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Abstract

We would like to learn a representation of the data that reflects
the semantics behind a specific grouping of the data, where
within a group the samples share a common factor of varia-
tion. For example, consider a set of face images grouped by
identity. We wish to anchor the semantics of the grouping into
a disentangled representation that we can exploit. However,
existing deep probabilistic models often assume that the sam-
ples are independent and identically distributed, thereby dis-
regard the grouping information. We present the Multi-Level
Variational Autoencoder (ML-VAE), a new deep probabilistic
model for learning a disentangled representation of grouped
data. The ML-VAE separates the latent representation into se-
mantically relevant parts by working both at the group level
and the observation level, while retaining efficient test-time
inference. We experimentally show that our model (i) learns
a semantically meaningful disentanglement, (ii) enables con-
trol over the latent representation, and (iii) generalises to un-
seen groups.

1 Introduction

Representation learning refers to the task of learning a rep-
resentation of the data that can be easily exploited (Bengio,
Courville, and Vincent 2013). Our goal is to build a model
that disentangles the data into separate salient factors of vari-
ation and easily applies to a variety of tasks and different
types of observations. Towards this goal there are multi-
ple difficulties. First, the representative power of the learned
representation depends on the information one wishes to ex-
tract from the data. Second, the multiple factors of variation
impact the observations in a complex and correlated man-
ner. Finally, we have access to very little, if any, supervision
over these different factors. If there is no specific meaning
to embed in the desired representation, the infomax princi-
ple Linsker (1988) states that an optimal representation is
one of bounded entropy that retains as much information
about the data as possible. By contrast, in our case there
exists a semantically meaningful disentanglement of inter-
esting latent factors. How can we anchor semantics in high-
dimensional representations?
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(a) Objects of mul-
tiple shapes and col-
ors.

(b) Objects grouped
by shape.

(c) Objects grouped
by color.

Figure 1: Shape and color are two factors of variation.

We propose group-level supervision: observations (or
samples) are organised in groups, where within a group the
observations share a common but unknown value for one
of the factors of variation. For example, consider a data set
of objects with two factors of variation: shape and color,
as shown in Figure 1a. A possible grouping organises the
objects by shape, as shown in Figure 1b. Another possi-
ble grouping organises the objects by color as in Figure 1c.
Group supervision allows us to anchor the semantics of
the data (shape and color) into the learned representation.
Grouping is a form of weak supervision that is inexpensive
to collect, and we do not assume that we know the factor of
variation that defines the grouping.

Deep probabilistic generative models learn expressive
representations of a given set of observations. Examples
of such models include Generative Adversarial Networks
(GAN) (Goodfellow et al. 2014) and the Variational Au-
toencoder (VAE) (Kingma and Welling 2014; Rezende, Mo-
hamed, and Daan 2014). In the VAE model, an encoder
network (the encoder) encodes an observation into its la-
tent representation (or latent code) and a generative network
(the decoder) decodes an observation from a latent code.
The VAE model allows efficient test-time inference by us-
ing amortised inference, that is, the observations parametrise
the posterior distribution of the latent code, and all observa-
tions share a single set of parameters to learn. However, the
VAE model assumes that the observations are independent
and identically distributed (iid). In the case of grouped ob-
servations, this assumption is no longer true. Consider again
the toy example of the objects data set in Figure 1, and as-
sume that the objects are grouped by shape. The VAE model
processes each observation independently and takes no ad-
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(a) Original VAE assumes iid observations. (b) ML-VAE at training. (c) At test-time, ML-VAE generalises to un-
seen shapes and colors and allows control of
the latent code.

Figure 2: In (a) the VAE model assumes iid observations. In comparison, (b) and (c) show our ML-VAE working at the group
level. In (b) and (c) upper part of the latent code is color, lower part is shape. Black shapes show the ML-VAE accumulating
evidence on the shape from the two grey shapes. E is the Encoder, D is the Decoder, G is the grouping operation.

vantage of the grouping information. This is shown in Fig-
ure 2a. How can we build a probabilistic model that easily
incorporates the grouping information and learns the corre-
sponding relevant representation?

We propose a model that retains the advantages of amor-
tised inference while using the grouping information in a
simple and flexible manner. We present the Multi-Level
Variational Autoencoder (ML-VAE), a new deep probabilis-
tic model that learns a disentangled representation of a set
of grouped observations. The ML-VAE separates the latent
representation (or latent code) into semantically meaningful
parts by working both at the group level and the observa-
tion level. Without loss of generality we assume that there
are two latent factors of variation, style and content. The
content is common for a group, while the style can differ
within the group. We emphasise that our approach is general
in that there can be more than two factors. Moreover, mul-
tiple groupings of the same data set, along different factors
of variation, are possible. To process grouped observations,
the ML-VAE uses a grouping operation that separates the
latent code into two parts, style and content, and observa-
tions in the same group have the same content. This latent
code separation is a design choice. This is illustrated in Fig-
ure 2b. For illustrative purposes, the upper part of the latent
code represents the style (color) and the lower part the con-
tent (shape). Recall that we consider the objects grouped by
shape. In Figure 2b, after the grouping operation the two cir-
cles share the same shape in the lower part of the latent code
(corresponding to content). The variations within the group
(style), in this case color, get naturally encoded in the upper
part. Importantly, the ML-VAE does not need to know that
the objects are grouped by shape nor what shape and color
represent; the only supervision at training is the organisation
of the data into groups. The grouping operation makes the
encoder learn a semantically meaningful disentanglement.
Once trained the ML-VAE encoder is able to disentangle ob-
servations even without grouping information, for example
the single blue star in Figure 2c. If samples are grouped the
grouping operation increases the certainty on the content:
in Figure 2c black triangles show that the model has accu-
mulated evidence of the content (triangle) from the two dis-
entangled codes (grey triangles). The ML-VAE generalises

to unseen realisations of the factors of variation, for example
a purple triangle, and we can manipulate the latent code to
perform operations such as swapping the style to generate
new observations, as shown in Figure 2c.

To sum-up, our contributions are (i) We propose the ML-
VAE model to learn a disentangled and controllable repre-
sentations from grouped data; (ii) We extend amortised in-
ference to the case of non-iid observations; (iii) We exper-
imentally show that the ML-VAE model learns a semanti-
cally meaningful disentanglement of grouped data, enables
manipulation of the latent representation, and generalises to
unseen groups.

2 Related work

Unsupervised and semi-supervised settings In the un-
supervised setting, the Generative Adversarial Networks
(GAN) (Goodfellow et al. 2014) and Variational Autoen-
coder (VAE) (Kingma and Welling 2014; Rezende, Mo-
hamed, and Daan 2014) models have been extended to the
learning of an interpretable representation (Chen et al. 2016;
Wang and Gupta 2016; Higgins et al. 2017; Abbasnejad,
Dick, and van den Hengel 2016). As they are unsupervised,
these models do not anchor a specific meaning into the
disentanglement. In the semi-supervised setting, the VAE
model has been extended to the learning of a disentangled
representation by introducing a semi-supervised variable, ei-
ther discrete (Kingma et al. 2014) or continuous (Siddharth
et al. 2017). Also in the semi-supervised context, Makhzani
et al. (2015) and Mathieu et al. (2016) propose adversari-
ally trained autoencoders to learn disentangled representa-
tions. However, semi-supervised models require the semi-
supervised variable to be observed on a limited number of
input points. The VAE model has also been applied to the
learning of representations that are invariant to a certain
source of variation (Alemi et al. 2017; Louizos et al. 2016;
Edwards and Storkey 2016; Chen et al. 2017). As in the
semi-supervised case, these models require supervision on
the source of variation to be invariant to. Consider the data
set of objects, grouped by shape as in Figure 1b, and as-
sume that the training set contains only 2 shapes: circle
and star. Semi-supervised models using a discrete variable
would have to fix its dimension, denoted K, for example
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taking K = 2 the number of training shapes. This does not
allow to have an unbounded number of shapes and unseen
shapes such as a triangle at test-time. Semi-supervised mod-
els with a continuous latent variable would choose an ar-
bitrary fixed way to construct training labels from grouped
data, for example per-shape statistics. At test-time, the un-
seen triangle shape would be encoded as a mixture of the
training shapes: circle and star.

By contrast, we address the setting in which training sam-
ples are grouped. A grouping is different from a label be-
cause test samples generally do not belong to any of the
groups seen during training.

Interpretable representation of grouped data While not
directly applied to interpretable representation learning, Mu-
rali, Chaudhuri, and Jermaine (2017) perform computer pro-
gram synthesis from grouped user-supplied example pro-
grams, and Allamanis et al. (2017) learn semantic repre-
sentations of mathematical and logical expressions grouped
in equivalence classes. To perform 3D rendering of ob-
jects, Kulkarni et al. (2015) enforce a disentangled repre-
sentation by using training batches where only one factor
of variation varies. However, this requires to be able to fix
each factor of variation. Multiple works perform image-to-
image translation between two unpaired images sets using
adversarial training (Zhu et al. 2017; Kim et al. 2017; Yi et
al. 2017; Fu et al. 2017; Taigman, Polyak, and Wolf 2017;
Shrivastava et al. 2017; Bousmalis et al. 2017; Liu, Breuel,
and Kautz 2017). Two images sets can be seen as two groups
of images, grouped by image type. Donahue et al. (2017)
disentangles the latent space of GAN using images grouped
by identity, and Denton and Birodkar (2017) and Tulyakov
et al. (2017) learn disentangled representations of videos
with adversarial training. A video can be seen as a group of
images with common content (identity) and various styles
(background). In contrast to these methods, we do not re-
quire adversarial networks. Moreover, it is unclear how to
extend the cited models to other types of data, more than
two groups, and several groupings (along multiple factors of
variation) of the same data set. We also relate group super-
vision to the case of triplets annotations (Veit, Belongie, and
Karaletsos 2017; Karaletsos, Belongie, and Rätsch 2016;
Tian, Chen, and Zhu 2017). A triplet is an ordering on three
oberved data a,b,c of the form “a is more similar to b than
c”. Karaletsos, Belongie, and Rätsch (2016) learn a latent
representation jointly from observations and triplets.

The neural statistician (Edwards and Storkey 2017) com-
putes representations of datasets, where samples in the same
dataset share a common context latent variable. Statistics of
a dataset, such as its average, are fed to a network that out-
puts the parameters of the posterior of the context. Their
concept of dataset can be seen as a group, and the context
latent variable would be the content. Our work differs from
theirs as we explicitly build the content posterior distribution
from the codes of the observations in the group, as detailed
in section 3.2. Moreover, we want to learn a disentangled
and controllable latent representation. Thereby, we model
samples within a group to have a shared group content vari-
able and an independent style variable, with style and con-

tent independent given the observation.
In order to learn a disentangled and controllable repre-

sentation of grouped data, we propose the Multi-Level Vari-
ational Autoencoder (ML-VAE).

3 Model

Random variables are denoted in bold, and their values are
denoted in non-bold. We assume that the variable x is gen-
erated by a latent variable z via the distribution p(x|z; θ).
We consider a data set of n observations D = {x1, . . . , xn}.
The goal is to infer the values of the latent variable that gen-
erated the observations, that is, to compute the posterior dis-
tribution p(z|x; θ), which is often intractable.

3.1 Amortised inference with VAE

The Variational Autoencoder (VAE) model (Kingma and
Welling 2014; Rezende, Mohamed, and Daan 2014) approx-
imates p(z|x; θ) with the variational distribution q(z|x;φ),
where φ are the variational parameters, and maximises a
lower-bound on the average marginal log-likelihood (or
evidence). Contrary to Stochastic Variational Inference
(SVI) (Hoffman et al. 2013), the VAE model performs
amortised variational inference, that is, the observations
parametrise the posterior distribution of the latent code, and
all observations share a single set of parameters φ. This al-
lows efficient test-time inference. Figures 3a and 3b shows
the SVI and VAE graphical models, we highlight in red that
SVI does not perform amortised inference.

However, the VAE model assumes independent, iden-
tically distributed (iid) observed variables. Therefore, the
VAE model does not leverage the grouping information. In
this context, the question is how to perform amortised infer-
ence in the context of non-iid, grouped observations?

3.2 The Multi-Level VAE for grouped data

In the grouped data setting, the observations are organised
in a set G of distinct groups, with a factor of variation that is
shared among all observations within a group. The grouping
forms a partition of 1, . . . , n, i.e. each group G ∈ G is a sub-
set of 1, . . . , n of arbitary size, disjoint of all other groups.

Without loss of generality, we separate the latent repre-
sentation in two latent variables z = (c, s) with style s
and content c. The content is the factor of variation along
which the groups are formed. In this context, referred as the
grouped observations setting, the latent representation has
a single content latent variable cG per group. SVI can be
adapted by enforcing that all observations within a group
share a single content latent variable while the style remains
untied, see Figure 3c. However, SVI does not use amortised
inference and requires expensive test-time inference. Exper-
imentally, it also needs more training epochs as we show in
the supplemental.

We denote by XXXG = (xi, ∀i ∈ G) the collection of xi

variables of a group G. We do not assume iid observations,
but independence at the grouped observations level. The
average marginal log-likelihood (or evidence) decomposes
over the groups:
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xi

ziφi

θ

i ∈ 1, . . . , n

(a) SVI for iid observations.

xi

ziφ

θ

i ∈ 1, . . . , n

(b) VAE for iid observations.

xi

si cGφs,i

φc,G

θ

i ∈ G G ∈ G

(c) SVI for non-iid, grouped obser-
vations.

xi

si cGφs

φc

θ

i ∈ G G ∈ G

(d) Our ML-VAE for non-iid,
grouped observations.

Figure 3: SVI, VAE and our ML-VAE graphical models. Solid lines denote the generative model, dashed lines denote the
variational approximation. Shaded nodes indicate that the variables xi have been set to their observed value xi.

1

|G| log p(D; θ) =
1

|G|
∑

G∈G
log p(XG; θ). (1)

By comparison, the VAE model decomposes the evidence
on the samples x1, . . . , xn. We model each xi in XXXG to
have its independent latent code for the style si, and SSSG =
(si, ∀i ∈ G) is the collection of style latent variables
for the group G. By constrast, we model a single con-
tent latent code cG shared among all xi in XXXG. We
approximate the true posterior p(cG,SSSG|XG; θ) with a
variational posterior q(cG,SSSG|XG;φ) that decomposes as
the product of q(cG|XG;φc) and q(SSSG|XG;φs), with φc

and φs the variational parameters for content and style re-
spectively. We design the approximating variational poste-
rior q(SSSG|XG;φs) such that it factorises among the sam-
ples in a group as

∏
i∈G q(si|xi;φs). Given the style and

content, the observed variables in a group are indepen-
dent and p(XXXG|cG,SG; θ) also factorises. This results in the
graphical model shown Figure 3d. For each group G, we can
write its evidence as the sum of the Kullback-Leibler diver-
gence between the true posterior and the variational approx-
imation, and L(XG; θ, φc, φs), referred as the Group Evi-
dence Lower Bound (Group ELBO):

log p(XG; θ) = L(XG; θ, φc, φs)

+ KL(q(cG,SSSG|XG;φc, φs)||p(cG,SSSG|XG; θ)),

≥ L(XG; θ, φc, φs). (2)

since the Kullback-Leibler divergence (KL) is always posi-
tive. The Group ELBO is expressed as,
L(XG; θ, φc, φs)

= Eq(cG,SSSG|XG;φc,φs)[log p(XG|cG,SSSG; θ)]

−KL(q(cG,SSSG|XG;φc, φs)||p(cG,SSSG))

=
∑

i∈G

Eq(cG|XG;φc)

[
Eq(si|xi;φs)[log p(xi|cG, si; θ)]

]

−
∑

i∈G

KL(q(si|xi;φs)||p(si))−KL(q(cG|XG;φc)||p(cG)).

(3)

Note that we have a single KL term for the group content cG.
We learn the model’s parameters by maximising the average
Group ELBO, that is,

L(D, φc, φs, θ) :=
1

|G|
∑

G∈G
L(XG; θ, φc, φs). (4)

It is a lower bound on the data set average evidence (1) be-
cause each Group ELBO L(XG; θ, φc, φs) is a lower bound
on log p(XG; θ). In practise, we use mini-batches Gb of
groups, as follows,

L(Gb, θ, φc, φs) :=
1

|Gb|
∑

G∈Gb

L(XG; θ, φc, φs). (5)

If we take each group G ∈ Gb in its entirety it is an unbi-
ased estimator of L(D, φc, φs, θ). If the groups’ sizes are
too large to fit into memory we subsample G, resulting in a
bias discussed in the supplemental. Our training algorithm
is shown in Algorithm 1. Note that in step 3 of Algorithm
1 we sample one content cG,i per observation in the group,
but cG can be sampled once and used for all the samples in
a group1.

3.3 Accumulating group evidence

For each group G, in step 2 of Algorithm 1, we build the
group content posterior distribution q(cG|XG;φc) by accu-
mulating information from the result of encoding each sam-
ple in G. How can we accumulate the information in a rele-
vant manner to compute the group content distribution?

Our idea is to explicitly build the group content poste-
rior distribution q(cG|XG;φc) from the encodings of the
grouped observations XG = (xi, ∀i ∈ G). While any distri-
bution could be employed, we focus on using a product of
Normal density functions, which can be seen as an instance
of Structured Variational Autoencoders (SVAE) (Johnson et
al. 2016). Other possibilities, such as a mixture of density
functions, are discussed in the supplemental. Specifically,
we construct the probability density function of the poste-
rior of the content variable cG by multiplying |G| Normal
density functions, each of them evaluating the probability
of cG = cG, given the observation xi = xi, ∀i ∈ G:

1We experimentally tried this method which resulted in similar
performances. We attribute this to the fact that the variances of the
content distribution tend to be very small.
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Algorithm 1: ML-VAE training algorithm.

for t=1,. . . ,T epochs do
Sample mini-batch of groups Gb.
for G ∈ Gb do

for i ∈ G do

1 Encode xi into q(cG|xi;φ
t
c),

q(si|xi;φ
t
s).

end

2 Construct q(cG|XG;φ
t
c)

from q(cG|xi;φ
t
c), ∀i ∈ G.

for i ∈ G do

3 Sample cG,i ∼ q(cG|XG;φ
t
c).

4 Sample si ∼ q(si|xi;φ
t
s).

5 Decode cG,i, si into p(xi|cG,i, si; θ
t).

end

end

6 Update θt+1, φt+1
c , φt+1

s ← θt, φt
c, φ

t
s by

ascending the gradient estimate of
L(Gb, θ, φc, φs).

end

q(cG = cG|XXXG = XG;φc) ∝
∏

i∈G

q(cG = cG|xi = xi;φc),

(6)

where we assume q(cG|xi = xi;φc) to be a Normal distri-
bution N (μi,Σi). The normalisation constant is the result-
ing product marginalised over all possible values of cG. The
resulting density function q(cG|XG;φc) is the density func-
tion of a Normal distribution of mean μG and variance ΣG,
expressed as follows (derivations are in the supplemental),

μT
GΣ

−1
G =

∑

i∈G

μT
i Σ

−1
i , Σ−1

G =
∑

i∈G

Σ−1
i . (7)

It is interesting to note that the variance of the resulting
Normal distribution, ΣG, is inversely proportional to the
sum of the group’s observations inverse variances. There-
fore, we expect that by increasing the number of obser-
vations in a group, the variance of the resulting distribu-
tion decreases. This is what we refer as “accumulating
evidence”. We empirically investigate this effect in sec-
tion 4. Since the resulting distribution is a Normal distri-
bution, the term KL(q(cG|XG;φc)||p(cG)) can be evalu-
ated in closed-form. We also assume a Normal distribution
for q(si|xi;φs), ∀i ∈ G.

4 Experiments

Our goal with the experiments is two-fold. First, we want
to evaluate the performance of ML-VAE to learn a seman-
tically meaningful disentangled representation. Second, we
want to explore the impact of “accumulating evidence” at
test-time. To do so, when we encode test images we employ
two possible strategies: (i) strategy 1 is no grouping infor-
mation on the test samples, each test image is a group; (ii)
strategy 2 takes into account the grouping information and

uses multiple test images per group to construct the content
latent code with the product of Normal densities method.

Similar to Mathieu et al. (2016), we propose qualitative
and quantitative evaluations. We do not show qualitative re-
sults of the original VAE model as there is no objective
choice on which part of its code is style or content. However,
we perform quantitative comparison with the VAE, to com-
pare with a variational model that does not leverage group-
ing information at training. Encoder architectures, additional
results and training details are in the supplemental.

MNIST data set. We perform evaluation on MNIST (LeCun
et al. 1998). We consider the data grouped by digit. We ran-
domly separate the 60, 000 training examples into 50, 000
training samples and 10, 000 validation samples, and use the
standard MNIST testing data set. The style and content vec-
tors are of size 10 each. The decoder network is composed
a linear layer with 500 hidden units with the hyperbolic tan-
gent activation function. It is followed by two linear layers
of 784 hidden units each that output respectively the mean
and log-variance of p(xi|cG,i, si; θ).

MS-Celeb-1M data set. Next, we perform evaluation on the
face aligned version of the MS-Celeb-1M data set (Guo et
al. 2016). The data set was constructed by retrieving ap-
proximately 100 images per celebrity from popular search
engines. We group the data by identity. For each query, we
consider the top ten results. There were multiple queries per
celebrity so identities can have more than 10 images. Impor-
tantly, we randomly separate the resulting data set in dis-
joints sets of identities as the training (48, 880 identities,
401, 406 images), validation (25, 000 identities, 205, 015
images) and testing (25, 000 identities, 205, 371 images)
data sets. This way we evaluate the ability of ML-VAE level
to generalise to unseen groups (unseen identities) at test-
time.

The style and content vectors are of size 50 each. The
decoder network is composed of 3 deconvolutional layers
(stride 2, kernel size 4) of respectively 256, 128, 64 filters,
each followed by Batch Normalisation and Rectified Lin-
ear Units. These are followed by two deconvolutional layers
(stride 1, kernel size 3) of 3 filters that output respectively
the mean and log-variance of p(xi|cG,i, si; θ). The layer for
the log-variance is followed by the tangent hyperbolic acti-
vation function, multiplied by 5.

Qualitative Evaluation. We qualitatively assess the rele-
vance of the learned representation by performing opera-
tions on the latent code. First we perform swapping. We en-
code test images, draw a sample per image from its style
and content latent codes, and swap the style between im-
ages. Second we perform interpolation. We encode a pair
of test images, draw one sample from each image style and
content latent codes, and linearly interpolate between them.
We present the results of swapping and interpolation with
accumulating evidence of up to 10 images that belong to the
same group (strategy 2). Results using strategy 1 (in supple-
mental) are also convincing and show the ML-VAE’s abil-
ity to disentangle without grouping information. Recall that
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(a) MNIST, test dataset. (b) MS-Celeb-1M, test dataset.

Figure 4: Swapping, first row and first column are test samples (green boxes), second row and column are reconstructed samples
(blue boxes) the rest are swapped reconstructed samples (red boxes). Each row is a fixed style, each column is a fixed content.

these are test-time strategies, at training the ML-VAE accu-
mulates evidence. Figures 4a and 4b show the swapping re-
sults, where the first row and the first column show the test
data samples input to ML-VAE (green boxes), the second
row and column are reconstructed samples (blue boxes). In
the remaining rows and columns, each row is a fixed style
and each column is a fixed content (red boxes). Looking at
each column in Figure 4b, we see that the model encodes
the factor of variation that grouped the data, that is the iden-
tity, into the facial traits. Indeed, when style gets transferred,
the facial traits remain consistent along each column. The
model encodes the remaining factors (for example back-
ground, face orientation, sunglasses) into the style latent
code. This shows that the ML-VAE learns a disentangled
and controllable representation of the data that anchors the
semantics of the grouping. The model learns this meaningful
disentanglement without knowing that the data is grouped by
identity, nor what is identity, but only using the organisation
of the data into groups. Similarly, Figure 4a shows that the
ML-VAE encodes the digit label into the content. Moreover,
we see that the ML-VAE generalises to unseen groups, as for
MS-Celeb-1M training and testing identities are disjoints.

Figure 5 shows the results of the interpolation task. From
top left to bottom right, rows correspond to a fixed style and
interpolating on the content, columns correspond to a fixed
content and interpolating on the style. We see that the iden-
tity, in the form of facial traits, remains consistent along the
column, while we linearly interpolate the style. If we look
along each line, the style remain consistent and the identity
smoothly varies as we interpolate on the content.

Third, we perform generation. We build the content latent
code by accumulating images of a given identity. We take
the mean of the resulting content distribution and generate
images with multiple styles drawn from the prior. Figure 6a

shows the results. We see that the facial traits remain consis-
tent in the generated images, and different styles gives dif-
ferent head orientation, moustache/no moustache, etc. This
emphasises on the disentanglement power of the model and
highlight that it covers the data manifold. Finally, in Fig-
ure 6b, we reconstruct digits of the same label with and with-
out using the grouping information (strategies 1 and 2). The
ML-VAE corrects inference (wrong digit label in first row
and second column) by accumulating evidence.

Quantitative Evaluation. In order to quantitatively evaluate
the disentanglement power of our model, we use the style la-
tent code and content latent code as features for a classifica-

Figure 5: Interpolation, from top left to bottom right, rows
show a fixed style and interpolating the content, columns
show a fixed content and interpolating the style.
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(a) Generation. (b) Accumulating
evidence.

Figure 6: In (a): generation. Style is sampled from the prior
and the content is computed using the test images for this
identity (green boxes on the left). In (b): accumulating ev-
idence. Left column are test samples, middle column are
reconstructed samples without accumulating evidence (w/o
acc. ev.), right column are reconstructed samples with accu-
mulating evidence (w/ acc. ev.) , that is using the four digits
images to build the content code).

tion task. We denote by y the random variable representing
the class, and by Gy a group of observations from the same
class. The quality of the disentanglement is high if the con-
tent latent variable cGy is informative about the class, while
the style latent variable SSSGy

is not. In the case of MNIST
the class is the digit label and for MS-Celeb-1M the class is
the identity. We emphasise that in the case of MS-Celeb-1M
test images are all unseen classes (unseen identities) at train-
ing. We learn to classify the test images with a neural net-
work classifier once using SSSGy

and once using cGy
as input

features. We also compare to using the original VAE model
full latent code as features. In this case, we also accumulate
evidence with the product of Normal densities method for
samples of the same class to construct the features from the
VAE code.

Let us take the example of the latent code cGy
used as

features. We train the neural network classifier to learn a
distribution r(y|cGy

) by minimising the cross-entropy loss
−Ep(y,cGy )

[
log r(y|cGy

)
]
. Thereby, we minimise an upper

bound on H(y|cGy ) the conditional entropy of the class
given the latent code. Indeed, we can upper bound H(y|cGy )
as follows (detailed in the supplemental),

H(y|cGy ) ≤ −Ep(y,cGy )

[
log r(y|cGy )

]
. (8)

We report the classifier test accuracy, and the value
of −Ep(y,cGy )

[
log r(y|cGy

)
]

as the conditional entropy in
bits on the classifier testing set. Similarly, we report perfor-
mance using the ML-VAE style latent code, and the VAE
model full latent code. We explore the benefits of accu-
mulating evidence: (i) for training the classifier, we con-
struct the posterior distribution of the content by accumulat-
ing K images per class (ii) for testing the classifier, we use

only k ≤ K images per class, where k = 1 is no grouping
information. When k increases we expect the performance
of the classifier trained on cGy

to improve as the features
become more informative. We expect the performance using
the style SSSGy to remain constant. The results are shown in
Figure 7. We see that for small values of k, the ML-VAE
content latent code is more informative about the class than
VAE latent code, especially on MNIST. When k increases
this shows the benefit of accumulating evidence. Recall that
we also accumulate evidence, for samples of the same class,
to construct the features from the original VAE latent code.
The ML-VAE also provides a relevant disentanglement as
the style remains uninformative about the class.

Figure 7: Accuracy (higher is better) and conditional entropy
(lower is better). For clarity on MNIST we show up to k =
10. Values stay stationary for larger k (in supplemental.)

5 Discussion
We proposed the Multi-Level VAE model for learning a
meaningful disentanglement from a set of grouped obser-
vations. The ML-VAE model handles an arbitrary number
of groups of observations, which needs not be the same at
training and testing. We proposed different methods for in-
corporating the semantics embedded in the grouping. Ex-
perimental evaluations show the relevance of our method,
as the ML-VAE learns a semantically meaningful disentan-
gled representation, generalises to unseen groups and en-
ables control on the latent representation. For future work,
we wish to apply the ML-VAE to text data.
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