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Abstract

Top-N item recommendation techniques, e.g., pairwise mod-
els, learn the rank of users’ preferred items through separat-
ing items into positive samples if user-item interactions ex-
ist, and negative samples otherwise. This separation results in
an important issue: the extreme imbalance between positive
and negative samples, because the number of items with user
actions is much less than those without actions. The prob-
lem is even worse for “cold-start” users. In addition, existing
learning models only consider the observed user-item prox-
imity, while neglecting other useful relations, such as the un-
observed but potentially helpful user-item relations, and high-
order proximity in user-user, item-item relations. In this pa-
per, we aim at incorporating multiple types of user-item rela-
tions into a unified pairwise ranking model towards approx-
imately optimizing ranking metrics mean average precision
(MAP), and mean reciprocal rank (MRR). Instead of taking
statical separation of positive and negative sets, we employ a
random walk approach to dynamically draw positive samples
from short random walk sequences, and a rank-aware nega-
tive sampling method to draw negative samples for efficiently
learning the proposed pairwise ranking model. The proposed
method is compared with several state-of-the-art baselines on
two large and sparse datasets. Experimental results show that
our proposed model outperforms the other baselines with av-
erage 4% at different top-N metrics, in particular for cold-
start users with 6% on average.

Introduction

Providing personalized services to users still raises continu-
ous challenges. Usually users’ preferences over items could
be encoded as explicit ratings like starring items or in the
case of implicit data of user-item interactions (e.g., “user A
clicks on or purchases item B”). Nowadays it’s widely ac-
ceptable to pay more attention on optimizing the rank of
items from implicit data, other than rating estimation (Ko-
ren, Bell, and Volinsky 2009). This leads to a shift from rat-
ing estimation to rank optimization. Inspired by learning to
rank community, pairwise models towards rank optimiza-
tion are among the most popular top-N item recommenda-
tion techniques, under the basic assumption that items with-
out user actions (e.g., clicks) are of less interest than those
with user actions.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Most of the pairwise learning approaches (Shi et al.
2012b; Rendle et al. 2009; Yu et al. 2016b; Zhang et al.
2013) separate items into positive or negative set accord-
ing to the first-order local structure, if representing observed
user-item interactions as a collaborative bipartite graph. It
means that only direct neighbors (i.e., items) connected to a
user u are allocated to a positive set, while all other items
(not connected to u) are negative samples. Several issues
might be raised by such a separation.

1. The ratio of negative samples to positive samples is seri-
ously imbalanced, as users normally only have actions on
a small portion of items. Especially, for those cold-start
users, too few positive samples could lead to insufficiently
modeling their preferences over items.

2. Only observed user-item relations are taken into account
to construct pairwise samples, while those potentially use-
ful but unobserved relations are ignored. These ignored
relations include i) unobserved but potentially helpful
user-item relations among users and items that are not
directly connected in the bipartite graph; and ii) high-
order user-user, item-item relations. User-user similarity
and item-item similarity are essential for inferring user
preference in collaborative filtering. However, the current
separation in pairwise models restrains the consideration
of high-order proximity.

Our goal in this work is to take multiple relations including
user-item, user-user and item-item relations, into the rank
learning model for improving top-N item recommendation.

To extract and measure multiple relations, we propose to
generalize the 0/1 user-item relations considered in stan-
dard pairwise models to probability-based user-item rela-
tions (called probability relevance). From a probability per-
spective, we enable unobserved user-item pairs to become
potentially positive samples if they can be connected indi-
rectly in a bipartite graph. The introduction of probability
relevance drives us to revisit the definition of previous MAP
and MRR Loss for recommendation tasks where only binary
relevance is considered. To smooth the newly defined loss
functions, we derive their lower bound and find that new
MAP and MRR loss function have the same lower bound.
Therefore, we present a unified ranking model as an al-
ternative optimization objective. To efficiently learn model
parameters, sequential samples induced from random walk
sequences are constructed as positive samples, and a rank-
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aware dynamic negative sampling approach is employed to
select effective samples from massive possible candidates.
As the proposed method combines the characteristics of ran-
dom walk and ranking model, it is named WALKRANKER.
The main contributions of this work include:

1. We unify MAP and MRR Loss in a general pairwise rank-
ing model, and integrate multiple types of relations for
better inferring user’s preference over items.

2. As far as we know, this is the first work that derives pair-
wise samples for multiple relations via generalizing the
0/1 relations to probability-based relations through a ran-
dom walk strategy in a user-item bipartite graph.

3. Evaluation results show that the proposed model outper-
forms other rank learning methods. Particularly, it per-
forms well on cold-start users with average 6% improve-
ment on different top-N metrics over strongest baseline.

Related Work

At early period of time, the mainstream of recommenda-
tion research has focused on the rating estimation based on
the explicit data (Koren, Bell, and Volinsky 2009; Linden,
Smith, and York 2003). Recently many works have began
to adopt the idea of learning-to-rank to explore users’ pref-
erence on items from ranking perspective (Shi, Larson, and
Hanjalic 2010; Rendle et al. 2009; Hu, Koren, and Volin-
sky 2008; Zhang et al. 2017; Yu et al. 2016a). In contrast
to rating prediction, addressing item recommendation as a
ranking problem closely matches practical applications, but
still remains many challenges. A typical one is how to deal
with missing data. Hu et al. (Hu, Koren, and Volinsky 2008)
proposed to weight unknown data with a prior value. Though
the processed feedback matrix becomes very dense, only ob-
served feedback matters after mathematical transformation.
Also learning-ratio-free feature inspires a series of works
such as (He et al. 2016; Bayer et al. 2017), which employ
coordinate descent to reduce its computation complexity
and obtain state-of-the-art performance. From the pairwise
learning community, unequal relationship could be extracted
between observed and unobserved feedback. BPR (Rendle et
al. 2009) was a seminal research to model pairwise learning
from Bayesian perspective. Later on, Rendle et al. (Rendle
and Freudenthaler 2014) pointed out that the uniform sam-
pling strategy implemented by BPR could suffer from in-
sufficient gradient updates, and proposed an adaptive sam-
pling method. Actually, before Rendle et al. (Rendle and
Freudenthaler 2014), Zhang et al. (Zhang et al. 2013) dis-
cussed the sampling problem, and defined two types of
dynamic sampling functions. Weston et al. (Weston, Ben-
gio, and Usunier 2011) defined order pairwise ranking loss
and developed online Weighted Approximate-Rank Pair-
wise (WARP) method, which can be applied to various top-
N learning problems, such as video recommendation (We-
ston, Yee, and Weiss 2013), collaborative retrieval (Weston
et al. 2012). Besides Bayesian pairwise preference defined
in (Rendle et al. 2009), several pioneering works (Usunier,
Buffoni, and Gallinari 2009; Shi et al. 2012b; 2012a;
Weimer et al. 2007) attempt to directly take ranking met-
ric favoring top-N performance as the optimization object.

Shi et al. (Shi et al. 2012b; 2012a) proposed to directly op-
timize modified MAP and MRR Loss, but not utilizing rank
positions of positive samples and keeping the binary rele-
vance assumption that leads to static positive and negative
sample set. RankMBPR (Yu et al. 2016b) is the most related
work to WALKRANKER. However, WALKRANKER has sev-
eral advantages over RankMBPR, e.g., it unifies both MAP
and MRR Loss into a general pairwise ranking model, and
proposes probability relevance to make it flexible to capture
more types of relations to tackle data sparsity problem, es-
pecially for making cold-start recommendation.

Problem Formulation

Top-N item recommendation generates a list with N items
that are ranked according to a user’s preference (in descend-
ing order) inferred from users’ historical feedbacks. Since
no rating estimation is required, a variety of implicit feed-
back data can be used for learning the rank of top-N rec-
ommendations. Let U and I represent the user and item set,
respectively. User-item interactions can be presented as a bi-
partite graph G = (V,E), where V = U ∪ I , and an edge
eij ∈ E only occurs between a vertex vi ∈ U and vj ∈ I ,
where symbol i, j denotes the index for ith or jth vertex,
respectively. Let N (vi) denote the neighbors of vertex vi.
Figure 1(a) presents a toy example, where a circle vertex
represents a user and a rectangle vertex denotes an item.
Bipartite graph G can be represented as an adjacent matrix
X ∈ {0, 1}|V |×|V |, where each element Xij = 1 if edge eij
exists, otherwise Xij = 0.

Unified Pairwise Ranking Model

In this section, we will first review the limitations of exist-
ing approaches, then elaborate the proposed method to over-
come the challenges.

Motivation

Most of approaches for top-N recommendation task have
two common features, i) Only observed user-item interac-
tion is taken into account, while those unobserved but poten-
tially helpful relations are ignored; ii) Positive and negative
samples are statically separated, where observed feedbacks
(i.e. vj ∈ N (vi)) are regarded as positive samples, otherwise
negative samples. In this work, we argue that the capacity of
ranking approaches that follow these two features, may be
limited based on the following consideration:

C1 Those ignored relations include i) user-item relation
among users and items that are not directly connected
in the bipartite graph. Taking user u1 as an example,
item i2 and i5 are both unvisited items, shown in Figure
1(b) and 1(c). Due to i2’s closeness to u1, u1 may show
a larger probability to have potential interaction with i2
than i5; ii) though user-user and item-item links do not
exist in the original graph, user-user similarity and item-
item similarity can be inferred from their shared tastes
on items or users. The inferred relations acting as reg-
ularization terms have been proved powerful in rating
estimation tasks (Ma et al. 2011).
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C2 Static division will cause imbalanced portion of positive
to negative samples, because users usually have actions
on a small portion of items. In particular, cold-start users
have too few positive samples to sufficiently learn their
preferences.

Model Multiple Relations (Response to C1)

To find the optimal rank order of items, a common approach
is to optimize an objective function that is defined by a
ranking metric. Mean average precision (MAP) is a widely-
adopted measurement of the performance of a top-N rec-
ommendation method. We extend the original definition of
MAP on user-item interaction (Shi et al. 2012a) to multiple
relations (i.e., user-item, user-user, item-item) as follows:

MAP =

∑
vi∈V APvi

|V |

=
∑

vi∈V

∑
vj∈V

Xij

Rij

∑
vk∈V XikI(Rik < Rij)

|V |∑vj∈V Xij

(1)

where each vertex vi can stand for a user or item, vj acts
as positive samples, and vertex vk acts as a negative sam-
ple. Rij denotes the rank of target vj for a given entity vi
(e.g., Rij = 1 if entity vj ranks at the first), and I(·) is
the indicator function, which equals to 1 if the condition is
satisfied, otherwise 0. Besides MAP, mean reciprocal rank
(MRR) also aims at raising the most relevant document as
top as possible in ranking. Similar to modified MAP loss,
we modify the original definition (Shi et al. 2012b) for rec-
ommendation task as follows:

MRR =

∑
vi∈V RRvi

|V |
=

∑

vi∈V

∑

vj∈V

Xij

|V |Rij

∏

vk∈V

(1−XikI(Rik < Rij))
(2)

Binary to Probability Relevance (Response to C2)

Note that only binary relevance Xij ∈ {0, 1} is considered
when defining the above ranking metrics. Such an assump-
tion makes optimization intractable, and fails to capture un-
observed interactions as we discussed before. Xij = 0 does
not always mean that entity vi has no proximity to vj . It
may be because vi had no access to, but still probably be
similar or like the unlinked entity vj . Therefore, we pro-
pose to extend binary interaction with a probability rele-
vance X̂ij ∈ [0, 1] with the following details:

Definition 1 For observed links (existing user-item interac-
tions) in bipartite graph G, i.e., X̂ij = 1, which indicates
that entity vi always shows a clear preference over entity vj .
While for those unobserved links (user-item, user-user, item-
item), instead of X̂ij = 0, the value of X̂ij is a probability
value between 0 and 1.

In later section, we will present how to express X̂ij based
on a random walk method, with a basic idea that the value
of X̂ij has a positive relationship with the number of ran-
dom paths starting from vi towards vj in bipartite graph G.

��� ���

��� ���

Figure 1: Toy example shows observed user-item relation-
ship and latent interactions. (a) presents a bipartite graph
derived from observed user-item interactions; (b) shows a
path from source vertex u1 to target item i5; (c) shows a
path from source vertex u1 to target item i2; (d) is an ex-
ample path to show direct and indirect user-item, item-item,
user-user interactions.

Expressing X̂ij with dynamic random walk sequences will
lead to dynamic division of positive and negative samples as
a response to motivation C2.

Reciprocal Rank Optimization

Clearly, maximizing MRR Loss equals to optimizing each
single component RRvi . Let’s rewrite RRvi defined in Eq.
(2) with probability relevance as follows:
∑

vj∈V

E(i,j)∼p(i,j|X̂ij)

[ 1

Rij

∏

vk∈V

(1− X̂ikI(Rik < Rij))
]

(3)
Measuring I(Rik < Rij) in Eq. (3) actually equals to get-
ting the mapping value of I(ŷik > ŷij), where ŷij denotes
the predicted relevance score for a pair of entities (vi, vj).
To maximize RRvi , we need minimize X̂ikI(Rik < Rij)
as much as possible (i.e., ŷik < ŷij). Inspired by (Shi et
al. 2012b), we can approximate X̂ujI(Ruj < Rui) by a
sigmoid function g(ŷikj), where g(x) = 1/(1 + e−x), and
ŷikj = ŷik − ŷij . Analogously, we can approximate 1/Rij

with g(ŷij), as a larger relevance score ŷij makes 1/Rij

closer to 1, while a smaller ŷij pushes 1/Rij away from 1
(e.g., ranking entity j at the bottom of the list). Note that the
entities are ranked in descending order according to their
predicted score. Then the smoothed RRvi optimizes recom-
mendation model parameters Θ by:

Θ := argmax
Θ

{RRvi} ⇔ argmax
Θ

{ln 1

|V |RRvi
} (4)

Applying Jensen’s inequality on the concave function ln(·),
we derive the lower bound of ln( 1

|V |RRvi) as follows:

ln
( 1

|V |
∑

vj∈V

E(i,j)∼p(i,j|X̂ij)

[
g(ŷij)

∏

vk∈V

(1− g(ŷikj))
])

≥ 1

|V |
∑

vj∈V

E(i,j)∼p(i,j|X̂ij)

[
ln g(ŷij) +

∑

vk∈V

ln g(ŷijk)
]

(5)



Finally we can approximately optimize MRR by maximizing
following objective function:

∑

vi∈V

∑

vj∈V

E(i,j)∼p(i,j|X̂ij)

[
ln g(ŷij) +

∑

vk∈V

ln g(ŷijk)
]

(6)

Average Precision Optimization

As shown in Eq. (1), AP is only based on the ranks of rel-
evant items, but not including the irrelevant ones. Accord-
ing to the study in (Shi et al. 2012a), improving AP can
be achieved via increasing the predicted value of relevant
entities (user or item), meanwhile reducing the value of ir-
relevant ones. Therefore, maximizing the gap of ranks be-
tween relevant and irrelevant entities equals to ranking rel-
evant ones before irrelevant as much as possible. Similar
to the induction of approximated MRR Loss with employ-
ing smoothing function g(·), optimizing MAP Loss can be
achieved by optimizing each component APvi as below:

Θ := argmax
Θ

{APvi} = argmax
Θ

{ln 1

|V |2APvi} (7)

Analogous to the induction of lower bound of RRvi , we de-
rive the lower bound of ln 1

|V |2APvi as follows:

ln
( 1

|V |2
∑

vj∈V

E(i,j)∼p(i,j|X̂ij)

[ 1

Rij

∑

vk∈V

(1− X̂ik)I(Rij > Rik)
])

≥
∑

vj∈V

E(i,j)∼p(i,j|X̂ij)

[
ln g(ŷij) +

∑

vk∈V

ln g(ŷijk)
] (8)

where we approximate the term (1−X̂ik)I(Rik < Rij) with
a sigmoid function g(ŷijk), and replace 1

Rij
with g(ŷij).

Unified Pairwise Collaborative Filtering

Comparing the new MAP Loss optimization function in Eq.
(8) with the final MRR Loss optimization function defined
in Eq. (6), we see that they have the exact same formu-
lation. This means that we can optimize two metrics in a
unified objective model. Intuitively, g(ŷijk) measures the
probability that the predicted relevance value of positive
sample vj should be larger than negative one vk. How-
ever, it has an issue with sufficiently penalizing the en-
tities that are at a lower rank, which leads to a subopti-
mal top-N recommendation performance. A popular way to
solve this problem is to employ a weighting pairwise rank-
ing loss to give larger penalties on positive ones at lower
rank (Yu et al. 2016b; Weston, Bengio, and Usunier 2011;
Yuan et al. 2016). Therefore, we formulate the unified rank-
ing objective function as follows:

∑

vi∈V

∑

vi∈V

E(i,j)∼p(i,j|X̂ij)

[
ln g(ŷij)

+ wij

∑

vk∈V

ln g(ŷijk)
]− λΘ||Θ||2

(9)

where λΘ is the model regularization parameter, and wui

denotes a dynamic weight depending on the rank of positive
item i (described in later Section). Model parameters Θ can
be learned via maximizing Eq. (9).

Figure 2: Illustration to describe a path generated via a ran-
dom walk beginning at vertex u1, and possible interactions
within a fixed context window.

Learning Algorithm

Although Eq. (9) can be solved by stochastic gradient meth-
ods, there remain two important challenges: (i) how to select
a positive sample since multiple relations with probability
relevance assumption taken into account; (ii) after selecting
a positive sample, how to choose a negative one.

Optimize Ranking Model (Response to C2)

In this work, positive samples are derived from a random
walk sequence. A pair of entities (e.g., user-item, item-user,
user-user, item-item) are regarded as a positive training sam-
ple if they simultaneously appear in a random walk se-
quence, even they are not directly connected in the bipartite
graph. Negative samples are dynamically sampled accord-
ing to the rank position of positive samples. For each node
vi ∈ V , we can obtain a short random walk sequence Wτ

vi =

{w0
vi , w

1
vi , w

2
vi , · · · , wτ

vi}, wτ
vi ∈ V and w0

vi = vi. After a
sequence Wτ

vi is generated, training samples are extracted
to learn model parameters. Given a random walk sequence
Wτ

vi , we can enumerate every wi
vi ∈ Wτ

vi as a target ver-
tex, and uniformly generate a random window size ρ to con-
struct a context Ci

vi = {wi−ρ
vi , · · · , wi−1

vi , wi+1
vi , · · · , wi+ρ

vi
},

shown as a toy example in Figure 2. Note that each vertex
wi

vi ∈ V can be either a user or an item. Suppose the target
vertex wi

vi ∈ U is a user vertex. A context vertex cvi ∈ Ci
vi

can be picked out to capture user-item interactions if cvi
is an

item vertex, and to capture user-user interactions if cvi is a
user vertex. Let dc denote the distance from the target vertex
wi

vi to cvi in Ci
vi . The larger the dc is, the weaker interac-

tion happens between the target vertex wi
vi and the context

vertex cvi . We define a weight function ω(dc) = eβ·(1−dc)

as a response. By using gradient ascent, the parameters are
updated by:

Θ += α · ω(dc) ·
(∂ ln g(ŷij)

∂Θ
+ wij

∂ ln g(ŷijk)

∂Θ
− λΘΘ

)
(10)

where negative sample vk is sampled from negative set V −
vi

.
For each sequence Wτ

vi , V
−
vi

= V \ {N (vi) ∪Wτ
vi}. Since

Wτ
vi is dynamically generated, we can obtain a dynamic di-

vision of positive (i.e., {N (vi) ∪ Wτ
vi}) and negative sam-

ples. Score function is ŷij = bi+bj+uiv
T
j , where u∗ ∈ R

d,
v∗ ∈ R

d, and bi is the bias term for each entity vi ∈ V .

Weighted Dynamic Negative Sampling

To select effective negative samples for gradient updates,
we employ a rank-aware negative sampling approach pro-
posed in (Yu et al. 2016b). The most significant advantage
of this approach is that the dynamic weight wui depends



Table 1: Statistics of the used datasets.
Datasets #Users #Items #Feedbacks Sparsity

Yelp 16,826 14,902 245,109 0.097%
Epinions 49,289 139,738 664,823 0.02%

on the rank position of positive samples, and is defined as
wij =

∑rj
s=1

1
s , where rj =

∑
vk∈V −vi

I[�+ ŷik ≥ ŷij ], � de-
notes a margin value. A larger ri value implies a higher con-
fidence to speed up the parameter update. It’s inefficient to
obtain the exact ri according to the definition, and infeasible
to be optimized with gradient methods. Instead, it can be fast
estimated based on a geometry distribution. More specifi-
cally, we first select a subset V̂ −

vi
⊂ V −

vi
with a fixed size

n � |V −
vi
|. For a given sample (vi, vj), one uniformly draws

a random negative sample from V̂ −
vi

until finding a vk, which
satisfies � + ŷik ≥ ŷij . Then the ri can be approximated as
ri ≈ 	n−1

K 
, where 	·
 denotes the floor function and K is
the number of steps to find item j. Correspondingly, an item
buffer bufferij with size κ stores every sampled negative
item j. Finally, ri can be approximated as ri ≈ 	 n−1

min(K,κ)
,
and the final negative sample vk to update model parame-
ters will be selected from the top of the sorted bufferij in
descending order based on ŷik.

Experimental Evaluation

In this section, we will describe our experimental setting,
and present the experimental results, with comparison to dif-
ferent kinds of baseline methods.

Dataset & Baselines

To examine the capacity of our proposed method, we
conduct experiments on two real-world datasets (Yelp1

in Round 3 and Epinions2). Following recent published
works (Rendle et al. 2009; He et al. 2017), we convert star
rating into binary feedback by setting observed entries to 1,
regardless of the specific rating values. We pre-filter users
with at least 4 reviews. The statistical summarization of two
datasets is described in Table 1. We mainly focus on top-
N measures including Precision@N (Herlocker et al. 2004),
Recall@N (Herlocker et al. 2004), MAP@N (Liang et al.
2016), MRR@N (Yu et al. 2013). Several types of state-
of-the-art baselines are taken into consideration when com-
paring with WALKRANKER, including pointwise algorithm
WRMF (Hu, Koren, and Volinsky 2008), pairwise ranking
approaches BPR (Rendle et al. 2009), AdaBPR (Rendle and
Freudenthaler 2014), WARP (Weston, Bengio, and Usunier
2011), DNS (Zhang et al. 2013), and RankMBPR (Yu et
al. 2016b). We use Librec3 (Guo et al. 2015) (a java library
for recommender system) to run all of the algorithms, and
implement the proposed approach WALKRANKER.

1https://www.yelp.com/dataset challenge
2http://www.trustlet.org/downloaded epinions.html
3http://www.librec.net/
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Figure 3: Recommendation performance on the full testing
set with various values of dimension d.
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Figure 4: Recommendation performance on cold-start
users with various values of dimension d.

Performance Analysis

To validate the performance of different algorithms on dif-
ferent data sparsity, we randomly select 80% or 50% data as
training set, and the other 20% or 50% data as the testing
set. All baseline algorithms in this work take matrix factor-
ization as the scoring function. For the simplicity and fair
comparison, we set the number of dimension parameter d to
a same fixed number, e.g., d = 30 for Table 2 and 3, d = 60
for Figure 5 and 6. In the “Data” column of Table 2 and
3, “dataname-80 or -50” like Yelp-80 denotes the propor-
tion of raw data for training models. Though we preprocess
Yelp users, there’re still 49% users with less than 5 reviews
in training set Yelp-80, and 68% in Yelp-50. All reported
results are average value of 5 converged runs. The value of
hyper-parameters for baselines are decided via implement-
ing grid search on different settings, and the combination
that leads to best performance is selected.
Adaptive Sampling. BPR is a strong pairwise baseline, and
WRMF represents a state-of-the-art pointwise ranking al-
gorithm. From the results shown in Table 2 and Figure 5,
we can see that usually BPR has a competitive performance
against WRMF, but both of them are worse than those base-
lines with adaptive negative sampling approaches like Ad-
aBPR, WARP and RankMBPR.
Rank-aware Strategy. Different from AdaBPR or DNS’s
dynamic sampling strategies, WARP, RankMBPR and
WALKRANKER consider the rank of positive items as an
indicator to control the parameters update magnitude. We
can see that in both two datasets with different sparsity, al-
gorithms with rank-aware strategy (e.g., RankMBPR and
WALKRANKER) achieve better performance than AdaBPR.

With vs Without Multiple Relations. WALKRANKER
incorporates more types of relations into a unified op-
timization function for top-N metrics. Comparing with
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Table 2: Ranking performance comparison (the best results are marked with *). The last column shows the improvement of
WALKRANKER over the best baseline algorithm, highlighted with underline.

Data Metrics WRMF BPR DNS AdaBPR WARP RankMBPR WALKRANKER Improv.

Yelp-80
Precision@10 0.0153 0.0199 0.0203 0.0209 0.0221 0.0233 *0.0235 0.85%
Recall@10 0.0427 0.0597 0.0607 0.0616 0.0625 0.0695 *0.0708 1.87%
MAP@10 0.0172 0.0241 0.0249 0.0252 0.0254 0.0282 *0.0291 3.19%
MRR@10 0.0507 0.0642 0.0663 0.0661 0.0675 0.0731 *0.0751 2.73%

Yelp-50
Precision@10 0.0232 0.0297 0.028 0.0305 0.031 0.0344 *0.0361 4.94%
Recall@10 0.0331 0.0435 0.0395 0.0442 0.0469 0.0505 *0.0544 7.72%
MAP@10 0.0165 0.0208 0.0204 0.0216 0.0218 0.0255 *0.0266 4.31%
MRR@10 0.0459 0.0820 0.0806 0.0831 0.0855 0.0989 *0.1024 3.54%

Epinions-
80

Precision@10 0.0168 0.0157 0.0208 0.0171 0.0191 0.0235 *0.0243 3.40%
Recall@10 0.0359 0.0416 0.0504 0.0441 0.0477 0.0565 *0.0584 3.36%
MAP@10 0.0158 0.0163 0.0220 0.0178 0.0195 0.0255 *0.0264 3.52%
MRR@10 0.0538 0.0504 0.0684 0.0541 0.0581 0.0778 *0.0802 3.08%

Epinions-
50

Precision@10 0.0256 0.0258 0.0320 0.0282 0.0284 0.0363 *0.0387 6.61%
Recall@10 0.0278 0.0316 0.0361 0.0336 0.0350 0.0422 *0.0451 6.87%
MAP@10 0.0162 0.0166 0.0211 0.0181 0.0185 0.0242 *0.0265 9.50%
MRR@10 0.0772 0.0735 0.0909 0.0808 0.0788 0.1058 *0.1155 9.16%

Table 3: Detailed recommendation performance on cold-start users with no more than 5 feedbacks. Improvement of
WALKRANKER over the best baseline is given in the last column.

Data Metrics WRMF BPR DNS AdaBPR WARP RankMBPR WALKRANKER Improv.

Yelp-80
Precision@10 0.0062 0.0093 0.0088 0.0098 0.0093 0.0106 *0.0113 6.06%
Recall@10 0.0389 0.0582 0.0544 0.0596 0.0578 0.0657 *0.0686 4.41%
MAP@10 0.0139 0.0218 0.0195 0.0228 0.0210 0.0231 *0.0248 7.35%
MRR@10 0.0219 0.0342 0.0313 0.0357 0.0323 0.0357 *0.0390 9.24%

Yelp-50
Precision@10 0.0098 0.0128 0.0113 0.0133 0.0139 0.0159 *0.0175 10.05%
Recall@10 0.0328 0.0424 0.0368 0.0428 0.0453 0.0497 *0.0516 3.82%
MAP@10 0.0122 0.0149 0.0138 0.0153 0.0164 0.0183 *0.0195 6.55%
MRR@10 0.0369 0.0425 0.0387 0.0432 0.0476 0.0536 *0.0557 3.91%

Epinions-
80

Precision@10 0.0052 0.0069 0.0078 0.0078 0.0081 0.0092 *0.0094 2.15%
Recall@10 0.0353 0.0493 0.0518 0.0492 0.0537 0.0594 *0.0608 2.35%
MAP@10 0.0126 0.0182 0.0215 0.0195 0.0206 0.0236 *0.0258 9.32%
MRR@10 0.0194 0.0263 0.0318 0.0289 0.0293 0.0347 *0.0371 6.91%

Epinions-
50

Precision@10 0.0085 0.0101 0.0112 0.0105 0.0113 0.0129 *0.0139 7.75%
Recall@10 0.0272 0.0337 0.0366 0.0349 0.0361 0.0421 *0.0449 6.65%
MAP@10 0.0107 0.0131 0.0144 0.0135 0.0138 0.0168 *0.0189 12.5%
MRR@10 0.0304 0.0348 0.0381 0.0361 0.0385 0.0463 *0.0521 12.5%

RankMBPR, drawing pairwise samples from random walk
sequence will bring several benefits, for example, the con-
cept of context window extends the first-order to high-order
proximity, and dynamic negative set adds flexibility to pair-
wise sample construction. The experimental results shown in
Table 2 demonstrate the effectiveness of the usage of mul-
tiple high-order relations. On average, WALKRANKER out-
performs the strongest baseline RankMBPR 4% on different
top-N metrics. From the results generated with 50% training
set we can see that the proposed method has significant im-
provements over all baselines. Detailed evaluation with dif-
ferent lengths of recommendation list are in Figure 5, from
which we can see that WALKRANKER is superior to differ-
ent baselines on top-N metrics. Figure 3 also demonstrates
the effectiveness of WALKRANKER with different value of
dimension d.

Cold-start Users. We further explore the performance of
different algorithms on cold-start users with no more than 5
actions over items. As we said before, these users could have
a serious imbalanced proportion between positive and nega-
tive samples. From the results shown in Table 3, we can see
that the proposed method outperforms the best baseline with
6% on average at different measurements. In particular, the

performance gap increases significantly with the decrease of
training samples. More evidences can be found in Figure 6
and 4, from which we can find that WALKRANKER overall
outperforms different baselines, especially brings significant
improvement of recommendation quality for cold-start users
on MAP@N and MRR@N metrics.

Parameter Sensitive Analysis

There are several hyper-parameters influencing the perfor-
mance of the proposed method WALKRANKER. When val-
idating the impact of a single parameter, we fix the others.

A. How long a random walk should take?
From the results shown in Figure 7(a), we can see that

the walk length has overall limited impact on the perfor-
mance of WALKRANKER. The result slightly fluctuates with
respect to different length limit on Yelp dataset. While, the
performance of WALKRANKER appears to increase as the
growth of walk length τ on Epinions data. It implies that a
long walk sequence should be taken for a very sparse data
like Epinions with 0.02% sparsity.
B. Large or small context window?
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Figure 5: Top-N recommendation evaluation with different
values of N.

Figure 6: Top-N recommendation evaluation for cold-start
users with different values of N.

For a given random walk sequence, we will enumerate
each vertex as well as a context window defined to control
the scope of local interactions. It works together with walk
length τ to induce multiple relations. The results shown in
Figure 7(b) indicate that τ = 10 could be a suitable choice.
Intuitively, a large context window might introduce noisy
vertexes from long distance, and a small context window
may lack the ability to incorporate high-order proximity.
C. Equally or unequally deal with context vertex?

To present the significance of a context vertex, we need
to answer a question whether a context vertex should be
equally or unequally regarded. In this work, we define a
weight parameter β to control the decrease ratio with re-
spect to a distance value. When β = 0, each context vertex
has the same significance to the target vertex. The experi-
mental results in Figure 7(c) demonstrate that context ver-
texes should not be considered equally. An empirical setting
β = 0.4 leads to optimal performance.
D. How to control rank-aware sampling procedure?

(a)

(b)

(c)

(d)

(e)

Figure 7: Impacts of different parameter settings on the per-
formance of WALKRANKER.

Negative samples are uniformly selected in random from
a subset with size n, and stored in a buffer with size κ. The
rank of a positive sample could be estimated as 	 n−1

min(K,κ)
.
We can see that the setting of parameters n and κ can decide
the minimum value of the dynamic weight w. We should si-
multaneously study the effects of these two parameters on
item recommendation performances. Figure 7(d) illustrates
the performance variation over κ when fixing the subset size
n = 1600. The performances of WALKRANKER tend to be
stable when κ increases towards the value of n = 1600.
Figure 7(e) shows that the performances of WALKRANKER
vary with the subset size n. The main reason is that a large
value of n could output a large weight to update parameters,
which indirectly increases the variance of gradients. How-
ever, if we have a database with large scale amount of items
like Epinions, we could safely try a large subset size n as the
results shown in Figure 7(e). In this work, we set κ = 100,
subset size n = 1600 for Yelp, and n = 6400 for Epinions.

Conclusions

In this paper, we aim at incorporating multiple types of user-
item relationships into a unified pairwise ranking model to-
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wards approximately optimizing MAP and MRR ranking
metrics. To tackle the challenges raised from the static di-
vision of pairwise samples, we propose to represent mul-
tiple types of relationship from a probability perspective.
Under this assumption, we modify the discrete definition of
MAP and MRR Loss, then present a unified pairwise ranking
model for optimizing top-N recommendation performance.
We also propose a simple, efficient way to construct train-
ing samples to reflect the probability relevance from a ran-
dom walk perspective. Multiple relations induced from short
random walk sequences tackle the challenges coming from
data sparsity problem, in particular cold-start users. We ex-
perimentally demonstrated the importance of the combina-
tion of dynamic sampling strategy and multiple relations to
solve the problem of item recommendation from implicit
feedback. In future, we would like to explore the potential
application of our method on entity recommendation and re-
lation learning in a heterogeneous network, where simple
random walk will be biased in training sample construction.
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