2016) to optimize the parameters.

NIPEN-PGM and NIPEN-Tensor are only different in the
vote casting process, and the related term in the objective
function is the third and the fourth terms with log p(rud =
1). These terms could be computed as the conventional gra-
dient descent in two variants of NIPEN, so there is no change
in the learning mechanism.

In the original definition, the network, τ , is a |U |-by-|U |
matrix, and the number of parameters becomes large given
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O(U2). To reduce the squared complexity, τ is approxi-
mated by the product of τ̃1 and τ̃2 where τ̃1 ∈ R

U×G, τ̃2
∈ R

G×U . We assume that τ̃1 and τ̃2 are not related. G can
be interpreted as the number of groups containing the legis-
lators. This approximation results in O(GU) for the network
parameter inference.

Table 1: Attributes of Politic2013 and Politic2016 dataset

Politic2013 Politic2016
# of legislators (|U |) 1,540 1,537

# of bills (|D|) 7,162 7,975
# of votings (|D|) 2,779,703 2,999,844

# of House 1,299 1,266
# of Senator 241 271

# of Republican 767 778
# of Democrat 767 752

# of unique word (|V |) 10,000 13,581

Average # of unique word
for each bill (

∑
d,v(Iwdv>0)

V )
192.77 378.66

# of bills less than
10 unique words 65 0

Period 1990-2013 1989-2016
Source THOMAS GovTrack

Data type 1 (YEA), -1 (NAY)

Results

Datasets on Political Ideal Points

We used two roll-call datasets2. Table 1 provides the de-
scriptive statistics of the two datasets: Politic2013 and
Politic2016. Politic2013 limits the number of a unique word
to 10,000, and there are 65 bills which have less than ten
words, while Politic2016 chooses 13,581 unique words, and
there are no bills with less than ten words. Politic2013 is a
more sparse dataset than Politic2016 in the ratings and the
vocabulary sizes.

Baselines and Implementation Details

The variations of NIPEN were compared to five baseline
models as follows:
• TFIPM: Topic Factorized Ideal Point estimation Model

(Gu et al. 2014) is specialized in politics to analyze the
roll-call data.

• Autorec: A simple autoencoder model which is utilized to
predict the ratings. Autorec (Sedhain et al. 2015) encodes
and reconstructs the rating matrix. We used Item-based
Autorec.

• Trust SVD: Trust SVD (Guo, Zhang, and Yorke-Smith
2015), a type of trust-based matrix factorizations, is built
on SVD++ with trust information.

• CDAE: Collaborative Denoising Autoencoder (Wu et al.
2016) used a denoising autoencoder with user latent vari-
ables.
2For the research community, we released the dataset on

https://github.com/gtshs2/NIPEN (Politic2013 was collected from
(Gu et al. 2014))

• CDL: Collaborative Deep Learning (Wang, Wang, and
Yeung 2015) used the deep learning and the CF, jointly.
CDL improves performance by using document informa-
tion additionally, and CDL uses SDAE to learn document
manifold.

Quantitative Evaluations

We performed the five-fold cross-validation to quantita-
tively evaluate the variations of NIPENs, and the perfor-
mance measures are RMSE, MAE, accuracy, and nega-
tive average log-likelihood (NALL) measures. We compared
nine models: five baseline models in section 4.2, and four
NIPEN variations, which are NIPEN-PGM(SDAE), NIPEN-
PGM(VAE,approx.), NIPEN-PGM(VAE), and NIPEN-
Tensor. NIPEN-PGM has three variants by choosing either
SDAE or VAE as the autoencoder for the text modeling, and
by choosing either using the whole matrix for the influence
or the low-rank approximated matrix of the influence.

Table 2 statistically confirms that the best performance
model in every metric is always a variation of NIPEN, which
is confirmed with statistical significance. In detail, first,
we compare NIPEN-PGM(VAE) and NIPEN-PGM(SDAE),
and their performance gap is larger in Politic2013 than in
Politic2016 which is a relatively sparse setting as shown
in Table 1. We conjecture that NIPEN-PGM(VAE) is bet-
ter in handling the sparse dataset than NIPEN-PGM(SDAE).
Second, NIPEN-Tensor is a model that considers the cor-
relation between topics, and NIPEN-Tensor may have a
better performance when a bill’s text has multiple topics
with complex and rich textual information. As discussed
in Section Datasets on Political Ideal Points, Politic2016
has richer textual information than Politic2013, and we con-
jecture that this is the reason why NIPEN-PGM(VAE) in
Politic2013 and NIPEN-Tensor in Politic2016 show better
performances. Third, while the accuracy improvement is rel-
atively small, the improvements on other metrics, partic-
ularly RMSE and MAE, are relatively large. Already, the
baseline models achieve the accuracy higher than 95%, so
the accuracy improvement could seem minimal. However,
our likelihood estimation of YEA and NAY is considerably
improved given the RMSE and the MAE improvement.

Qualitative Evaluations

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
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Figure 4: Individual legislator’s ideal points for each topic

2415



Table 2: Quantitative evaluation on Politic2013 and Politic2016 datasets. Two-standard deviation is shown in parentheses

Politic2013 Politic2016
RMSE MAE Accuracy NALL RMSE MAE Accuracy NALL

Trust SVD 0.2253
(±0.0007)

0.1399
(±0.0011)

0.9408
(±0.0003)

0.1866
(±0.0011)

0.2168
(±0.0011)

0.1353
(±0.0010)

0.9463
(±0.0009)

0.1782
(±0.0015)

Autorec 0.2110
(±0.0099)

0.0975
(±0.0136)

0.9411
(±0.0056)

0.1466
(±0.0177)

0.2031
(±0.0015)

0.0886
(±0.0110)

0.9454
(±0.0007)

0.1349
(±0.0125)

CDAE 0.2059
(±0.0007)

0.0831
(±0.0009)

0.9428
(±0.0006)

0.1450
(±0.0009)

0.1977
(±0.0037)

0.0802
(±0.0052)

0.9475
(±0.0023)

0.1357
(±0.0046)

TFIPM 0.1872
(±0.0002)

0.0682†
(±0.0002)

0.9526
(±0.0003)

0.1213
(±0.0007)

0.1794
(±0.0010)

0.0625†
(±0.0006)

0.9566
(±0.0005)

0.1121
(±0.0016)

CDL 0.1834†
(±0.0008)

0.0786
(±0.0019)

0.9554†
(±0.0004)

0.1147†
(±0.0018)

0.1780†
(±0.0013)

0.0769
(±0.0012)

0.9583†
(±0.0008)

0.1106†
(±0.0017)

NIPEN-
PGM(SDAE)

0.1801**
(±0.0014)

0.0591**
(±0.0012)

0.9566**
(±0.0006)

0.1155
(±0.0018)

0.1779
(±0.0005)

0.0560**
(±0.0004)

0.9581
(±0.0003)

0.1173
(±0.0015)

NIPEN-
PGM(VAE,

approx.)

0.1804
(±0.0089)

0.0611*
(±0.0065)

0.9565
(±0.0047)

0.1165
(±0.0086)

0.1791
(±0.0076)

0.0599
(±0.0057)

0.9571
(±0.0039)

0.1152
(±0.0070)

NIPEN-
PGM(VAE)

0.1753**
(±0.0007)

0.0588**
(±0.0008)

0.9587**
(±0.0006)

0.1075**
(±0.0011)

0.1753**
(±0.0017)

0.0570**
(±0.0012)

0.9590**
(±0.0010)

0.1112
(±0.0024)

NIPEN-
Tensor

0.1818**
(±0.0008)

0.0663**
(±0.0003)

0.9556**
(±0.0003)

0.1155
(±0.0020)

0.1729**
(±0.0015)

0.0608**
(±0.0006)

0.9600**
(±0.0008)

0.1057**
(±0.0022)

Improvement 4.41% 13.78% 0.35% 6.27% 2.87% 10.40% 0.18% 4.43%
NALL : Negative Average Log Likelihood
Improvement : Relative improvement of the best version of NIPEN compared to the best model, which is marked by †, among the baselines
P ∗ < 0.05;P ∗∗ < 0.01 (Student’s one-tailed t-test against the † model)

Table 3: Selected top-five words for each topic. The number
of listed topics was set to ten.

Politic2013 Politic2016
# of legislators (|U |) 1,540 1,537

# of bills (|D|) 7,162 7,975
# of votings (|D|) 2,779,703 2,999,844

# of House 1,299 1,266
# of Senator 241 271

# of Republican 767 778
# of Democrat 767 752

# of unique word (|V |) 10,000 13,581

Average # of unique word
for each bill (

∑
d,v(Iwdv>0)

V )
192.77 378.66

# of bills less than
10 unique words 65 0

Period 1990-2013 1989-2016
Source THOMAS GovTrack

Data type 1 (YEA), -1 (NAY)

In addition to the quantitative results, we interpret the la-
tent variables of NIPEN-PGM(VAE) on Politic2016. First,
to comprehend the dataset and the qualitative results, we
computed the word-topic matrix from well-learned VAE
variables, ψ1, as shown in Table 3. This table provides a
snapshot of topics in the bills. Then, we relate this topic to
the bill’s ideal points, adk. The latent dimension, k, becomes
the common dimension of an ideal point value and a topic
weight for each topic in the bill. Figure 5 shows an exam-
ple of the topic weight as the bar chart and the ideal point
value as the line chart. The illustrated bill, or H.Res.794
(114th), has the largest absolute value, |adkz̃dk| in a ’Busi-

ness and Finance’ topic where z̃dk denotes the normalized
zdk. This bill’s ideal point is correlated with the legislator’s
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Figure 5: Topic proportion and ideal points of H.Res.794
(114th) bill

ideal point, xuk, to generate the vote records. Here, the di-
mension, k, is the same latent dimension of the topic in Ta-
ble 3, and we provide the scatter plot of the legislator’s ideal
points per topic in the Figure 4. The prior mentioned bill
(H.Res.794 (114th)) considers the appropriations for finan-
cial services and general government, and the major topic
is Business and Finance, and the bill’s ideal point in Busi-
ness and Finance is -1.217. Together, the vote casting will
be determined by the legislator’s view on Business and Fi-
nance, and this topic shows the greatest disagreement be-
tween the Republicans and the Democrats according to the
Figure 4. In the real world, the voting results were same as
expected: 1) the voting was very partisan, 92.2% Republican
voted YEA and the 90.3% Democrat voted NAY. The sec-
ond qualitative interpretation focuses on the legislator’s net-
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Figure 6: Trust network between legislators

work. We selected 12 legislators who have either strongly
positive or negative relationships with each other, shown
in the Figure 6. In general, the legislators have a strong
positive relationship when they have the same district and
the party. Among the top-five positive relationships, four of
them have the same party and the same district, i.e. ’Thomas
E. Petri↔Jim Sensenbrenner’, ’Nick J. Rahall II→Robert
E. Wise’, and ’Nick J. Rahall II→Alan B. Mollohan’3. The
closest relations are ’Thomas E. Petri’ and ’Jim Sensenbren-
ner’. They were both republican representatives from Wis-
consin, and they share similar voting patterns. They have
voted 6,288 times for the same bill, and the 5,764 votes
were same (91.6%). Especially, they voted NAY for H.R.730
(111th) which is a ”suspension of the rules”, and 397 legis-
lators votes YEA.

The third qualitative analysis concentrates on the inter-
action between the contents and the network parts. We
used two scaling variables αu and βu, which controls the
strengths of contents factor and network factor, respectively.
Table 4 shows the top-five legislators who were affected by
either contents or network factors. Since the variations of
NIPEN is an integrated model of network modeling as well
as the textual bill modeling, the NIPENs should better per-
form than the baseline models, i.e. CDL, which only models
the text, and Figure 7 confirms this hypothesis.

Ralph 
M. Hall

Nick J. 
Rahall II

Peter A. 
DeFazio

Don Young Jim 
Sensenbrenner

0.91

0.92

0.93

0.94

0.95

0.96

A
cc

ur
ac

y

CDL
NIPEN-SDAE
NIPEN-VAE (approx.)
NIPEN-VAE
NIPEN-Tensor

Figure 7: Accuracy of top five legislators who are affected
by network factor

3τuu is asymmetric matrix. arrow(’→’) indicates the direction
of the trust

Table 4: Top-five legislators who are affected by contents or
network factors a lot. The scaling variable (αu for contents
based, and βu for network based), political party, and district
of the member are indicated in parentheses.

Contents based Network based

1 Ron Paul Ralph M. Hall
(0.260, R, TX) (0.304, R, TX)

2 Virgil H. Goode Nick J. Rahall II
(0.220, R, VA) (0.250, D, WV)

3 Dennis J. Kucinich Peter A. DeFazio
(0.218, D, OH) (0.247, D, OR)

4 Henry Cuellar Don Young
(0.198, D, TX) (0.228, R, AK)

5 Walter B. Jones Jim Sensenbrenner.
(0.195, R, NC) (0.227, R, WI)

Conclusion

We proposed two versions of machine learning models,
NIPEN-PGM and NIPEN-Tensor, to analyze the ideaology
in the legislation process. The variations of NIPEN show the
state-of-the-art performance in all measures on Politic2013
and Politic2016. Furthermore, NIPEN provides various in-
terpretations in why YEA or NAY is casted by illustrating 1)
the ideal point estimation of individual legislators and bills;
2) the trust network between legislators; and 3) the content
and network influence for each legislator. These supervised
and unsupervised tasks could be critical insights into quan-
titatively understanding politics in the legislative process.
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