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Abstract

Recent face composite and synthesis related works have
shown promising results in generating realistic face images
from deep convolutional networks. However, these works ei-
ther do not generate consistent results when the constituent
patches contain large domain variations (i.e., from face and
sketch domains) or cannot generate high-resolution images
with limited facial patches (e.g., the inpainting approach
tends to blur the generated region when the missing area is
more than 50%). Motivated by the mental imagery and sim-
ulation in human cognition, we exploit the potential of deep
learning networks in filling large missing region (e.g., as high
as 95% missing) and generating realistic faces with high-
fidelity in cross domains. We propose the recursive generation
by bidirectional transformation networks (r-BTN) that recur-
sively generates a whole face/sketch from a small sketch/face
patch. The large missing area and domain variations make it
difficult to generate satisfactory results using a unidirectional
cross-domain learning structure. We explore that the bidirec-
tional transformation network can lead to the consistent result
by minimizing the forward and backward errors in the cross-
domain scenario. On the other hand, a forward and backward
bidirectional learning between the face and sketch domains
would enable recursive estimation of the missing region in
an incremental manner to yield appealing results. r-BTN also
adopts an adversarial constraint to encourage the generation
of realistic faces/sketches. Extensive experiments have been
conducted to demonstrate the superior performance from r-
BTN as compared to existing potential solutions.

Introduction

We start by asking an interesting yet challenging question,
“If provided with limited facial patches from sketch/face
domains where human beings may be able to generate a
real face image in brain (Kosslyn, Thompson, and Ganis
2006) as shown in Fig. 1, can advanced computer vision
techniques generate the whole face image?” Recently, sev-
eral face synthesis methods built on neural networks have
emerged (Zhang, Song, and Qi 2017a; Sangkloy et al. 2016).
These methods can generate face/sketch images based on
whole face information from one domain. However, how
to generate realistic faces/sketches that are consistent to the
given sketch/face patches is still a challenging task because
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Figure 1: Illustration of face composite based on cross-
domain patches and face synthesis from limited facial patch.

large missing area could lead to blurry generated images.
In addition, some existing methods (e.g., Photofit (Photofit
)) synthesize faces by stitching patches from cross domains
which deteriorates the consistency and photo-reality. It is
still unclear how to preserve the color/domain consistency
between patches with large domain variations.

In this paper, we study the above-mentioned problems
which would play a key role in many applications, such as
face image stitching, face blending, face editing, etc. To the
best of our knowledge, this work represents the first attempt
to cross-filling large missing area in both face and sketch
domains. Existing works that may potentially address this
problem are mainly in the perspectives of face/sketch syn-
thesis/transformation and image inpainting.

The face/sketch synthesis works (Wang and Tang 2009;
Tang and Wang 2003; Zhou, Kuang, and Wong 2012;
Song et al. 2014) synthesize target faces from the source do-
main through patch-wise searching of similar patches in the
training set. Without the generative capability, these meth-
ods fail to render reasonable pixels for large missing ar-
eas. The rapid development of generative adversarial net-
works (GANs) (Goodfellow et al. 2014) has shown impres-
sive performance in face generation (Radford, Metz, and
Chintala 2015; Zhang, Song, and Qi 2017a), domain trans-
formation (Zhu et al. 2016; Isola et al. 2016), and inpaint-
ing (Yeh et al. 2016; Pathak et al. 2016). However, gener-
ating faces from small patches in either single or cross do-
mains has not been explored. Intuitively, combining domain
transformation and inpainting works could be a potential so-
lution. However, with large missing area, the generated re-
sults tend to be blurred and may look unrealistic.

In this paper, we investigate the problem of cross-domain
face/sketch generation conditioned on a given small patch of
sketch/face. We assume that faces and sketches lie on high-
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dimensional manifolds I and S , respectively, as shown in
Fig. 2 (right). The given small sketch/face patch will ini-
tially deviate from the corresponding manifold due to large
amount of missing data. With the learned bidirectional trans-
formation network (BTN), i.e., f and F , the given patch will
be recursively mapped forward and backward between I and
S . Each mapping will yield a result progressively closing
in onto either the face or sketch manifold, and eventually
approaching the real whole face/sketch images as shown in
Fig. 2 (middle). An adversarial network is imposed on both
f and F , forcing more photo-realistic faces/sketches. The
rationale and benefit of the proposed r-BTN will be further
discussed.

This paper makes the following contributions: 1) We
tackle the challenging problem of face/sketch generation
from small patches, estimating large missing area based on
limited information while alleviating the blur effect suffered
by existing works. 2) We propose the recursive generation
by bidirectional transformation networks (r-BTN), which
learns both a forward and backward mapping function be-
tween cross domains to enable a recursive update of the gen-
erated faces/sketches for more consistent and high-fidelity
results even with large portions of missing data. 3) We fur-
ther exploit the capacity of r-BTN in fusing multiple patches
from multiple domains and multiple people (i.e., face com-
posite) to output a realistic and consistent face in a genera-
tive manner.

Related Works
We will discuss related works from three closely related ar-
eas, namely, face/sketch synthesis/transformation, image in-
painting, and face manipulation.
Face/Sketch Synthesis/Transformation related works
mainly fall into two categories: matching-based and
generation-based methods. Most face/sketch synthesis
works (Wang and Tang 2009; Zhang, Wang, and Tang 2010;
Zhou, Kuang, and Wong 2012) are matching-based, which
synthesize faces from best matched patches by searching
from the training dataset. For example, (Wang and Tang
2009) divided a given face/sketch image into patches, each
of which was matched to a series of similar patches from
the training dataset. Then, the patches in the target do-
main corresponding to the matched patches were stitched
via Markov random field to synthesize a transformed face.
The matching-based methods have two drawbacks: 1) The
matching procedure is time-consuming for a large training
dataset, and 2) they cannot effectively estimate the patch
content from missing area. The generation-based meth-
ods (Taigman, Polyak, and Wolf 2016; Isola et al. 2016)
are mainly developed from encoder-decoder networks and
adversarial generative networks. For example, (Isola et al.
2016; Zhu et al. 2017) proposed a general domain trans-
formation method through conditional generative adversar-
ial network. It could also be utilized for face/sketch trans-
formation. However, it is not trained for the purpose of
estimating missing areas. Moreover, to achieve bidirec-
tional face/sketch transformation, two transformation net-
works (i.e., face to sketch and sketch to face) need to be
learned independently.

Image Inpainting aims to fill in unwanted or missing part of
an image. Most inpainting methods (Efros and Leung 1999;
Shen and Chan 2002; Criminisi, Pérez, and Toyama 2004)
estimate the missing part based on surrounding pixels, and
therefore are not suitable for filling in large missing areas.
Although some recent works (Yeh et al. 2016; Pathak et al.
2016) claimed the ability of filling in up to 80% missing re-
gions, they tend to generate blurred results, which may be
with visible inconsistency between the given and estimated
areas. In addition, inpainting related methods train on ran-
domly masked inputs and perform filling in a single domain,
while the proposed work uses the whole face/sketch pairs in
training and perform cross-domain filling.
Face Manipulation works (Zhang, Song, and Qi 2017a;
Yan et al. 2016) could be a potential solution to the pro-
posed task because they can generate faces by manipulating
the latent variables. Given a small patch, they may search
the latent space for a best matched face. Thus, the gener-
ative model performs like matching-based methods which
may be time-consuming. A more efficient way is to min-
imize the error between the generated face and the given
patch. However, it cannot ensure consistent results because
only the patch location (where the error comes from) will be
updated regardless of its surroundings.

The Bidirectional Transformation Network

In this section, we first elaborate on the benefit of the pro-
posed BTN through a comparison with unidirectional trans-
formations. This is followed by a detailed description of the
training and testing stages of the proposed r-BTN. The train-
ing stage learns the bidirectional transformation between
the face and sketch domains using whole face/sketch pairs.
The testing stage recursively generates the whole face/sketch
from given small sketch/face patches.

The Bidirectional Network Structure

Assume a training set in I × S , where I and S denote the
face and sketch domains, respectively. The unidirectional
transformation, e.g., (Isola et al. 2016), learns a mapping
f : I → S which could be implemented by encoder-decoder
networks, as shown in Fig. 3 (left). The BTN, on the other
hand, simultaneously involves the forward mapping f and
backward mapping F : S → I, as shown in Fig. 3 (right).
The bidirectional transformation forms a closed loop where
the output of f serves as the input to F , and the output of
F serves as the input to f in the next iteration. The for-
ward transformation f may discard information in general
due to the domain difference (e.g., color information will be
discarded from I to S), but the backward transformation F
closes the loop by connecting the output from f in the S
domain and the original input in the I domain and gener-
ates an intermediate result in I where additional face infor-
mation (e.g., facial outline) has been estimated and the dis-
carded information (e.g., color) restored. The bidirectional
network structure enables the recursive update of the face
(from F ) and sketch (from f ), taking advantage of the pro-
gressively learned knowledge in both domains and generate
full face/sketch with high fidelity.
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Figure 2: Examples of recursive generation from small patches by the bidirectional transformation network. Left: Original
face/sketch and the corresponding input patches extracted from them. Inside of the dashed box demonstrates the generated
face/sketch at different iteration steps. Right: Illustration of transformation between the face and sketch manifolds I and S ,
respectively. The green dot denotes a given face patch. The red and blue arrows are the learned mapping f and F , respectively.
The red and blue dots are generated sketches and faces through corresponding mapping.
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Figure 3: Comparison of unidirectional and bidirectional
transformations between I and S domains. E and D are the
encoder-decoder networks. The patch (eyes) generates the
sketch, and then the sketch is transformed back where facial
outline has been estimated.

The effectiveness of the recursive bidirectional transfor-
mation between face and sketch domains is well demon-
strated in Fig. 2. In general, the missing area is roughly filled
at the beginning (iteration 1 and 2) although it is blurred.
Then, facial details are progressively enhanced (iteration 10)
and sharpened (iteration 20). Finally, a realistic face/sketch,
including reasonable hair style, is generated. Because of the
very limited information provided in the input patch, it is
difficult to generate a face/sketch exactly the same as the
original. However, the generated face/sketch still preserves
the pixel-level content of the given patch.

Training Stage

Fig. 4 illustrates the details of the BTN structure where the
mapping functions, f and F , are learned in a bidirectional
fashion instead of the commonly used unidirectional map-
ping.

Given the original face/sketch pair xI and xS , the follow-
ing transformations are performed,

x0
S = f(xI), x1

I = F (x0
S) = F (f(xI)),

x0
I = F (xS), x1

S = f(x0
I) = f(F (xS)).

The objective is to learn the bidirectional transformations
between I and S , so that any face/sketch pair could be

Loss

Loss Loss

Loss
Real

Fake

F

f

Figure 4: Training flow of the bidirectional transformation
network. xI and xS are the real face/sketch pair. Red and
blue arrows denote the transformation paths of xI and xS ,
respectively. The transformation functions f and F could
be encoder-decoder networks. Loss denotes the �1-norm.
The discriminator D is trained on real and generated (fake)
face/sketch pairs.

uniquely mapped forward and backward into another do-
main. To achieve invertible transformation, i.e., preserving
the identity of face and sketch during transformations, we
minimize the reconstruction error Lrec between real and
generated faces or sketches as Eq. 1.

Lrec =
1∑

i=0

(‖xI − xi
I‖1 + ‖xS − xi

S‖1
)
, (1)

where the �1-norm instead of the �2-norm is used to avoid
blurry results. Besides Lrec, an adversarial constraint is em-
ployed to encourage photo-realistic face/sketch pairs. The
discrimination loss can be written as

Ladv = Eω∈Ω [logD(ω)]− ExI∈I
xS∈S

[logD(xI , xS)], (2)

where

Ω =
{
(xI , x0

S)j , (x
1
I , x

0
S)j , (x

0
I , xS)j , (x0

I , x
1
S)j

}

= {(xI , f(xI))j , (F (f(xI), f(xI)))j ,
(F (xS), xS)j , (F (xS), f(F (xS)))j}

2429



indicates the fake face/sketch pairs, and j indexes the fake
pairs generated from the jth real pair in a mini-batch. Note
that only (xI , xS) is the real pair. Combining Eqs. 1 and 2,
the objective function is

min
f,F,D

Ladv + λLrec, (3)

where λ balances the adversarial loss and reconstruction
loss. In optimization, f , F , and D are updated alternatively.
The discriminator D is updated by minimizing Ladv . The
update of f and F is performed by

min
f

Eω∈Ωf
[logD(ω)] + λ

1∑

i=0

‖xS − xi
S‖1, (4)

min
F

Eω∈ΩF
[logD(ω)] + λ

1∑

i=0

‖xI − xi
I‖1, (5)

where

Ωf =
{
(xI , x0

S)j , (x
0
I , x

1
S)j

}

=
{
(xI , f(xI))j , (x0

I , f(x
0
I))j

}
,

ΩF =
{
(x0

I , xS)j , (x1
I , x

0
S)j

}

=
{
(F (xS), xS)j , (F (x0

S), x
0
S)j

}
,

and Ω = Ωf ∪ ΩF . Here, j is again the index of training
samples in a mini-batch.

Testing Stage

During testing, given an arbitrary patch from either domain,
a whole face from the other domain could be generated in
a recursive manner through the bidirectional transformation.
The testing flow is shown in Fig. 5, which demonstrates the

Real?

Figure 5: Testing flow of r-BTN, assuming a face patch pI
as the input. At step k, the generated face is xk

I . Replacing
the corresponding area of xk

I by the patch pI and transform-
ing xk

I to xk
S , we get a face/sketch pair

(
xk
I , x

k
S
)
. Then, this

pair is adjusted by the error back propagated from D as com-
paring to the output of real pairs. Finally, xk

S is transformed
back to the face domain, generating xk+1

I .

case of given a face patch pI . Similarly, if a sketch patch
pS is given, it will be fed to xS and similar testing flow can
be carried out to generate a whole face image. In this paper,
a patch is created through multiplying a whole face/sketch
by a mask M , e.g., pI = xI � M where � denotes the
element-wise multiplication.

The bidirectional transformation network structure en-
ables a recursive generation between sketches and faces.

Given the current result xk
I , the next generation xk+1

I can
be obtained by

xk
I ← xk

I � (1−M) + pI , (6)

xk
S ← f

(
xk
I
)
, (7)

xk
S ← xk

S − ∂D(xk
I , x

k
S)

∂xk
S

, (8)

xk+1
I ← F

(
xk
S
)
. (9)

In order to generate photo-realistic faces/sketches such
that the given patch and the estimated complement blend
together in a consistent fashion, we have applied two con-
straints during the recursive generation process. First, we
keep the given patch, pI , as the anchor that remains the
same across different iterations. In other words, pI directly
covers the corresponding area of the newly generated face
to explicitly preserve the given content (Eq. 6). Then, xk

I is
transformed to the sketch domain by f (Eq. 7). Unlike most
GANs related works which utilize D only in the training
stage, we utilize D as a second constraint in the testing pro-
cess to ensure realistic faces/sketches generation in each it-
eration such that small deviations get to be corrected instead
of accumulated through iterations.

Given a small patch, the testing stage needs multiple itera-
tions to gradually generate a whole face/sketch, as illustrated
previously in Fig. 2. In each iteration, backpropagating the
loss of D will enforce the photo-reality during the recursive
generation. In the case of Fig. 5, the backpropagation error
is used to adjust the generated sketch xk

S as shown in Eq. 8.
Finally, xk

S is mapped back to the face domain (Eq. 9), gen-
erating xk+1

I as an improved version of xk
I with more details.

Repeating this procedure, the large missing area can be filled
up gradually.

To illustrate the effect of the two constraints, i.e., the given
patch and the adversarial constraints, applied during the test-
ing stage, Fig. 6 shows the generated results with/without the
constraints. The given patch and the adversarial constraints
are denoted as “Patch” and “Adv”, respectively. It is interest-
ing to observe that the generated face/sketch without “Patch”
(the second and third columns) cannot preserve the identity
of the input patch, and those without “Adv” (the second and
forth columns) tend to yield unrealistic face/sketch (e.g., the
left ear location) or hair style (e.g., the extra hair below the
left ear in the fourth column). The results with both con-
straints obviously outperform the others.

Input patch No constraints Adv Patch Patch & Adv

Figure 6: Comparison of generated results with/without the
given patch (Patch) and adversarial (Adv) constraints.
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Experiment and Results

Data Collection

We collect 1,577 face/sketch pairs from the datasets
CUHK (Wang and Tang 2009), CUFSF (Zhang, Wang,
and Tang 2011), AR (Martinez and Benavente 2007),
FERET (Phillips et al. 2000), and IIIT-D (Bhatt et al. 2012).
Because the dataset with face/sketch pairs is limited, we
train a face to sketch transformation network based on
Pix2Pix (Isola et al. 2016) to generate sketches from faces.
We collect frontal face images with uniform background
and controlled illumination from datasets CFD (Ma, Cor-
rell, and Wittenbrink 2015), SiblingsDB (Vieira et al. 2014),
and PUT (Kasinski, Florek, and Schmidt 2008), as well as
from searching engines by keywords like “XXX University
faculty profile”. Finally, we obtain 3,126 face/sketch pairs,
from which 300 pairs are randomly selected as the testing
dataset.

Implementation Details

All the face/sketch images are cropped and well-aligned
based on the eye locations, and preprocessed to be uniform
white background. The transformations f and F are im-
plemented by the Conv-Deconv network. The discrimina-
tor D is implemented by the Conv network but adding a
fully-connected layer of single output with the sigmoid ac-
tivation function. In addition, the input layer is modified to
be 2562 × 6 because the inputs to D are image pairs. In-
spired by (Isola et al. 2016), each Conv layer is concate-
nated to its symmetrically corresponding Deconv layer, thus
more details bypass the bottleneck. In the training, we adopt
ADAM (Kingma and Ba 2014) (α = 0.0002, β = 0.5).
Because we utilize D to enforce realistic generations during
testing, an approximately optimal D is preferred. Therefore,
we update D three times for each update of f and F . The pa-
rameter λ in Eq. 3 is set to be 100. Details are shown in sup-
plementary materials. After 100 epochs, we could achieve
the results as shown in this paper.

During testing, given a small patch from either the face
or the sketch domain, it will be transformed recursively as
discussed in testing stage. Empirically, the generated images
will have most facial features filled quickly at the first five to
ten iterations and then tend to converge after 50 iterations.
The results shown in this paper are mostly obtained at the
100th iteration.

Qualitative Evaluation

Face Composite We explore the r-BTN to generate con-
sistent and realistic faces from multiple patches that may be
from two domains and multiple people. Examples generated
from multiple patches are shown in Fig. 7, demonstrating
the great versatility of r-BTN. We again observe the strong
consistency and fidelity between the generated face/sketch
pairs.

Face Synthesis from Limited Facial Patches The re-
sults generated by proposed r-BTN with respect to differ-
ent missing percentage are shown in Fig. 8. From the result,
it demonstrated that the proposed method cannot preserve

Figure 7: Examples of generated faces/sketches from multi-
ple patches, which are from different people and/or different
domains. Four examples are displayed in a 2-by-2 matrix.
In each cell, the original faces and sketches are given on the
left. The patches are extracted from where indicated by the
arrows. The right are generated face/sketch pairs.

the identity when the missing percentage is more than 70%.
This phenomenon is consistent with human cognitive. For
human beginnings, if only providing limited information, it
is still hard to imagine a unique result. We also compare the
proposed r-BTN with Pix2Pix (Isola et al. 2016) and image
inpainting (Pathak et al. 2016). The inpainting method com-
pared in this paper is modified from (Pathak et al. 2016) to
achieve cross-domain inpainting. Specifically, the inputs are
faces/sketches with random mask (20%∼80% masked), and
the outputs are the whole sketch/face. Pix2Pix and r-BTN
are trained with the whole face/sketch pairs. All methods
are trained on the same training dataset with the same pa-
rameter setting. The comparison results are shown in Fig. 9.
The Pix2Pix and inpainting methods train face-sketch and
sketch-face transformation networks independently, so the
identity between generated sketches and faces cannot be pre-
served. For example, comparing the two rows labeled with
“inpainting”, especially the 4th-6th columns, the sketches
seem female while the faces appear like male. In addition,
the inpainting results present apparent discontinuity between
the given patch and the estimated area. On the other hand,
the results from r-BTN demonstrate higher fidelity, better
consistency to given patches, and better identity preserva-
tion. More results are shown in supplementary materials.

Quantitative Analysis

Evaluation Metrics To numerically evaluate the qual-
ity of generated faces, we design the metric named “face
recognition rate (FRR)”. It evaluates whether the gener-
ated images present facial elements and geometric structure,
i.e., reasonable position of eyebrows, eyes, nose, lips, and
chin. We adopt the off-the-shelf face landmark detection
method (Kazemi and Sullivan 2014) to detect and localize
those facial elements. An unsuccessful detection indicates a
failure of face generation. Therefore, FRR is the ratio be-
tween the numbers of successfully detected and total gener-
ated faces. Fig. 10 (left) shows FRR of each method, com-
puted from 300 generated faces using patches with differ-

2431



�
��
��
�

��
��
� 
�!
"

	
�������� �
��������� 
��������� �
���������� �
��������� �
���������� �
������������
����������� �
���������� ���

!�
��
�

��$$����
 �!���"���

!�
��
�

�
��
��
�

$�
�"
��
� 
�!
"

Figure 8: Comparison in generating faces/sketches from patches with different missing percentage. The red boxes indicate the
given face/sketch patches. The rest rows are correspondingly generated sketches/faces.

ent missing percentages. We observe that when the missing
percentage is larger than 50%, Pix2Pix fails to generate rea-
sonable faces while inpainting and r-BTN maintain high and
similar FRR. However, we recall from Fig. 9 that inpainting
results are not photo-realistic as r-BTN although they are
both capable of preserving the facial structure.

Convergence of Recursive Generation Will the gener-
ated faces/sketches converge to a certain point? How many
iterations are sufficient to achieve a photo-realistic result?
This section mainly answers these two questions.

We first define the residual in the face domain between
subsequent iterations as rk+1 =

(
xk+1
I − xk

I
)
, where xk

I
and xk+1

I denote the kth and k+1th generated results. The
convergence is mainly evaluated by calculating the averaged
residual on testing samples (i.e., 300 samples generated with
different missing percentage) with respect to k as shown in
Fig. 10 (middle). However, the average residual is not suf-
ficient to demonstrate the convergence because some pixels
may significantly increase while the other decrease with the
same level. In this case, we calculate the averaged absolute
residual which illustrate the changing amplitude as shown in
Fig. 10 (right).

With more iterations, the averaged residual approaches
zero while the averaged absolute residual stabilizes at a
small value. This well demonstrates that the generated faces
are stable. In addition, from the experiments (e.g., Fig. 2
and 8), the generated faces/sketches will not significantly
change after 20 iterations. Therefore, we could empirically
conclude that the recursive generation will converge to cer-
tain face/sketch for a given patch.

Similarity/Diversity Evaluation Intuitively speaking, the
generated faces from the patches of the same person should
be similar. By contrast, patches from different persons are
supposed to yield diverse faces. To verify this property, we
collect 50 faces and pick patches of different size around the

eyes, the nose, and the mouth. The proposed r-BTN is then
applied to generate full faces from those patches. To mea-
sure the similarity/diversity between generated faces, we uti-
lize the pre-trained VGG-Face (Parkhi, Vedaldi, and Zisser-
man 2015) model to extract high-level features and compute
their Euclidean distance. We perform two comparisons: 1)
self comparison (similarity) and 2) mutual comparison (di-
versity), conducting on faces generated from patches of the
same and different persons, respectively. Fig. 11 (left) shows
the averaged distance and standard deviation with respect
to missing percentage. The blue circles shows the results of
self comparison, and the red triangles denote mutual com-
parison.

With lower missing percentage, e.g., 0.1 to 0.6, the gen-
erated faces preserve relatively high intra-class (same per-
son) similarity and inter-class (different persons) diversity.
As the missing percentage increases, the two curves eventu-
ally intersect, indicating the generated faces from very small
patches (e.g., 95% missing) have lost the identity of the
original face. Interestingly, we discover that the generated
faces from either the left or right eye of the same person
still tend to be more similar as compared to those gener-
ated from nose/mouth as illustrated in Fig. 11 (right). This
discovery is well in line with the quality of different bio-
metrics where studies have shown eyes to carry more valu-
able cues than nose or mouth in face recognition tasks. This
finding, from another perspective, demonstrates the high ef-
fectiveness of r-BTN in generating high-fidelity and realistic
faces/sketches.

Discussion and Future works

In this paper, we proposed and solved the challenging
task of cross-domain face generation with large missing
area. A novel recursive generation method by bidirectional
transformation networks (r-BTN) was proposed to achieve
high-fidelity and consistent face/sketch even with as large
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Figure 9: Comparison with other potential methods for filling large missing areas. The first row shows the input patches, and
the rest rows display the results from different methods. The percentage indicates missing proportion (missing area over image
area). Because Pix2Pix is for domain transfer rather than missing area filling, its results cannot compete with inpainting or
r-BTN. We show them here to provide the baseline of domain transfer methods in filling large missing areas.
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Figure 10: Left:Comparison of different methods on the pro-
posed metrics: FRR. Middle and Right: Convergence eval-
uation of the proposed r-BTN. Averaged absolute (middle)
and average (right) of residual with respect to iteration k are
shown at missing percentage of 95%, 80%, 60%, 40%, and
20%, respectively.

as 95% missing area. We demonstrated the effectiveness
of r-BTN by comparing to some potential solutions like
pix2pix and inpainting. However, r-BTN requires well-
aligned faces/sketches. Otherwise, the generated results may
not be visually pleasing because the network would fail
to localize facial components and thus missing their ge-
ometric structure. In the future, we plan to improve the
proposed r-BTN from four perspectives: 1) concatenating
a face calibration mechanism to r-BTN to battle against
the alignment problem, 2) extending this work to be un-
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Figure 11: Left: Evaluation of similarity/diversity with in-
creasing missing percentage. The bars indicate correspond-
ing standard deviation. Middle and Right: High-level feature
of generated faces at missing percentage of 10% and 95%,
respectively. There are three same markers for type (person),
denoting the generated faces from patches around left eye,
right eye, and mouth. Solid lines connect the faces gener-
ated from eyes, and the dashed lines connect to the faces
generated from mouth.

supervised like (Du, Abdalmageed, and Doermann 2013;
Taigman, Polyak, and Wolf 2016) to alleviate the require-
ment for paired dataset, 3) generalizing r-BTN as a frame-
work for cross-domain transformation, especially with large
missing area, and further evaluating the performance on
other datasets (Zhang, Song, and Qi 2017b), and 4) adpting
this for mobile network application (Li et al. 2016).
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