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Abstract

Deep supervised hashing (DSH), which combines binary
learning and convolutional neural network, has attracted con-
siderable research interests and achieved promising perfor-
mance for highly efficient image retrieval. In this paper, we
show that the widely used loss functions, pair-wise loss and
triplet loss, suffer from the trivial solution problem and usu-
ally lead to highly correlated bits in practice, limiting the per-
formance of DSH. One important reason is that it is difficult
to incorporate proper constraints into the loss functions under
the mini-batch based optimization algorithm. To tackle these
problems, we propose to adopt ensemble learning strategy for
deep model training. We found out that this simple strategy is
capable of effectively decorrelating different bits, making the
hashcodes more informative. Moreover, it is very easy to par-
allelize the training and support incremental model learning,
which are very useful for real-world applications but usually
ignored by existing DSH approaches. Experiments on bench-
marks demonstrate the proposed ensemble based DSH can
improve the performance of DSH approaches significant.

Introduction

The number of images on the Internet has been growing
rapidly in recent years, necessitating highly efficient index-
ing techniques to facilitate large-scale image retrieval. The
recent works have demonstrated that hashing is a powerful
technique for efficient and accurate image retrieval (Wang
et al. 2016). In particular, hashing transforms real-valued
image representations into binary hashcodes. Then, based
on the extremely fast basic CPU operations, like bit XOR,
the hamming distance between hashcodes can be obtained
with little time cost. In this way, linearly scanning the the
database is fast and the memory cost for storing the database
is low. Suppose we have 1 billion images and each im-
age is represented as a 128-bit binary sequence. It requires
just 16GB memory to load all images’ hashcodes and com-
puting the hamming distance between a query image and
all database images takes only a few seconds (Wang et al.
2015). Because of its outstanding efficiency and accuracy,
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Figure 1: The correlation matrix (absolute value) of hash-
code bits. Different hashcode bits are highly correlated.

hashing has been applied to many computer vision tasks, in-
cluding not only image retrieval, but also large-scale cluster-
ing (Gong et al. 2015), classification (Mu et al. 2014), and
re-identification (Zheng and Shao 2016).

Inspired by the great success of convolutional neural
networks (CNN) for many computer vision tasks (He et
al. 2016), the researchers have made attempt to combine
CNN with hashing (Lai et al. 2015; Liong et al. 2015;
Liu et al. 2016; Xia et al. 2014). In particular, by slightly
modifying the network structure of CNN, especially the out-
put layer, we can train a CNN model using the similarity su-
pervision as a very effective hashing model which takes the
raw image as input and outputs the hashcodes for this im-
age. Based on the power of CNN, the deep supervised hash-
ing (DSH) model can effectively exploit the semantic simi-
larity structure of images and produce better hashcodes than
non-deep hashing approaches. For example, Xia et al. (2014)
has shown that a simple and straightforward DSH model can
improve the mean Average Precision (mAP) over the state-
of-the-art non deep approaches by 15% (from about 35% to
about 50%) on CIFAR10 (Krizhevsky 2009). With elaborate
designs, the mAP achieves 60% and more (Liu et al. 2016).

Problem Statement

The extraordinary performance and a large number of
follow-up works (Lai et al. 2015; Liong et al. 2015; Liu et
al. 2016; Xia et al. 2014; Zhuang et al. 2016) motivate us to
closely investigate the properties of DSH. From the litera-
tures, we notice that the existing DSH can already yield good
results with short hashcodes, e.g., 8 to 24 bits. However, sig-
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nificantly increasing the hashcode length (say, to 128 bits)
can only lead to marginal performance gain while many non-
deep hashing approaches can be improved a lot, which vio-
lates the intuition that longer hashcodes can encode more
information such that the intrinsical similarity structure can
be better preserved. In practice, we sometimes need longer
hashcodes in order to improve the retrieval accuracy if larger
memory or faster computing devices are available. But it
seems to be difficult to obtain a better model by simply ap-
pending more output units in existing DSH approaches.

To make DSH more practical, it is worth investigating this
phenomenon while previous works paid little attention to it.
In this paper, we argue that the widely used loss functions
in DSH learning, pair-wise loss and triplet loss, are prone
to achieving trivial solution, which consequently leads to
highly correlated bits. Obviously, we cannot expect good
performance using highly correlated hashcodes. For exam-
ple, if all bits are totally (positively or negatively) correlated,
the 128-bit hashcodes will perform just like the 1-bit hash-
codes. This problem gets more serious for longer hashcodes.
To demonstrate it, we first train a DSH model using pair-
wise loss (Liu et al. 2016) or triplet loss (Lai et al. 2015).
Then the hashcodes for images are extracted. Now we can
compute the correlation between different bits. The correla-
tion matrices for different loss functions are shown in Figure
1. We also compute the mean Absolute Correlation for the
hashcodes:

mAC =
2
∑k

i=1

∑
j>i |Cij |

k(k − 1)
(1)

where k is the length of hashcodes and Cij is the correlation
coefficient between bit i and j. Obviously mAC ∈ [0, 1] and
a larger mAC indicates that the hashcodes have higher cor-
relation. From the figure we can evidently observe that hash-
codes are highly correlated even with 48 bits, and the mAC
values also validate the same point. Clearly, it is hard to en-
code more information by using the highly correlated hash-
codes as presented here. In this circumstance, it seems rea-
sonable that existing DSH approaches fail to achieve much
better results by simply increasing hashcode length.

Our Contributions

The problems are clear but the solution is not that trivial.
In non-deep hashing approaches, some extra constraints and
regularizations can be incorporated into the learning objec-
tive such that the learned hashcodes are less correlated, like
the orthogonality constraint and regularization. However, it
is not straightforward to apply these constraints and regu-
larizations to DSH because the mini-batch based optimiza-
tion algorithm is adopted for deep model training and the
model is not aware of the hashcodes of samples out of the
mini batch. In this paper, we propose a simple yet effective
learning strategy based on ensemble learning which learns
different bits using different training sets and models. We
found out that this simple strategy is capable of effectively
decorrelating different bits such that the learned hashcodes
are more informative, especially for long hashcodes. In this
way, given longer hashcodes, more information about the

data can be encoded such that more performance improve-
ment can be achieved. Theoretically, we make the following
contributions in this paper:

1. We show that the loss functions adopted by existing
DSH approaches, pair-wise loss and triplet loss, are prone
to trivial solution and produce highly correlated and redun-
dant hashcodes. In this circumstance, increasing the hash-
code length can only marginally improve the retrieval accu-
racy.

2. We propose a simple yet effective ensemble learning
based strategy which decorrelates bits and reduces redun-
dancy such that longer hashcodes can encode more informa-
tion, leading to better performance. To our knowledge, this
is the first work noticing the trivial solution and high corre-
lation problems in DSH and systematically solve them.

3. Our approach supports incremental learning while ex-
isting DSH approaches fail to do so. In particular, when new
labeled samples are given, or when longer bits are required,
e.g., we change the hashcode length from 48 to 64 because
better devices are given, existing DSH approaches have to
totally retrain a new hashing model for 64-bit hashcodes
with all training data. On the contrary, our approach only
needs to learn hashing functions for the extra 16 bits.

4. It is straightforward to parallelize the training which
makes the deep model training more efficient and cheap.

Related Work

By representing images as binary codes and taking advan-
tage of fast bit operations, hashing can reduce the memory
cost and accelerate the search speed with orders of mag-
nitudes. Earlier works mostly focused on data-independent
hashing, like Locality Sensitive Hashing (Gionis, Indyk,
and Motwani 1999) which adopts random splits to bina-
rize image features. Because no prior about the data is
taken into account, the data-independent approaches usu-
ally requires very long hashcodes for satisfactory perfor-
mance (Zhang et al. 2010). To design more effective hash-
codes, the researchers turned their focus to data-dependent
hashing which utilizes the data distribution information.
Some widely used priors include the variance of data (Gong
et al. 2013; Xu et al. 2013), manifold structure (Guo et al.
2017b; Liu et al. 2014; 2011), the cluster structure (He,
Wen, and Sun 2013), and etc. For image retrieval, the users
care more about the semantic similarity between images.
Therefore, many supervised hashing approaches are pro-
posed that use the semantic similarity (like the similarity
matrix) as supervision to guide the hashing function learn-
ing (Ge, He, and Sun 2014; Liu et al. 2012; Shen et al. 2015;
Zhang et al. 2014). Because the supervised knowledge is
available, the supervised ones yield better retrieval perfor-
mance, especially evaluated from the semantic perspective.

However, the retrieval accuracy of the aforementioned ap-
proaches is limited because they adopt the hand-crafted fea-
tures as input which fail to capture the semantic information
between them and dramatic appearance variations in real-
world images. Fortunately, the recent studies have demon-
strated that the convolution neural networks (CNN) (He et
al. 2016) can effectively extract the semantic information
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Figure 2: The basic architecture of DSH.

from images even with large variations. Inspired by the suc-
cess of CNN for some related tasks, many works combin-
ing CNN with hashing are proposed. By training CNN with
the supervised information, deep supervised hashing (DSH)
achieves promising retrieval accuracy. Xia et al. (2014) pro-
pose a simple CNN based hashing approach that has a dis-
joint learning procedure and only employs CNN as a map-
ping model. Despite its simplicity, it outperforms state-of-
the-art non-deep hashing approaches with significant mar-
gin. To make better use of the power of CNN, Lai et
al. (2015) propose an end-to-end architecture that simulta-
neously learns the feature mapping functions and the binary
codes which minimize the triplet loss. The results demon-
strate that the end-to-end learning is better than disjoint
learning. Liu et al. (2016) propose to consider the pair-
wise loss and the quantization loss during model learning.
Zhang et al. (2015) adopt the similarity regularized triplet
loss and achieve state-of-the-art performance for image re-
trieval. Generally, the DSH approaches have dominated the
leaderboard of hashing based image retrieval in recent years.
Please refer to (Wang et al. 2016) for more elaborate survey.

The Proposed Model

Trivial Solution and High Correlation

To clarify the problems, we firstly briefly introduce the
basic architecture of DSH, which is illustrated in Fig-
ure 2. Typically, there are three components in the net-
work modified from some well-established architectures,
like AlexNet (Krizhevsky, Sutskever, and Hinton 2012) and
VGG (Szegedy et al. 2015). The first component contains
the convolutional and pooling layers which adopt nonlin-
ear transformation to extract basic image features. The sec-
ond component consists of fully connected layers and hash-
ing/quantization layers which produce (approximate) binary
codes for images. The last component is the loss computa-
tion which computes the loss using the hashcodes and the
supervised information. Specifically, the supervised knowl-
edge is given as the semantic similarity matrix S where
sij = +1 or −1 indicating images Ii and Ij are similar or
not. The objective of DSH learning is to make similar im-
ages have similar hashcodes (small hamming distance) and
dissimilar images have dissimilar hashcodes (large hamming
distance). A simple loss function is pair-wise loss (Li, Wang,
and Kang 2016; Liong et al. 2015; Liu et al. 2016) direct

translating this objective as below:

J p =
∑

i,j
sijd(hi,hj) (2)

where hi,hj ∈ {−1, 1}k are the hashcodes of training im-
age Ii and Ij and k is the length of hashcodes (the num-
ber of output units in the hashing network). d(·, ·) denotes
a distance measure between hashcodes, such as squared Eu-
clidean distance d(hi,hj) = ‖hi − hj‖22 in (Liong et al.
2015; Liu et al. 2016). In addition, noticing that the retrieval
cares more about the ranking than the absolute distance,
ranking based loss functions are often used. The most pop-
ular one is triplet loss (Lai et al. 2015; Zhang et al. 2015)
which considers the relationship of a positive sample and a
negative sample to a target sample, which is defined as:

J t =
∑

i,p,n
d(hi,h

p
i )− d(hi,h

n
i ) (3)

where p and n denote a positive sample (sip = 1) and a
negative sample (sin = −1) to target image Ii respectively.

Trivial solution. Looking back to the network architec-
ture introduced above, we can notice an important property
about the hashcodes. After the final fc layer, the models to
generate each hashcode bit are independent to each other.
In fact, the last fc layer and the hashing layer are also fully
connected. Suppose the output of the last fc layer is gi, the
l-th bit is generated as hil = Q(giv

′
l), where Q is a quanti-

zation function like sign function, and vl are the connection
weights between the l-th hashing layer unit and all units of
the last fc layer. For l1 �= l2, because vl1 and vl2 are free
from each other, they can have totally different or identi-
cal values. It is not a critical issue for some other tasks like
classification because minimizing the loss functions will as-
sign proper values to them. However, for pair-wise loss and
triplet loss, the network favors to assign identical values to
them. The reason is not that clear, which is discussed below.

Firstly, we can see the loss functions in Eq. (2) and Eq. (3)
are bit-wise decoupled such that they can be divided into k
sub-problems. For example, the pair-wise loss with squared
Euclidean distance (Liu et al. 2016) can be rewritten as:

J p =
∑

i,j

sij‖hi − hj‖22 =
∑

i,j

∑

l

sij(hil − hjl)
2

=
∑

l

∑

i,j

sij(hil − hjl)
2 =

∑

l

J p
l

(4)

where J p
l =

∑
i,j sij(hil − hjl)

2 is the l-th sub-loss. After
training the DSH network by minimizing the loss J p, we
obtain the parameters vl and the sub-loss J p

l can also be
computed. Now let lm = argminlJ p

l . If we assign the pa-
rameters vlm to all other bits while fixing the previous lay-
ers, we can obtain a new network. Obviously, for this net-
work, we have J p

new = kJ p
lm

≤ ∑
l J p

l = J p
old. Clearly,

J p
new = J p

old if and only if J p
l = J p

lm
(∀l = 1, ..., k). In

this circumstance , if we have the optimal solution for one
bit, copying its solution to other bits leads to the global opti-
mum, which indicates the multi-bit model training problem
can be solved trivially by simply learning one bit and then
directly assigning its solution to all other bits. In practice, it
is an undesired and bad property for multi-bit hashcodes.
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Figure 3: Ensemble based DSH. Several training subsets are sampled from the original training set (different data). Each subset
is used to train a DSH sub-model producing k

m -bit hashcode(different models). To speed up the training and code generation,
we freeze the first few layers and share them among all sub-models. Each sub-model only needs to optimize its specific part.

The triplet loss has the same problem as the pair-wise loss.
In fact, Eq. (3) can also be rewritten in the same way:

J t =
∑

l

∑

i,p,n

(hil − hpl)
2 − (hil − hnl)

2 =
∑

l

J t
l (5)

Like the case of pair-wise loss, triplet loss also suffers from
trivial solution problem due to its bit-wise decoupled loss.

In non-deep hashing, it is easy to incorporate proper con-
straints or regularizations into the loss function, such as
the orthogonality constraint H′H = nIk or regularization
‖H′H−nIk‖2F on all bits to avoid the trivial solution. How-
ever, in DSH, the mini-batch based optimization algorithm
is adopted such that the network can see only a small batch
of data. In this way, it cannot compute the orthogonality loss
which needs all data to compute or backpropagate it.

High correlation. Eq. (2) and Eq. (3) are the simplest
loss functions. In practice, several works attempt to perform
a further nonlinear transformation on the distance. For ex-
ample, a distance margin can be incorporated. For pair-wise
loss, Liu et al.(Liu et al. 2016) reformulate Eq.(2) as below:

J p =
∑

sij=1

d(hi,hj) +
∑

sij=−1

max(0, λ− d(hi,hj)) (6)

where λ ≤ k is the margin parameter. The triplet loss can
also be reformulated using the margin (Lai et al. 2015):

J t =
∑

i,p,n

max(0, λ+ d(hi,h
p
i )− d(hi,h

n
i )) (7)

The nonlinear transformation can theoretically prevent the
learning from trivial solution. However, the model usually
achieve a near trivial solution at last, which appears to have
highly correlated hashcodes. As shown in Figure 1, the mAC
of 32-bit hashcodes is 0.52 with the margin based triplet
loss (Lai et al. 2015), and it gets larger for longer codes.

Ensemble based DSH

To address this issue, we propose an ensemble based strategy
for DSH learning. Inspired by the classifier ensemble (Diet-
terich 2000), we can consider three different ways to decor-
relate bits. The first is random initialization. Although the
global optimum for each bit should be identical, the deep
model adopts gradient descent for optimization such that
different initializations are likely to result in different lo-
cal optimum, which reduces the correlation between bits.
In fact, the existing DSH approaches benefit from the ran-
dom initialization and they perform well with short hash-
codes. However, when the hashcodes are too long (say, 128
bits), the random initialization does not work well, leading
to high correlation. The second is to use different training
data. This is widely used for classifier ensemble, including
many boosting algorithms. It is very easy to construct differ-
ent sub training sets for hashing model learning as hashing is
designed for large-scale problem such that there are always
sufficient training data. The third is to utilize different mod-
els. In DSH, we can achieve this goal by simply changing
the network architecture, like the number of fc layer units.

Based on the above discussion, we consider to use dif-
ferent training data and models, as illustrated in Figure 3.
Given a training set, we randomly sample m groups where
each group is utilized to train one model. As there are m
groups, each model only needs to output k

m bits. For exam-
ple, if our target is 128-bit hashcode, we can train m = 8
sub-models and each sub-model outputs 16 bits. Then we
can concatenate the 16-bit sub-hashcode produced by each
sub-model to obtain the final 128-bit hashcode for an image.

In addition, for each sub-model, we can slightly modify its
architecture. But we should notice that if we use m totally
different deep networks, generating the hashcodes for an
image will be computationally expensive because we need
to forward this image through m networks. In fact, as sug-
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gested by Yosinski et al. (Yosinski et al. 2015), the first few
convolutional layers of CNN mostly focus on the low-level
characteristics of images, such as corners and edges. There-
fore, it is reasonable to just use the pre-trained model pa-
rameters and freeze them because these low-level features
should be task independent. In this way, all sub-models can
share these layers to reduce computational cost. Only the last
few layers, such as the fc layers and the hashing layer which
are more related to the specific tasks, need further tuning by
its corresponding data group. It is also simple to change the
architecture of these layers. For example, we can reduce the
number of hidden units in a fc layer by half, or the number
of filters in the last convolutional layer by half, which can
respectively lead to different models. Obviously, the models
with different network architectures have different optimum
such that their hashcodes have less inter-group correlation.

Parallelization and Incremental Learning

Parallelization. We can notice that training the t-th sub-
model using the t-th data group has no influence on the other
m− 1 groups. So we can parallelize the model training and
train each sub-model independently. As a sub-model only
has k

m output units, which are far fewer than that of one
unified model as in existing approaches, and the training set
is also relatively smaller because we only sample a subset
from the training data, the training can converge faster. In
this way, the training procedure is somehow accelerated.

Incremental Learning. Incremental learning is very im-
portant in practice. For example, when some new training
samples are given, we can use it to update the hashing model.
However, existing DSH approaches have to use all training
data, including previous data and new data, to re-train the
whole model. If only new data is utilized, the model may
“forget” the previous knowledge. In the ensemble learning,
we can use the new samples as a data group and only up-
date one sub-model. In this way, the abundant knowledge
from previous training data can be maintained by the other
sub-models, and the new knowledge can be included by the
updated sub-model. In addition, if better computing devices
are available such that we can increase the hashcode length
for more accurate retrieval. Existing DSH approaches have
to re-train all bits from scratch while the proposed ensemble
based DSH only needs to train more sub-models and reuse
the previous ones. In this way, the previous knowledge and
sub-models can be fully reused to save the training expense.

Experiment

Datasets and Settings

CIFAR10 (Krizhevsky 2009). CIFAR10 has 10 kinds of ob-
jects such as “bird”, “ship”, and “frog”. For each category
there are 6, 000 images belonging to it. For this dataset, we
randomly sample 1, 000 images (100 images per category)
as the query set, and the remaining 59, 000 images form the
database. Moreover, in the database, we further randomly
sample 10, 000 images as training set for model learning.

Animals with Attributes (Lampert, Nickisch, and
Harmeling 2014). AwA dataset is collected from Web which
consists of 50 animal species. There are 30, 475 images in

AwA. We randomly sample 1, 000 images (20 images per
category) as the query set, and the remaining 29, 475 images
as database where 10, 000 images are used for training.

ImageNet (Russakovsky et al. 2015). ImageNet is a well-
known benchmark dataset for the Large Scale Visual Recog-
nition Challenge (ILSVRC). It has 1, 000 object categories
with about 1.2 million training images and 50 thousand val-
idation images. Following (Guo et al. 2017a), we randomly
select 100 categories which leads to a database with about
120 thousand images and a query set with about 5, 000 im-
ages. In this dataset, 10, 000 images (100 per category) are
randomly selected from the database for training models.

We adopt the widely used mean Average Precision
(mAP) as the numeric evaluation metric. We also report the
precision-recall curve to compare the retrieval performance.
Following the widely used setting in previous works (Guo,
Ding, and Han 2017; Liong et al. 2015; Liu et al. 2016; Xia
et al. 2014; Zhuang et al. 2016; Zheng, Tang, and Shao 2016;
Zheng and Shao 2016), a database image is considered as a
true positive of a query image if they share the same label.

Implementation Details

Our ensemble based DSH can be regarded as a general
framework such that it can be combined with previous DSH
approaches. In the experiment, we basically consider the
pair-wise loss (Liu et al. 2016) and the triplet loss (Lai et
al. 2015). To construct different data groups for training, we
adopt a random complementary sampling strategy. In partic-
ular, we randomly sample half of training data (5, 000 im-
ages in our experiment) for the first data group and then we
use the other half for the second group. Next, we again ran-
domly sample half of training data for the third group and the
other half for the fourth group. We continue the procedure
until m groups are obtained. In this way, we can guarantee
that all data are equally used for training for m/2 times and
each group can be as different from the others as possible.

In the experiment, we utilize the Caffe (Jia et al. 2014)
tool and we adopt AlexNet (Krizhevsky, Sutskever, and Hin-
ton 2012) pre-trained on ImageNet classification task as the
base network which has 5 convolutional layers (with ReLU
layers and pooling layers) and 2 fully connected layers. We
further add another hashing layer at the end of the network to
produce k-bit hashcodes. In fact, we can surely adopt more
complicated network such as ResNet (He et al. 2016). But
it is unclear whether the performance gain over the other
approaches is given by our method or a powerful network.
Hence, we adopt a relatively simple but effective network.

How Many Layers to Share?

As introduced before, the ensemble learning based DSH
needs to train m different sub-models where each produces
k
m bits. If all sub-models are totally different, the training
will be slow and generating hashcode for image is ineffi-
cient because we need to forward this image for m times.
One solution is to share some layers, especially the first few
layers between each sub-model. In this way, there will be
less parameters to learn such that the training can be accel-
erated, and the computation in the first few layers can be
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Table 1: mAP Comparison on benchmark datasets.
ImageNet CIFAR10 AwA

32 bits 64 bits 96 bits 128 bits 32 bits 64 bits 96 bits 128 bits 32 bits 64 bits 96 bits 128 bits

LSH 0.2350 0.3596 0.4172 0.4584 0.2553 0.2940 0.3224 0.3380 0.1870 0.2249 0.2617 0.2889

KSH 0.2976 0.3943 0.4472 0.4851 0.5080 0.5572 0.5666 0.5798 0.3279 0.3751 0.4089 0.4262

SDH 0.2804 0.3897 0.4592 0.5016 0.5140 0.5520 0.5644 0.5879 0.3279 0.3751 0.4089 0.4262

LFH 0.2349 0.3417 0.4105 0.4484 0.2665 0.3519 0.4128 0.4493 0.2420 0.2977 0.3472 0.3689

CNNH 0.4498 0.5038 0.5294 0.5380 0.4720 0.4990 0.5133 0.5370 0.4498 0.4831 0.4942 0.5099

DeSH 0.4651 0.5132 0.5287 0.5472 0.6390 0.6441 0.6473 0.6520 0.5174 0.5300 0.5347 0.5380

DNNH 0.4931 0.5343 0.5431 0.5576 0.6199 0.6317 0.6489 0.6531 0.5285 0.5484 0.5577 0.5607

DRSCH 0.4752 0.5277 0.5301 0.5399 0.6287 0.6326 0.6338 0.6390 0.5010 0.5075 0.5159 0.5190

Ours 0.4946 0.5631 0.5831 0.6156 0.6421 0.6622 0.6989 0.7051 0.5494 0.5804 0.5960 0.6078
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(a) 32 bits, mAC = 0.38
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(b) 64 bits, mAC = 0.52
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(c) 96 bits, mAC = 0.64
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(d) 32 bits, mAC = 0.73

 

 

0.0

 

0.2

 

0.4

 

0.6

 

0.8

 

1.0

(e) 32 bits, mAC = 0.17
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Figure 4: The correlation matrix and mAC values of (Lai et al. 2015) (the first row) and ours (the second row).

shared to improve generation speed. Clearly, there is a trade-
off between efficiency and accuracy. So we first investigate
the influence of the number of shared layers on the perfor-
mance. Here, we use the ImageNet for experiment and we
train 6 sub-models where each model produce 16-bit hash-
codes which leads to 96 bits in total. We present the results
in Table 2. Generally, we can observe that the results change
a little if we only fix the first 3 layers, which is consistent
with our intuition because the first few layers focus on the
low-level features, like edges and corners of images. More-
over, if some layers like conv5 are fixed, the retrieval per-
formance drops significantly because these layers are more
task-specific. From the results we can see that fixing conv1
to conv3 is a good balance between efficiency and accuracy.
In the following experiments, we keep conv1 to conv3 fixed
for each sub-model if no more statement is given.

The Correlation of Hashcodes

The reason why existing DSH approaches fail to achieve sig-
nificant gain using longer hashcode is because their hash-
codes are highly correlated such that longer codes cannot
encode more information. To address this issue, we adopt an
ensemble based strategy for DSH. In this part we investigate
the ability of ensemble based DSH to decorrelate bits. We

Table 2: The influence of fixed layers. This table shows the
mAP when fixing layers between the first to the target layer.

layers pair-wise triplet layers pair-wise triplet
none 0.5871 0.6022 conv1 0.5852 0.5991
conv2 0.5793 0.5942 conv3 0.5717 0.5831
conv4 0.5434 0.5668 conv5 0.5173 0.5412
fc6 0.4647 0.5082 fc7 0.4190 0.4378

use AwA dataset and triplet loss (Lai et al. 2015).

We also use 16 bits for each sub-model. The correlation
matrices and the corresponding mAC values by Eq. (1) are
shown in Figure 4. Benefiting from the random initialization
and the margin in the loss function, (Lai et al. 2015) can
achieve about 0.20 mAC with 16 bits and 0.38 mAC with
32 bits. However, when we increase the hashcode length to
64 and more, the correlation increases very fast and reaches
0.73 mAC with 128 bits. On the contrary, with the ensemble
based strategy, we can significantly suppress the correlation
and the mAC only reaches 0.25 with 128 bits, indicating our
approach can encode more information in the hashcodes.
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Figure 5: The precision-recall curves of DSH approaches.

Benchmark Comparison

Now we compare our approach against existing hashing ap-
proaches on benchmark datasets. Based on the results shown
in Table 2, we use triplet loss and freeze conv1 to conv3 lay-
ers in the comparison. For each sub-model, 16 output units
are used, which means 16-bit hashcodes are generated. As
our approach supports incremental learning, we train our
model in an incremental way. For example, we train 2 sub-
models for 32-bit experiment. Then for 64-bit experiment,
we reuse these 2 sub-models and only train 2 new sub-
models. On the other hand, for other approaches, we totally
train a new model for each hashcode length.

We select the following hashing approaches as baselines.
Locality Sensitive Hashing (LSH) (Gionis, Indyk, and Mot-
wani 1999), and three state-of-the-art supervised hashing
approaches, Kernelized Supervised Hashing (KSH) (Liu et
al. 2012), Supervised Discrete Hashing (SDH) (Shen et al.
2015), and Latent Factor Hashing (LSH) (Zhang et al. 2014).
For these non-deep approaches, we use the output of fc7
layer of pre-trained AlexNet as input features. More impor-
tantly, we select four state-of-the-art deep supervised hash-
ing approaches, CNNH (Xia et al. 2014), DeSH (Liu et al.
2016), DNNH (Lai et al. 2015), and DRSCH (Zhang et al.
2015). For all approaches, including all baselines and ours,
we use the same query-database-train split for fairness.

The mAP comparison are summarized in Table 1 and the
precision-recall curves of all DSH approaches are shown
in Figure 5. Clearly, the deep approaches significantly out-
perform non-deep approaches, especially with short hash-
code length, like 32 bits, which is consistent with the re-
sults in previous literatures (Lai et al. 2015; Liu et al. 2016;
Xia et al. 2014; Zhang et al. 2015). However, there is one im-
portant observation we need to highlight, which is not fully
discussed in previous works, that the DSH approaches’ per-

formance increases very slowly. From 32 bits to 128 bits, the
end-to-end DSH approaches, DeSH, DNNH, and DRSCH
increase mAP by 3.86%, 4.33%, and 3.10% respectively
in average. The reason is that they obtain highly correlated
bits in long hashcodes such that they fail to encode more in-
formation, which has been discussed heavily in this paper.
Our approach is comparable to the baselines with 32 bits,
which is much better than non-deep approaches. But we can
observe that our approach is able to further improve its per-
formance with longer hashcodes. In particular, our approach
increases mAP from 32 bits to 128 bits by 8.07%, which
is far larger than the other DSH approaches. Moreover, the
average performance gap between our approach and best
DSH approach is 2.63%, 4.28%, and 5.24% with 64 bits,
96 bits, and 128 bits respectively, getting larger with longer
codes. Both observations, together with the results in Fig-
ure 4, demonstrate that our approach can effectively decorre-
late bits and prevent the triplet loss and from trivial solution
and high correlation problems, making the hashcodes more
informative. Moreover, the results also show our approach
works well in the incremental learning, which is very useful
for real-world applications.

Conclusion

In this paper, we show that existing state-of-the-art DSH ap-
proaches, which adopt pair-wise loss and triplet loss, suf-
fer from trivial solution and high correlation problems such
that they fail to achieve significant performance gain using
longer codes because it is difficult to incorporate proper con-
straints or regularizations into the loss function under the
mini-batch based optimization algorithm. To address these
problems, we propose a simple training strategy based on
ensemble. We decompose the k-bit problem into m k

m -bit
sub-problems and use different training data and different
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models for each sub-problem. The simple strategy is capable
of effectively decorrelating bits, making the hashcodes more
informative. Comprehensive experiments on three bench-
mark datasets demonstrate that the ensemble based DSH can
indeed achieve significant gain using longer hashcodes and
clearly defeat existing DSH approaches.
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