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Abstract

Railway is regarded as the most sustainable means of mod-
ern transportation. With the fast-growing of fleet size and the
railway mileage, the energy consumption of trains is becom-
ing a serious concern globally. The nature of railway offers a
unique opportunity to optimize the energy efficiency of loco-
motives by taking advantage of the undulating terrains along
a route. The derivation of an energy-optimal train driving so-
lution, however, proves to be a significant challenge due to the
high dimension, nonlinearity, complex constraints, and time-
varying characteristic of the problem. An optimized solution
can only be attained by considering both the complex envi-
ronmental conditions of a given route and the inherent char-
acteristics of a locomotive. To tackle the problem, this paper
employs a high-order correlation learning method for online
generation of the energy optimized train driving solutions.
Based on the driving data of experienced human drivers, a
hypergraph model is used to learn the optimal embedding
from the specified features for the decision of a driving oper-
ation. First, we design a feature set capturing the driving sta-
tus. Next all the training data are formulated as a hypergraph
and an inductive learning process is conducted to obtain the
embedding matrix. The hypergraph model can be used for
real-time generation of driving operation. We also proposed
a reinforcement updating scheme, which offers the capability
of sustainable enhancement on the hypergraph model in in-
dustrial applications. The learned model can be used to de-
termine an optimized driving operation in real-time tested
on the Hardware-in-Loop platform. Validation experiments
proved that the energy consumption of the proposed solution
is around 10% lower than that of average human drivers.

Introduction

Regarded as the most sustainable means of modern trans-
portation, the railway system itself is facing the challenge
of energy efficiency. In fact, the fast-growing train fleet size
and railway mileage make the energy consumption of trains
a global concern. According to the Railway Handbook 2016,
the railway system was responsible for 2,200 PJ, or 0.6% of
global energy consumption. Such an amount suggests that
even a 1% energy-saving suffices to support the residential
power of two major metropolitan cities like New York. The
nature of railway offers a unique opportunity to optimize the
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Figure 1: The illustration of the developed Automatic Train
Driving system. It has two interactive units at both side of
the locomotive. The Train driving mode can be switched be-
tween manually driving and automatic driving.

energy efficiency of trains by taking advantage of the undu-
lating terrains along a route. The Automatic Train Driving
system, as shown in Figure 1, serves the purpose of driv-
ing the train with rather optimized and consistent solutions
compare to human drivers. However, the derivation of an
energy-optimal driving solution for a train is challenging
because both the geographic environment of the route and
the inherent conditions of a train have to be considered. The
high dimension, nonlinearity, complex constraints, and time-
varying characteristics make it hard to generate an optimized
driving operation (Yang et al. 2016).

Significant research and engineering efforts have been
dedicated to derive the optimized driving operation. As it
was proved that a unique optimal solution can be derived
under certain assumptions, many analytical solutions were
proposed (Vu 2009; Albrecht et al. 2011; Howlett and Pud-
ney 2012). However, the assumptions may not hold un-
der realistic situations. In addition, complex driving con-
straints have to be respected in today’s railway system. To
handle the realistic conditions and complex constraints, ad-
vanced numerical searching techniques, like the Genetic Al-
gorithm (Han et al. 1999; Li and Hou 2007), Evolutionary
Algorithms (Chang and Kwan 2004), Dynamic Program-
ming (Vašak et al. 2009; Miyatake and Ko 2010; Franke,
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Terwiesch, and Meyer 2000), and Nonlinear Programming
(Betts 2010; Zhong, Xu, and Zhang 2016), etc. have been
applied to compute the energy optimized driving opera-
tion. Such approaches offer superior solutions but tend to
be compute intensive. Online techniques for real-time con-
trol were also widely studied(Siahvashi and Moaveni 2010;
Gao et al. 2013), but these techniques suffer from a lack of
guarantee of solution quality(Corman and Quaglietta 2015).
More comprehensive surveys on energy-efficient train driv-
ing techniques can be referred to References (Lu et al. 2013;
Huang et al. 2016). Although the problem is suitable for em-
ploying certain machine learning techniques, there is hardly
any such works can be found.

The energy-efficient train driving problem can be viewed
as a decision making problem to generate the driving op-
eration according to the real-time correlation analysis with
the environment. In this work, we leverage the correla-
tion learning techniques, which are able to identify com-
plex correlation in the studied objects(Michalski, Carbonell,
and Mitchell 2013; Zhang et al. 2017; Liu et al. 2017a;
Bansal, Blum, and Chawla 2004; Liu et al. 2017b), to resolve
the problem. This paper proposes a high-order correlation
learning based scheme for online generation of the energy-
efficient train driving solutions. We carefully designed a fea-
ture set for such a learning purpose. Based on the records
data from experienced human drivers, a hypergraph model
was built to cluster the operations corresponding to the fea-
ture set for the decision of a driving operation. A reinforce-
ment process was then employed to update the model to get
better driving solutions by continuously mining the best-
ranked driving records. The learned model is train-specific
and can be used to determine an optimized driving opera-
tion in real-time. The proposed techniques are validated on a
Hardware-in-Loop platform. Compared with average human
drivers, our techniques enable an energy saving of around
10%. We believe that this work is the first to raise the train
driving feature-set and is among the first to propose the ma-
chine learning techniques to derive solutions for automatic
train driving problems. The proposed inductive hypergraph
learning method also serves the novel contribution of this
paper.

The Energy-Efficient Train Driving

Problem Formulation

The motion of a train can be formulated by treating the train
position s as an independent variable as follows (Vu 2009):

mρ
dv(s)

ds
= f(s)−Rb(v(s))−Rl(s),

dt

ds
=

1

v(s)
. (1)

where m is the mass of the train, ρ is a factor accounting
for the rotating mass, v is the velocity of the train, s is the
position (i.e., displacement) of the train, f(s) is the traction
or braking force along the position that is determined by the
discrete or continuous level of gear on most modern loco-
motives, Rb(v(s)) is the basic resistance including both roll

resistance and air resistance along s, and Rl(s) is the corre-
sponding line resistance caused by track grade, curves and
tunnels. These resistance forces usually can be formulated as
empirical equations with parameters determined with exper-
iments (Mao 2008). The above equation is widely used in
analytical and numerical optimization problems originated
from train operations(Khmelnitsky 2000).

The optimization objective of energy-efficient train driv-
ing problem is to minimize the energy consumption as well
as the time deviation from the time table under various op-
eration constraints, which can be further formulated in the
position depended form as:

JE=

∫ send

sstart

φ(f(s))

(
f(s) + λ

∣∣∣∣df(s)ds

∣∣∣∣
)
ds,

JT=
∣∣T − T̄

∣∣ , (2)

subject to the following constraints and boundary conditions

fmin ≤ f(s) ≤ fmax, 0 ≤ T (s) ≤ Tmax(s),

v(s) ≤ vlimit(s), s(0) = sstart, v(0) = vstart, (3)
s(T ) = send, v(T ) = vend.

Here, JE and JT represent the optimization objective on en-
ergy consumption and the time deviation, respectively. φ(f)
stands for the coefficient capturing the gear behavior. T̄ is
the scheduled time for a train trip and T is the actual time
cost for the trip. The maximum allowable velocity vlimit(s)
is determined by the train model and the route condition. It
is usually represented as a piecewise function of the train
position s. sstart and send are the train position at the begin-
ning and ending of a trip, while vstart and vend be the initial
and final speeds, respectively. vstart are the position and the
velocity at the beginning of a trip, the duration of the trip T̄
is usually given by the timetable. It must be noted that there
is a potential trade-off between the energy consumption and
the time deviation during the bi-objective optimization pro-
cess. It is extremely hard to derive an optimized solution to
the energy-efficient train driving problem due to its high di-
mension, inherent nonlinearity, complex constraints and po-
tential variations of the elements in a sequence of driving
operations(Howlett and Pudney 2012). On the other hand,
human drivers are able to synthesize the multiple factors and
derive driving solutions in a real-time fashion. As a result,
we attack the problem by analyzing the human driving ex-
perience.

Analysis of Human Driving Records

Counterintuitively, a considerable portion of the railway
routes are built on undulating terrains. The optimal train
driving problem can be formulated as a general optimiza-
tion problem with a discrete driving operation as the out-
put, which can then be exerted to the master controller, by
considering factors such as railway properties, train states,
train attributes, marshaling information, and various exter-
nal disturbances. A human driver usually makes decisions
of accelerating or decelerating the train according to the
lessons learned from their teacher drivers and their experi-
ences accumulated so far. Every operation has an impact on
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the final energy consumption and punctuality. After review-
ing a large number of human driving records, we find that
there are common patterns that can be identified in the driv-
ing behaviors. Figure 2 shows a few representative patterns
represented as velocity and driving operations. The hidden
patterns of human drivers actually provide important clues
to derive an optimized driving solution. We thus intend to
put effort on learning the correlation from the experienced
drivers.

Figure 2: A snippet of human driving data. The blue and
red lines are the velocity and the driving operations, respec-
tively. Certain patterns can be easily recognized for most of
the route.

High-Order Correlation Learning for Train

Driving

Problem Definition

The energy-efficient train driving problem is a complex op-
timization problem with the driving operation as the output
under various environmental and operational constraints. As
a result, the driving data varies from one driver to another
because not only different drivers may have distinguished
driving habits but also different trips are subject to chang-
ing environments and operation requirements. This actually
caused much difference in the energy consumption as well
as the punctuality. However, there still exists certain patterns
in the driving records, especially those collected from well-
experienced drivers. We thus propose to perform learning on
a selected group of “good” drivers such that above-average
driving patterns can be expected. By saying “good” drivers,
we mean the best ones with their performance in terms of
energy-efficiency under the constraints of arrival time within
2 minutes of the timetable and having no over speed limit,
frequent parking, and frequent gear changing.

Then an important problem has to be raised as follows.
Given the current and historical driving data, how an opti-
mized driving operation for a specific train at running can
be accurately predicted? In other words, we need to build a
model capturing the high-order correlation between the driv-
ing operation and the environmental status by mining the se-
lected records data from the good drivers. The model can
then be used to predict an optimized driving operation under
realistic train operations. We will further discuss the prob-
lem in the remaining of this paper.

Feature Set Design

The driving data provides important information about train
status. Nevertheless, to the best of the authors’ knowledge,
it is still an open question to define a compact but com-
plete feature set for the driving data. This work starts from
the design of such a feature set. According to the analysis
on energy-efficient driving, the factors that affect the en-
ergy consumption include the railway properties, the train
attributes, the marshaling information, train running state,
the human factors, and other disturbances(Howlett and Pud-
ney 2012). The above factors are illustrated in Figure 3. For
a certain train, here we design a feature set consisting of
features that can be classified into three categories, the train
attributes, the railway properties and the running informa-
tion. The train attributes include 4 items as weight, length,
cargo number, loaded cargo number. The railway properties
include 36 items in total mainly on the gradient properties
and the speed limit properties while looking forward and
backward. The running information mainly include the dy-
namic information of the train’s displacement/speed, history
of driving operations, and the short zone gradients. Figure
4 lists the details of the features that we designed. It must
be noted that the selection of the features influence much on
the final learning performance as the prediction of the driv-
ing operation mainly relies on such features.

Energy 
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Railway properties

Trip length
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Railway curves

Train States
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Traction

Coasting

Brakes

Marshaling info.

Tow weight

Marshaling

Wind power

Atmospheric 
pressure

Altitude
Season

Loads

Weight

Unit resistance

Power contours

External Factors Train Attributes

Humidity
Operation 

mode

Human Factors

Figure 3: The effect factors of energy-efficient train driving.

A preprocessing of the driving data is performed accord-
ing to the requirements of the feature extraction process. To
avoid the situation where too many oddments in the uphill
or downhill trajectories, we categorize and merge the frag-
mentary gradients into longer ones. Patterns are learned over
the newly updated road sections. Table 1 shows the route
section that we generated after the merging of neighboring
segments.

Table 1: The route section categories
Section Type Lable Gradient Scope
Steep Downhill Section -2 ≤ −3
Gentle downhill Section -1 −1 to −3
Gentle grade Section 0 −1 to 1
Gentle Uphill Section 1 1 to 3
Steep Uphill Section 2 ≥ 3
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Figure 4: The designed 59-dimensional feature set for the driving records covering the train attributes, the railway properties
and the running information.

Hypergraph Model for High-Order Correlation
Learning

With the train features, the key task here is to identify the
suitable driving operation by considering both driving expe-
rience and the current status. It can be regarded as a clas-
sification task. However, the correlation among these train
features is complex and it is challenging to explore the high-
order correlation among these data.

Here we employ the hypergraph model to capture the
high-order correlation for driving operation classification. A
hypergraph is a generalization of the graph in which an edge
can connect any number of vertices(Pu and Faltings 2012;
Ghio et al. 2017; Gao et al. 2012; 2014; Han et al. 2017;
Zhang, Meng, and Han 2017). A hyperedge may have an ar-
bitrary number of nodes. Here, assuming there are m exist-
ing driving experience with train features and corresponding
driving operations, the objective here is to learn an optimal
hypergraph embedding to project the train features to exist-
ing driving operations. We first record all training data in
a hypergraph structure. We offer here a quite preliminary
definition for hypergraph. A hypergraph G = (V, E , w) is
composed of a vertex set V , an edge set E , and the weights
of the edges w. Each edge e is assigned a weight w(e). The
hypergraph G can be denoted by a |V|×|E| incidence matrix
H, in which each entry is defined by:

h(v, e) =

{
1 if v ∈ e
0 if v /∈ e

(4)

For a vertex v ∈ V , its degree is defined by:

d (v) =
∑

e∈E ω (e)h (v, e). (5)

For an edge e ∈ E , its degree is defined by:

δ(e) =
∑

v∈V h(v, e). (6)

Here we let Dv and De denote the diagonal matrices of the
vertex degrees and the edge degrees, respectively, and W
denote the diagonal matrix of the edge weights.

To learn the high-order correlation among driving data,
the training data from the driving records of experienced
drivers are employed to build a hypergraph. In the hyper-
graph, each vertex denotes one driving record node with a
respective driving operation label. A clustering is performed
to serve the purpose of constructing the hyperedges. During
the clustering process, each time one vertex is selected as
the centroid, and its nearest neighbors are selected to be con-
nected by a corresponding hyperedge. In this work, the top 5
neighbors are employed. Figure 5 illustrates the hypergraph
model construction process. Based on this hypergraph, the
incidence matrix H, the edge degree matrix De and the ver-
tex degree matrix Dv can be generated accordingly.

To optimize the hypergraph embedding, an inductive hy-
pergraph learning process is conducted targeting on a regu-
larized projection to discriminate different categories. The
cost function Ψ for learning the projection matrix M is
composed of three parts: hypergraph Laplacian regularizer
Ω (M), empirical loss Remp (M), and the regularizer on the
project matrix Φ (M):

Ψ = {Ω (M) + λRemp (M) + μΦ (M)} . (7)

The hypergraph Laplacian regularizer for M is under
the assumption that strongly connected vertices should have
similar labels. The hypergraph Laplacian regularizer can be
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Ω (M) = 1
2

c∑
k=1

∑
e∈E

∑
u,v∈V

W(e)H(u,e)H(v,e)
δ(e)

(
(XTM)(u,k)√

d(u)
− (XTM)(v,k)√

d(v)

)2

=
c∑

k=1

∑
e∈E

∑
u,v∈V

W(e)H(u,e)H(v,e)
δ(e)

(
F(u,k)2

d(u) − (XTM)(u,k)(XTM)(v,k)√
d(u)d(v)

)

=
c∑

k=1

{ ∑
u∈V

F (u, k)
2 ∑
e∈E

W(e)H(u,e)
d(u)

∑
v∈V

H(v,e)
δ(e) − ∑

e∈E

∑
u,v∈V

(XTM)(u,k)H(u,e)W(e)H(v,e)(XTM)(v,k)√
d(u)d(v)δ(e)

}

=
c∑

k=1

(XTM)(:, k)T (I−Θ) (XTM)(:, k) = tr
(
MTX(I−Θ)XTM

)
= tr

(
MTXΔXTM

)

(8)

e4e1

e2

e3

Figure 5: A schematic illustration of the hypergraph model
construction with each set of a specific mark as the sectional
slices of a driving trip from the selected experienced driver
and the dot dash circle be the possible clustering in con-
structing the hypergraph edges ei’s (i=1,2,...).

written as Eq. (8), where Θ = Dv− 1
2HWDe−1HTDv− 1

2 .
Eq. (8) serves as the regularizer on hypergraph structure,
which guarantees that the stronger connections of vertices
on hypergraph lead to higher similarities of the correspond-
ing labels. The empirical loss term on M is defined as

Remp (M) = ||XTM−Y||2. (9)

Φ(M) is a �2 norm regularizer to avoid overfiting for M,
which is defined as:

Φ(M) = ||M||2. (10)

The inductive learning task on hypergraph can be written as:

argmin
M

{Ω (M) + λRemp (M) + μΦ (M)} (11)

To solve the above learning task, we can derive it to M as:
∂

∂M

{
tr
(
MTXΔXTM

)
+ λ||XTM − Y||2 + μ||M||2

}
= 0

⇒ 2XΔXTM + 2λXXTM + 2μM − 2λXY = 0
(12)

We then can achieve

M = λ
(
XΔXT + λXXT + μI

)−1
XY. (13)

For the coming data, x, the prediction of x’s operation can
be achieved by

argmax
k

xTM. (14)

It means that once a hypergraph model was trained, a real-
time driving operation can be generated for real-time train
driving.

We note that the intelligent train control problem is highly
in nonlinear, complex in constraints, and the hypergraph
model is superior on modeling of such high-order relation-
ship.

Tuning and High-Order Correlation
Reinforcement Updating

In training the hypergraph model, a normalization on the se-
lected features is performed. To improve clustering perfor-
mance, certain parameters like λ in Eq. (13) are fine-tuned
for specific circumstances. Extra training and simulation are
also needed to tune the weights on the key parameters, e.g.,
the weight and length of the train, the slope of the railway,
the speed limit. In addition, certain rules have to be applied
for safety concerns. One such rule is to guarantee that the
train will not exceed the speed limit. The above hypergraph
model guarantees an above-average driving solution. To im-
prove the solution quality, we perform a reinforcement up-
dating on the high-order correlation model shown in Algo-
rithm 1. It should be noted that the cost function for model
updating considers both energy-efficiency and punctuality.

Experiments and Application

Experimental Platform

The experimental locomotive that we employed has a gear
of 17 levels in which levels 1 to 8 is for traction, level 0 for
neutral, and levels −1 to −8 for braking. The power char-
acteristics of the locomotive for both traction and braking
are shown in Figure 6. Typically, different gear of the train
will represent different power and, of course, with different
energy consumption rate, that is, the higher the gear is, the
higher in power and energy consumption rate will be. The
automatic driving controller can imitate the gear handling
on the train to send control instructions according to the on-
board calculation based on the trained hypergraph model.
Evaluations on the consumption of time and energy can be
done by the train motion model in the simulation platform.

We choose a typical railway route for the experimental
use. The complex geographical features of the railway line is
shown in Figure 7. The railway route feature mainly include
gradient, curve and tunnel information along the mileage
that will reflect the running resistance of a train, speed limit
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Figure 6: Power characteristics of the selected locomotive for traction and braking. Different gear will represent different
power and of course with different energy consumption rate. Generally, the higher the gear, the higher in power and energy
consumption rate.

Algorithm 1: The high-order correlation reinforce-
ment updating process

Input: The ns slices as training data from the top
ranking nr trips with the 59-dimensional
feature set preprocessed

Output: The projection matrix M
1 while True do
2 High-order correlation learning for the projection

matrix M ;
3 Get the simulation result with the chosen nt

testing trips;
4 Evaluate the nt trips with Ji =

(Ti−T )

T
+ α Ei

Wi
;

(Ti, Ei,Wi are the corresponding time, energy
and train weight for trip i)

5 Rank the total nr + nt trips with Ji;
6 if Convergence or reach a maximum cycle

number then
7 break;
8 Choose the top nr trips to get ns slices for the

training data, preprocess.
9 return M

for safety concern, stations with distance and time require-
ments, etc. The Automatic Train driving problem is to plan
certain train running profile under the chosen route environ-
ments. The loads inputs and the trip constraints in the simu-
lations are given according to different actual driving data.

Experiments were carried out on the Hardware-in-Loop
test platform shown in Figure 8. The platform is constructed
with the onboard Automatic Train Driving system hardware
device developed in this work, and other devices from the
real freight train in operation. Such devices will send train
running information to the Automatic Train Driving sys-
tem by doing simulation with the longitudinal dynamics of
the train. The Automatic Train Driving system will generate
the optimized throttle sequence to drive the simulated train

Figure 7: Illustration of part of the railway route using in the
experiments. The variance of the gradient, the curve, and
the tunnel will reflect as different resistance against the train
driving. Strictly punctuality is required between the stations,
and the train has to satisfy the speed limit constraints all
along the route.

model. The outputs of the train model then serve as the feed-
backs to the Automatic Train Driving system.

Experiments and Analysis

The hypergraph-based high-order correlation learning ap-
proach was implemented as an integrated software platform
for off-line learning and an onboard execution. To enhance
the accuracy of prediction, different hypergraph models can
be trained for trains with according to the weight range of the
trains. Such a weight range decentralization helps increase
the flexibility and efficiency of the model.

In the experiment, we choose 400 best valued trips from
thousands of records with train weights in the range of 3000
to 4000 tons. The evaluation on a trip is simply chosen in an
ascending order by energy amount over weight as E/W. Then
23, 499 sectional slices were collected from the records as
the base of the training data, with each slice having the fea-
ture set preprocessed. The parameter λ was tuned to 0.1 ac-
cording to the tested results from a value set of [0.001, 0.01,
0.1, 1, 10, 100, 1000], and the Mapminmax method in Mat-
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Figure 8: The Hardware-in-Loop testing platform for the
Automatic Train Driving system.

lab were employed for normalization. The railway route is
with a length of 15.85 Km between two stations. To evaluate
the proposed techniques, we randomly chose other 400 real
trips of operating trains of a commercial locomotive depot.
The evaluation are directly addressed to the average amount
of energy consumption for the testing trips compare to the
original training data.

As a result, the statistical results show that, the driving
trips derived by the first round learning model achieve a re-
sult of 8.16% lower than the average level of the 400 drivers,
with the total energy consumption averagely at about 159.95
Kg by the proposed approach and 173.01 Kg by the human
drivers. The reinforcement training process were carried on
by select the new best 400 trips according to Algorithm 1.
Further steps of a 10-round recursive reinforcement updat-
ing process enhance the energy-saving to 9.86%. Such an
energy saving proved the effectiveness of the proposed tech-
niques. The well-trained hypergraph model was tested on
our Hardware-in-Loop platform with a timely decision be
achieved.

Figure 9: The illustration of an example driving trip by the
proposed approach compare to a human driver record.

It shows that the proposed approach works generally even
better than the training data in terms of energy-efficiency.

An example driving trip by the trained model is illustrated
in Figure 9 which shows the consistency with the experi-
enced driver. A compared illustration data by using SVM is
shown in Figure 10, which is relatively weak in the precision
of gear prediction, and may cause gradually deviation of the
velocity. We did not compare the proposed approach with
analytical or numerical optimization approaches because: 1)
analytical solutions are only feasible under a set of assump-
tions that hardly hold in realistic; 2) the automatic train driv-
ing problem is a sequential decision problem by nature and
thus a numerical solution can be extremely expensive. The
solution in this work does not depend on the assumptions
and is also compute-efficient.

Figure 10: The illustration of an example driving trip by
SVM compare to a human driver record.

Conclusion
The derivation of an energy-optimal train driving solution
proves to be a significant challenge. This paper introduced a
high-order correlation learning process for online generation
of the energy optimized driving solution for railway trains.
A novel feature set was proposed for the driving records of
railway trains. Starting from the driving data of experienced
human drivers, a hypergraph model is used to learn the op-
timal embedding from the specified feature set for the de-
cision of a driving operation. The proposed techniques are
validated on a Hardware-in-Loop platform. Experimental re-
sults proved that an energy saving of around 10% could
be achieved when compared with the average level of the
drivers. A large collection of directions worth investigating
in the future, e.g., refining the feature set, exploring more
machine learning algorithms on such problem and the fleet
train problems.
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