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Abstract

We propose a hierarchical extension to hidden Markov model
(HMM) under the Bayesian framework to overcome its limited
model capacity. The model parameters are treated as random
variables whose distributions are governed by hyperparame-
ters. Therefore the variation in data can be modeled at both
instance level and distribution level. We derive a novel learn-
ing method for estimating the parameters and hyperparameters
of our model based on adversarial learning framework, which
has shown promising results in generating photorealistic im-
ages and videos. We demonstrate the benefit of the proposed
method on human motion capture data through comparison
with both state-of-the-art methods and the same model that
is learned by maximizing likelihood. The first experiment on
reconstruction shows the model’s capability of generalizing to
novel testing data. The second experiment on synthesis shows
the model’s capability of generating realistic and diverse data.

Introduction
In recent years, generative dynamic model has attracted a
lot of attention due to its potential of learning representation
from unlabeled sequential data as well as its capability of
data generation. (Gan et al. 2015; Srivastava, Mansimov, and
Salakhudinov 2015; Mittelman et al. 2014; Xue et al. 2016;
Walker et al. 2016). Sequential data introduce additional
challenge for modeling due to temporal dependencies and
significant intra-class variation. Consider human action as
an example. Even though the underlying dynamic pattern
remains similar for the same type of action, the actual pose
and speed vary for different people. Even if the same person
performs the action repeatedly, there will be noticeable dif-
ference. This motivates us to design a probabilistic dynamic
model that not only can capture the consistent dynamic pat-
tern across different data instances, but also can accommodate
the variation therein.

Widely used dynamic model like HMM models dynamic
process through transition among different discrete states.
In order to encode N bits of information, HMM needs 2N
number of states. Therefore, the model complexity increases
exponentially with the model capacity. Linear dynamic sys-
tem (LDS) uses continuous states to capture dynamics, which
avoids exponential increase of model complexity. However,
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LDS assumes the underlying dynamics can be described by a
linear model, which may not be sufficient for case like human
motion data. On the other hand, more complex model such
as recurrent neural networks (RNN) based deep models often
has exceedingly large number of parameters. Without suffi-
ciently large amount of data or careful regularization, training
such model is prone to overfit. In addition, the model is de-
terministic. Simply reducing the model complexity compro-
mises the capability of capturing randomness and variation
presented in data. We instead propose a hierarchical HMM
(HHMM), which extends the shallow HMM leveraging on
Bayesian framework. The proposed HHMM allows model
parameters vary as random variables among data instances.
Given the same amount of parameters, HHMM has a much
larger capacity compared to HMM. Besides, HHMM retains
the inference method available in HMM, allowing us to do
various inference tasks efficiently. Finally, as a probabilistic
generative model, HHMM can capture spatio-temporal de-
pendencies in dynamic process and modeling variations in a
principled way.

As for model learning, maximum likelihood estimate
(MLE) has been the de facto learning objective for prob-
abilistic generative models. Despite its wide adoption, MLE
tends to fit a diffused distribution on data (Theis, Oord, and
Bethge 2015). For static image synthesis, the results often
look blurred. Recently, adversarial learning has emerged
to be a popular learning criteria for learning generative
models. Variants of generative adversarial networks (GAN)
(Goodfellow et al. 2014; Radford, Metz, and Chintala 2015;
Reed et al. 2016; Nowozin, Cseke, and Tomioka 2016;
Nguyen et al. 2017) show promising results in generating
both sharp and realistic-looking images of face, object and
indoor/outdoor scene. There is also an increasing interest in
extending the framework for dynamic data (Vondrick, Pirsi-
avash, and Torralba 2016; Saito, Matsumoto, and Saito 2017;
Tulyakov et al. 2017). In this work, we explore the idea
of training the proposed HHMM using adversarial objective,
which has two major benefits. First, it bypasses the intractable
objective of MLE in hierarchical model where the integration
over parameters introduces additional dependencies among
random variables. Second, it aims at learning a model that
can generate realistic-looking data. Following the adversarial
learning framework, we introduce a separate discriminative
dynamic model to guide the learning of HHMM, which serves
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as the generator. While the generator tries to generate data
that looks as realistic as possible. The discriminator tries to
classify the generated data as fake. The two models compete
against each other in order to reach an equilibrium. We derive
a gradient ascent based optimization method for updating
parameters of both models. To the best of our knowledge,
this is the first work that exploit adversarial learning on mod-
eling dynamic data with fully probabilistic generator and
discriminator.

Related work
Probabilistic dynamic models HMM and its variants (Ra-
biner 1989; Fine, Singer, and Tishby 1998; Brand, Oliver,
and Pentland 1997; Ghahramani, Jordan, and Smyth 1997;
Yu 2010) are widely used to model sequential data, where
dynamics change according to transition among different
discrete states. The observations are then emitted from a
state-dependent distribution. The state can also be continu-
ous as modeled in LDS, which is also known as Kalman
filters (Kalman and others 1960). In a more general for-
mulation, both HMM and LDS can be considered as spe-
cial variants of dynamic Bayesian networks (DBN) (Mur-
phy 2002). Our model expands the model capacity through
the hierarchical structure instead of increasing complexity,
which is ineffective for HMM. With enhanced model capac-
ity, our model can better accommodate variation and non-
linearity of the dynamics. Another major type of dynamic
model consists of undirected graphical models such as tempo-
ral extension of restricted Boltzmann machine (RBM) (Tay-
lor, Hinton, and Roweis 2006; Sutskever and Hinton 2007;
Mittelman et al. 2014) and dynamic conditional random
field (DCRF) (Sutton, McCallum, and Rohanimanesh 2007;
Tang, Fei-Fei, and Koller 2012). While RBM can capture
non-linearity and expand capacity through vectorized hidden
states, the learning requires approximation to intractable par-
tition function and the choice of hidden state dimension may
not be trivial. DCRF model is trained discriminatively given
class labels and not suitable for data generation task.

More recently, models that combine probabilistic frame-
work with deterministic model such as neural networks (NN)
have been proposed. (Krishnan, Shalit, and Sontag 2015) pro-
posed deep Kalman filters which used NN to parameterize
transition and emission probability. (Johnson et al. 2016) used
variational autoencoder to specify the emission distribution
of switching LDS. (Gan et al. 2015) proposed deep temporal
sigmoid belief network (TSBN), where the hidden node is
binary and its conditional distribution is specified by sigmoid
function. Variants of RNNs with additional stochastic nodes
are introduced to improve the capability of modeling ran-
domness (Bayer and Osendorfer 2014; Chung et al. 2015;
Fraccaro et al. 2016). To better account for intra-class varia-
tion, (Wang, Fleet, and Hertzmann 2008) modeled dynamics
using Gaussian process where the uncertainty is handled by
marginalizing out parameter space imposed with Gaussian
process prior. (Joshi et al. 2017) proposed a Bayesian NN
which can adapt to subject dependent variation for action
recognition. Deep learning based models typically require
large amount of training data. For smaller dataset, careful
regularization or other auxiliary techniques such as data aug-

mentation, pre-train, drop-out, etc. are needed. In contrast,
our HHMM has built-in regularization through the hyper-
parameters learned using all the intra-class data. It is less
prone to overfitting. Besides, HHMM can handle missing
data as the probabilistic inference can be carried out in ab-
sence of some observations. Furthermore, HHMM is easier to
interpret as the nodes are associated with semantic meanings.

Learning methods of dynamic models Maximum like-
lihood learning is widely used to obtain point estimate of
model parameters. For models with tractable likelihood func-
tion, numerical optimization techniques such as gradient as-
cent can be used to maximize likelihood function directly
with respect to the parameters. In general, for model with
hidden variables, whose values are always unknown during
training, expectation maximization (EM) (Dempster, Laird,
and Rubin 1977) is often used, which optimizes a tight lower
bound of the model loglikelihood. Bayesian parameter es-
timation can also be used as an alternative to MLE in case
when prior information on parameters need to be incorpo-
rated, resulting in maximum a posteriori (MAP) estimate. For
instance, (Brand and Hertzmann 2000) introduced a prior
on HMM parameters to encourage smaller cross entropy be-
tween specific stylistic motion model and generic motion
model. In case the goal is to classify data into different cate-
gories, generative dynamic model can also be learned with
discriminative criteria such as maximizing the conditional
likelihood of being as one of the categories (Wang and Ji
2012). Our work provides another objective to learn gener-
ative dynamic models by adopting the adversarial learning
framework. The generative model has to compete against
another discriminative model in order to fit the data distri-
bution well. An important difference of our method from
existing adversarially learned dynamic models like TGAN
(Saito, Matsumoto, and Saito 2017) is that, both our gener-
ator and discriminator are fully probabilistic models which
explicitly model the variation of data distribution.

Methods
We first present the proposed dynamic model. Then we briefly
review the adversarial learning framework and describe in
details about the learning algorithm. Finally, we discuss the
inference methods used for various tasks.

Bayesian Hierarchical HMM
We now describe the proposed HHMM, which models the
dynamics and variation of data in two levels. First, the ran-
dom variables capture spatial distribution and temporal evo-
lution of dynamic data. Second, the parameters specifying
the model are also treated as random variables with prior dis-
tributions. Notice that the term HHMM is first used in (Fine,
Singer, and Tishby 1998), where the hierarchy is applied only
on hidden or observed nodes with fixed parameters in order to
model multi-scale structure in data. Our model constructs the
hierarchy using Bayesian framework in order to handle large
variation in data. Specifically, we define X = {X1, ..., XT }
as the sequence of observations and Z = {Z1, ..., ZT } as
the hidden state chain. The joint distribution of HHMM with
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Figure 1: Topology of HHMM, where plate notation is used.
T is the length of sequence. N is the number of sequences. Q
is the number of hidden states. The self-edge of Zt shows the
temporal link from Zt−1 to Zt. Circle-shaped nodes represent
variables and diamond-shaped nodes represent parameters or
hyperparameters.

first-order Markov assumption is given by

P (X,Z, θ|α) = P (Z1|π)
T∏

t=2

P (Zt|Zt−1,A) (1)

T∏
t=1

P (Xt|Zt, μ,Σ)P (A|η)P (μ|λ)

where π is a stochastic vector specifying the initial state
distribution i.e. P (Z1 = i) = πi. A is a stochastic matrix
where the ith row specifies the probability of transiting from
state i to other states i.e. P (Zt = j|Zt−1 = i) = Aij .
μ and Σ are the emission distribution parameters. We use
Gaussian distribution as the observations are continuous i.e.
P (Xt|Zt = i) = N (μi,Σi). Diagonal covariance matrix is
also assumed. θ = {A, μ} and θ̂ = {π,Σ} are the model
parameters and α̂ = {η, λ} are the model hyperparameters.
We denote α = {α̂, θ̂} = {η, λ, π,Σ} as the augmented set
of hyperparameters by including θ̂. The model topology is
shown in Figure 1.

We use conjugate prior for θ. Specifically, we use a Dirich-
let prior on the transition parameter A with hyperparameter
η and a Normal prior on the emission mean μ with hyperpa-
rameter {μ0,Σ0}.

P (Ai:|ηi) ∝
Q∏

j=1

A
ηij−1
ij

P (μi|λ) ∝ exp
(− 1

2
(μi − μi0)

TΣ−1
i0 (μi − μi0)

)

where i = 1, ..., Q, ηij > 0, μi0 ∈ R
O,Σi0 ∈ R

O×O. Q is
the number of hidden states and O is the dimension of data.
The benefit of using hierarchical model can be seen from
its structure. Under the same model complexity i.e. same
number of hidden states and dimension of data, parameters
in HHMM can further vary according to each data instance.
Thus HHMM has increased modeling capacity compared to
HMM, which is crucial for modeling data variation.

Adversarial learning of HHMM
The adversarial learning approach utilizes a novel objective
to train a generative model G by introducing another dis-
criminative model D. Intuitively, G is aimed at generating

samples that resemble real data distribution. D tries to differ-
entiate whether a sample is from real data or generated by G.
When both G and D are parameterized by neural networks,
it yields the GAN (Goodfellow et al. 2014). Leveraging on
the adversarial learning framework, we develop a method for
learning HHMM, which we use as the generator. The choice
of discriminator is a pair of HMMs that are trained with dis-
criminative objective. We describe the overall optimization
formulation first, followed by detailed discussion on gener-
ator and discriminator learning. We introduce an additional
binary variable y associated with X to indicate whether X
is real (y = 1) or fake (y = −1). The overall optimization
objective is defined by Eq. (2).

min
α

max
φ

EX∼Pdata(X)[logD(X|φ)] (2)

+EX∼PG(X|α)[log(1−D(X|φ))]
where D(X|φ) � PD(y = 1|X, φ) is the output of discrim-
inator specifying the probability of X being real data and
φ is the parameters of discriminator. Pdata(X) is the real
data distribution. PG(X|α) is the likelihood of α on X gen-
erated from G. Compared to GAN, the use of probabilistic
generative model directly specify distribution X, where the
randomness and dependency is encoded through the latent
variables. The goal of learning is to estimate α and φ. The
optimization uses alternating strategy where we optimize one
model while holding the other as fixed at each iteration.

Generator We now discuss in details about generator learn-
ing, which is HHMM in our case. The benefit of using a
probabilistic dynamic model is that we can model data vari-
ation and randomness in a principled way. In addition, we
can generate different length of sequences. Finally, we can
evaluate data likelihood using learned model as described
later in inference. When optimizing α in Eq. (2), we hold φ
fixed. The same approximate objective as in (Goodfellow et
al. 2014) is also used. This results in the following objective.

max
α

LG(α) � EX∼PG(X|α)[logD(X|φ)] (3)

≈
N∑
i=1

M∑
j=1

1

MN
logD(Xij |φ),

θi ∼ P (θ|α̂),Xij ∼ P (X|θi, θ̂)
However, the sample-based approximation no longer explic-
itly depends on α. We use the identity that ∇Xf(X) =
f(X)∇X log f(X) to derive an unbiased estimate of gradi-
ent of LG(α) by directly taking derivative of Eq. (3), where
similar strategy is also used in (Williams 1992).

∂LG(α)

∂α̂
≈

N∑
i=1

M∑
j=1

logD(Xij |φ)
MN

∂ logP (θi|α̂)
∂α̂

(4)

∂LG(α)

∂θ̂
≈

N∑
i=1

M∑
j=1

logD(Xij |φ)
MN

∂ logP (Xij |θi, θ̂)
∂θ̂

(5)

where θi ∼ P (θ|α̂),Xij ∼ P (X|θi, θ̂). In Eq. (4), the par-
tial derivative is taken by the prior distribution of parameters,
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which has an analytical form given our parameterization. In
Eq. (5), the partial derivative corresponds to the gradient of
loglikelihood of HMM, which can be computed by exploiting
the chain structure of hidden states as described in (Cappé,
Buchoux, and Moulines 1998). SGD with RMSProp (Tiele-
man and Hinton 2012) for adaptive gradient magnitude is
performed to update α. We also reparameterize κ = log σ,
where σ2 is the diagonal entries of Σ, which is assumed to be
diagonal. Intuitively speaking, given a fixed D, samples with
D(Xij |φ) → 0 will be weighted heavily to encourage im-
provement. Samples with D(Xij |φ) → 1 have ∂LG(α)

∂α → 0,
thus contribute little to the update.

Discriminator Our discriminator consists of a pair of
HMMs with parameters specified as φ+ and φ− respectively.
The use of dynamic model based discriminator is largely
motivated by the needs to work with sequential data. To dif-
ferentiate whether a motion sequence looks realistic or not,
the discriminator should be able to recognize the underlying
motion pattern subject to variation. In addition, dynamic dis-
criminator also can accommodate sequences with different
length. Specifically, the output of discriminator is defined as
follows.

D(X|φ) = P (X|φ+)

P (X|φ+) + P (X|φ−)P (y=−1)
P (y=1)

(6)

where P (y) is the prior probability of the labels. Since we
choose the same number of real and fake samples at each
update, we can assume uniform distribution of labels, namely
P (y = 1) = P (y = −1) = 1/2. P (X|φ+) and P (X|φ−)
are the likelihoods of φ+ and φ− evaluated on X respec-
tively. The two HMMs are trained discriminatively under
the objective of Eq. (2) with α holding fixed. Specifically,
given a set of M randomly generated samples {X−j } from
generator and a set of M randomly selected real data sam-
ples {X+

j }, the objective of learning φ is equivalent to the
negative cross-entropy loss as follows.

max
φ

LD(φ) � EX∼Pdata(X)[logD(X|φ)] (7)

+ EX∼PG(X|α)[log(1−D(X|φ))]

≈ 1

M

M∑
j=1

logD(X+
j |φ) + log(1−D(X−j |φ))

By substituting Eq. (6) to Eq. (7), we can compute the
gradient of LD(φ) with respect to φ.

∂LD(φ)

∂φ+
≈ 1

M

M∑
j=1

[
P (X+

j |φ−)
s(X+

j )

∂ logP (X+
j |φ+)

∂φ+
(8)

− P (X−j |φ+)

s(X−j )

∂ logP (X−j |φ+)

∂φ+
]

∂LD(φ)

∂φ−
≈ 1

M

M∑
j=1

[
P (X−j |φ+)

s(X−j )

∂ logP (X−j |φ−)
∂φ−

(9)

− P (X+
j |φ−)

s(X+
j )

∂ logP (X+
j |φ−)

∂φ−
]

where s(X) = P (X|φ+) + P (X|φ−). Again, ∂ logP (X|φ+)
∂φ+

and ∂ logP (X|φ−)
∂φ− are gradients of loglikelihood of the two

HMMs respectively, where analytical form is available as
described in generator update. The overall algorithm is sum-
marized as Algorithm 1.

Algorithm 1 Adversarial learning of HHMM

Require: {X}: real dataset. Q: number of hidden states. M : num-
ber of samples. N : number of parameter sets. k: update step for
φ. l: update step for α.

Ensure: Generator α. Discriminator φ.
1: Initialization of α, φ
2: repeat
3: for k steps do
4: Draw M samples from both PG and real dataset.
5: Update discriminator φ using RMSProp with gradient

defined by Eq. (8) and Eq. (9).
6: end for
7: for l steps do
8: Draw N samples of θ. For each θ, draw M samples.
9: Update generator α using RMSProp with gradient defined

by Eq. (4) and Eq. (5).
10: end for
11: until convergence or reach maximum iteration number
12: return α

Inference
We describe our methods on three inference problems asso-
ciated with HHMM when applied to different data analysis
applications as described later in experiments.

Data synthesis One of the major applications for genera-
tive model is to automatically synthesize data. The potential
use of synthetic motion data is to supply the training of deep
learning models for tasks like action recognition. We use an-
cestral sampling based approach to generate synthetic motion
data. Specifically, we first sample parameter A, μ from their
corresponding prior distribution given learned hyperparame-
ters i.e. A ∼ P (A|η), μ ∼ P (μ|μ0,Σ0). Second, we sample
hidden state chain given sampled parameters A and learned
parameters π i.e. Z1 ∼ P (Z1|π), Zt ∼ P (Zt|Zt−1,A).
Finally, we compute the most likely observation sequence
X1, ..., XT conditioned on Z1, ..., ZT and parameters μ,Σ.
Due to the model structure, observed nodes are independent
with each other given the hidden states. A naive solution
that maximizes the conditional likelihood P (X|Z) yields
mean value of the corresponding Gaussian at each frame i.e.
Xt = μZt . For motion capture data, this results non-smooth
change between different poses. We alleviate this issue by
augmenting features Xt to include information with both first
order i.e. position and second order i.e. speed as suggested in
(Brand 1999), where the speed is computed as the difference
of consecutive position change. Then we solve the following
inference problem.

max
X

logP (X̃|Z) =
∑
t

logN(X̃t|μZt
,ΣZt

) (10)

where X = {Xt}, X̃ = {X̃t}, X̃t = [Xt, Xt − Xt−1].
Eq. (10) is a quadratic system with respect to X, where
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(a) PCC (b) MSE (c) Loglikelihood on training data (d) Loglikelihood on testing data

Figure 2: Reconstruction experiment results on Berkeley’s jumping action versus change of number of hidden states. HHMM-A
refers to adversarial learning variant and HHMM-M refers to maximum likelihood learning variant. (Best view in color)

closed-form solution can be obtained by setting the derivative
to zero.

Reconstruction The goal of reconstruction is to generate a
novel sequence that resembles the input sequence. The recon-
struction process evaluates the capability of model capturing
the dynamics of sequential data. Since the hidden state chain
is the primary source that encodes the dynamic change of
the data, we first infer the most probable configuration of
state chain. We compute the MAP estimate θ∗ by solving the
following problem using MAP-EM (Gauvain and Lee 1994),
where the E-step has complexity O(Q2T ) and M-step has
closed-form solution.

θ∗ = argmax
θ

log
∑
Z

P (X,Z|θ, θ̂) + logP (θ|α̂) (11)

Then we perform Viterbi decoding algorithm (Rabiner 1989)
on observed testing sequence given θ∗. Finally, we compute
the most likely observations given the decoded states in the
same way as described in data synthesis.

Compute data likelihood The marginal likelihood of the
model evaluated on data X is defined as follows.

llh(X) = logPG(X|α) (12)

= log

∫
θ

∑
Z

P (X,Z|θ, θ̂)P (θ|α̂)dθ

Exact computation of Eq. (12) is intractable due to the inte-
gration over θ introduces additional dependencies among Z.
We use the following approximation.

llh(X) ≈ ˆllh(X) = log
∑
Z

P (X,Z|θ∗, θ̂) (13)

where θ∗ is defined by Eq. (11). Then Eq. (13) can be com-
puted using forward-backward algorithm (Rabiner 1989).

Experiments
We evaluate the model on two tasks related to motion capture
data analysis. For each type of real motion capture data, we
fit one model to capture the specific dynamic process of the
action. We first quantitatively evaluate the model capability
in capturing dynamics through reconstruction experiments.
Then we show the learned model can be used to synthesize

novel motion data with different intra-class variation with
both quantitative and qualitative results.

Datasets: CMU Motion capture database (CMU ) con-
tains a diverse collection of human motion data captured by
commercial motion capture system. Up to date, there are
2605 sequences in 6 major categories and 23 subcategories
collected from 112 different subjects. We select a subset of
the database to train our model including actions of walking,
running and boxing from 31 subjects with averaging 101 se-
quences per action. UC Berkeley MHAD (Ofli et al. 2013)
contains motion data collected by multiple modalities. We
only use the motion capture data. There are 12 subjects per-
form 11 type of actions and each action is repeated 5 times,
yielding large intra-class variation. We select three actions
for experiments, namely jumping in place, jumping Jack and
boxing, which involve substantial whole body movement.

Preprocessing: We subtract the root joint location of each
frame to make the skeleton pose invariant to position change.
We further convert the rotation angles to exponential map rep-
resentation in the same way as (Taylor, Hinton, and Roweis
2006), which makes the skeleton pose invariant to the ori-
entation against gravitational vertical. We exclude features
that are mostly constant (standard deviation < 0.5), result-
ing 53 and 60 feature dimension per frame respectively on
CMU and Berkeley datasets. The feature dimension is then
doubled by including speed feature obtained as the differ-
ence of consecutive frames along each feature dimension.
All features are scaled to have standard deviation 1 within
each dimension. Finally, we divide the original sequences
into overlapping segments of the same length for simplicity
so that the model likelihood on different data is unaffected by
the sequence length, though our model can take sequence in-
put with different length. The preprocessed data is then used
to train HHMM and other compared methods. We evaluate
performance on feature space for all methods.

Implementation: For Algorithm 1, we use k = 1, l =
1,M = 10, N = 100. RMSProp decay is 0.9 and perturba-
tion is 10−6. The learning rate for generator is 10−3 and for
discriminator is 10−4. The maximum number of epochs is
set to 100. To initialize α, we use K-means to cluster observa-
tions and use cluster assignment as hidden state value, from
which we can estimate the model parameters and hyperpa-
rameters. To initialize φ+, we use MLE of the first batch of
real and synthetic data. φ− is set equal to φ+. Our Matlab
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code runs on a PC with 3.4GHz CPU and 8GB RAM. The
average training time per class is 1.3 hour on CMU dataset
and 1.9 hour on Berkeley dataset.

Data reconstruction
In this experiment, we demonstrate the learned HHMM have
large capacity to handle intra-class variation in motion cap-
ture data. For each action category, we divide the data into 4
folds with each fold containing distinct subjects. Reconstruc-
tion is performed in a cross-fold manner meaning each fold
is used as testing data once with remaining folds as training
data. We report the average results over all folds and all input
dimensions.

Quantitative metrics: We use Pearson correlation coef-
ficient (PCC) and mean squared error (MSE) computed in
feature space between reconstructed and actual values. PCC
measures how well the prediction can capture the trend of
motion change. PCC is a number between 0 and 1 and the
larger the better. MSE is a positive number measuring the
deviation between reconstructed and actual value and the
smaller the better. We also report approximate loglikelihood
of model evaluated on reconstructed data.

First, we compare with two baselines namely HMM and
HHMM that are both learned by maximizing likelihood.
While MLE of HMM is done using EM, MLE of HHMM
is intractable. We approximate the MLE through a two-step
optimization process as described in inference method. We
vary the hidden state number of all the methods and evaluate
their performance as shown in Figure 2.

We observe that both variants of HHMM consistently out-
performs HMM in PCC and MSE across different state num-
bers. In addition, when the state number is small, increasing
the value helps both methods. As the value keeps increasing,
HHMM performance reaches a plateau and HMM perfor-
mance starts to drop, showing symptom of overfitting to
training data. The overfitting of HMM becomes more clear
when looking at the likelihoods, which drop significantly
from training data to testing data. This shows that compared
to non-hierarchical counter-part, HHMM has a larger capac-
ity, which allows the model to adapt to novel data and less
prone to overfitting. Comparison between two variants shows
that HHMM-M consistently achieves higher likelihood on
training data across actions and datasets than HHMM-A.
This is consistent with the maximizing likelihood objective
of HHMM-M. On testing data, the likelihood gap between
HHMM-M and HHMM-A becomes smaller. For PCC and
MSE, HHMM-A consistently outperforms HHMM-M. Over-
all, these results show that the adversarially learned HHMM
can generalize better to novel data by capturing dynamic data
distribution well.

Then we compare our method with several state-of-the-art
dynamic generative models including GPDM (Wang, Fleet,
and Hertzmann 2008), which is a non-parametric model,
ERD (Fragkiadaki et al. 2015), which is an RNN/LSTM
based method, and TSBN (Gan et al. 2015), which incor-
porates neural networks and graphical models. We set the
hidden state number to 20 for HHMM throughout the remain-
ing experiments. For other methods, we use author provided

code to perform experiments. The results average over differ-
ent actions are shown in Table 1.

Table 1: Reconstruction results of different methods averaged
over different features and actions. Number in [] is standard
deviation.

Dataset CMU Berkeley
Metric PCC MSE PCC MSE
HMM 0.36[0.46] 1.12[1.54] 0.43[0.46] 0.87[1.95]
GPDM 0.70[0.24] 0.24[0.36] 0.47[0.35] 0.51[1.03]
ERD 0.66[0.34] 0.61[1.15] 0.75[0.30] 0.31[1.17]
TSBN 0.79[0.24] 0.27[0.92] 0.81[0.25] 0.18[0.64]
HHMM 0.81[0.22] 0.20[0.77] 0.81[0.26] 0.12[0.30]

On average, in CMU dataset, we achieve 2% absolute im-
provement in PCC compared to the second best TSBN and
0.04 absolute reduction in MSE compared to the second best
GPDM. In Berkeley dataset, we achieve comparable perfor-
mance in PCC compared to the second best TSBN and 6%
improvement to ERD. We reduce MSE by 0.06 compared to
the closest competitive TSBN. In both datasets, we outper-
form the baseline method by a large margin.
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Figure 3: Average largest pairwise SSIM between synthetic
motion sequences and real sequences from (a) CMU and (b)
Berkeley datasets. (Best view in color)
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Data synthesis
In this experiment, we demonstrate that adversarially learned
HHMM can generate both realistic and diverse motion se-
quences. For each type of action, we train a model, which is
then used to generate motion of the same type following the
description in inference method.

Quantitative results: Sequential data brings additional
challenge to quality evaluation due to large variation and
dependency on both space and time. Motivated by the need
to consider both fidelity and diversity of the generated se-
quential data, we adopt the structure similarity index (SSIM)
(Wang et al. 2004) to evaluate synthesized data quality. SSIM
is originally proposed for evaluating quality of a corrupted
image against intact reference image. It is easy to compute
and correlates well with perceptual quality of the image. It
is a value between 0 and 1. The larger the value the more
perceptually similar the images. (Odena, Olah, and Shlens
2017) adopted it for evaluating the overall image diversity
generated by the GAN. To adapt SSIM for sequential data,
we concatenate the features over time so that it can be viewed
as an image, where each pixel in the image corresponds to a
joint angle at a time. For each method, we generate 1000 se-
quences. For each sequence, we compute the pairwise SSIM
against all the training sequences and choose the largest one.
Finally, we use the average largest SSIM as measure of the
diversity of the synthesized sequences. As a reference, we
compute the pairwise SSIM among all the training sequences.
The results are shown in Figure 3. For both datasets, the av-
erage training data SSIM is the lowest among all the results,
indicating significant intra-class variation. Among different
competing methods, HHMM-A achieves the lowest average
SSIM. This shows adversially learned HHMM can gener-
ate the most diverse set of motion sequences. Comparing
different action categories, a more complex action such as
boxing usually achieves lower SSIM. From this point of view,
HHMM is generating data consistent with the training set. For
method producing high SSIM value e.g. TSBN on Berkeley’s
boxing, it indicates that the method overfits to some training
data instances and fails to generalize diverse synthetic data.

Qualitative results: Figure 4 show some examples of syn-
thetic sequences of different actions, where different rows
show different samples drawn from the same motion category.
Notice that the sampling process may not always generate
meaningful motion in terms of the pose change since the
random nature of hidden state transition. We use SSIM as a
reference and select the generated sequence whose largest
SSIM is above a threshold. On one hand, we are able to
distinguish different motion sequences, indicating the data
look physically meaningful and realistic. On the other hand,
the sequences show various styles in motion, which show
HHMM can generate different variations for the same action.

Conclusion
In this paper, we enhanced HMM through Bayesian hierarchi-
cal framework to improve the model capability in modeling
dynamics under intra-class variation. We proposed a novel
learning method that learns HHMM under adversarial objec-

(a) Walking (b) Running

(c) Boxing (d) Jumping

Figure 4: Synthetic motion sequences. Each row is a uni-
formly downsampled skeletal sequence from one synthetic
action. Different rows are different samples.

tive, which has shown promising results in data generation
applications compared to conventional maximum likelihood
learning. Through both quantitative and qualitative evalua-
tions, we showed the learned model can capture the dynamic
process of human motion data well and can be used to gener-
ate realistic motion sequence with intra-class variation. For
future work, we plan to introduce higher order dependency
structure to better capture long-term dependency. We are also
interested in training with different types of actions together
instead of fitting one model at a time.
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