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Abstract

Estimating the travel time of any path (denoted by a sequence
of connected road segments) in a city is of great importance
to traffic monitoring, route planning, ridesharing, taxi/Uber
dispatching, etc. However, it is a very challenging problem,
affected by diverse complex factors, including spatial cor-
relations, temporal dependencies, external conditions (e.g.
weather, traffic lights). Prior work usually focuses on estimat-
ing the travel times of individual road segments or sub-paths
and then summing up these times, which leads to an inaccu-
rate estimation because such approaches do not consider road
intersections/traffic lights, and local errors may accumulate.
To address these issues, we propose an end-to-end Deep learn-
ing framework for Travel Time Estimation (called DeepTTE)
that estimates the travel time of the whole path directly. More
specifically, we present a geo-convolution operation by inte-
grating the geographic information into the classical convo-
lution, capable of capturing spatial correlations. By stacking
recurrent unit on the geo-convoluton layer, our DeepTTE can
capture the temporal dependencies as well. A multi-task learn-
ing component is given on the top of DeepTTE, that learns
to estimate the travel time of both the entire path and each
local path simultaneously during the training phase. Extensive
experiments on two trajectory datasets show our DeepTTE
significantly outperforms the state-of-the-art methods.

Introduction

Estimating the travel time for a given path, which is denoted
by a sequence of connected sub-paths, is a fundamental prob-
lem in route planning, navigation, and traffic dispatching.
When users are searching for candidate routes, accurate travel
time estimations help them better planning routes and avoid-
ing congested roads, which in turn helps to alleviate traffic
congestion. Almost all electronic maps and online car-hailing
services provide the travel time estimation (TTE) in their
apps, such as Google Map, Uber and Didi. The quality of the
estimation is critical to the user experience of these apps.

Although the problem has been widely studied in the past,
providing an accurate travel time is still very challenging,
affected by the following aspects:
1) Individual vs. Collective: There mainly exist two ap-
proaches to estimate the travel time of a path: a) Individ-
ual TTE that firstly splits a path into several road seg-
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ments (or local paths), and then estimates the travel time
for each local path, finally sums over them to get the to-
tal travel time. b) Collective TTE that directly estimates
the travel time of the entire path. Although individual TTE
methods (Yang, Guo, and Jensen 2013; Wang et al. 2016c;
Pan, Demiryurek, and Shahabi 2012; Wang, Zheng, and Xue
2014) can estimate accurate travel time for each road seg-
ment, it cannot model complex traffic conditions within the
entire path, including road intersections, traffic lights, and
direction turns. Besides, local errors may accumulate if there
are many road segments in the given path. Collective TTE
methods (e.g. (Jenelius and Koutsopoulos 2013)) are able
to capture the aforementioned traffic conditions implicitly.
However, as the length of a path increases, the number of
trajectories traveling on the path decreases, which reduces
the confidence of the travel time (derived from few drivers),
pointing out that longer path is harder to estimate. Moreover,
in many cases, there is no trajectory passing the entire path.
2) Diverse complex factors: the traffic is affected by spatial
correlations, temporal dependencies, and external factors.
Spatial correlations are various, even complex, as shown in
Fig. 1. With three consecutive GPS points, it depicts different
driving situations, showing the driver may go straight, turn
right, turn around, drive into the main road or ramp road.
Explicitly extracting these features are time-consuming, even
infeasible because the driving situations are more complex
in the real-world. We need to consider them implicitly in
the method. In addition, these spatial correlations are time-
varying. Taking Fig. 1 (b) as an example, in the evening rush
hour, there are many vehicles the main road, drivers have to
drive into the main road from the ramp road one after another
slowly, but driving out of the main road may be very quick.
But in the non-rush hour, driving into the main road is fast.
Furthermore, traffic is affected by many external factors, like
weather, driver habit, day of the week.

To address the above challenges, in this paper, we propose
an end-to-end framework for Travel Time Estimation, called
DeepTTE. The primary contributions of this paper can be
summarized as follows:

• We propose a spatio-temporal component to learn the
spatial and temporal dependencies from the raw GPS se-
quence. In detail, the spatio-temporal component consists
of two parts: a) a geo-based convolutional layer that trans-
forms the raw GPS sequence to a series of feature maps,
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Figure 1: Various driving situations

capable of capturing the local spatial correlations (like var-
ious driving situations in Fig. 1) from consecutive GPS
points implicitly; b) recurrent neural nets (LSTMs) that
learn the temporal dependencies of the obtained feature
maps and embeddings from external factors.

• We propose a multi-task component that learns to esti-
mate the travel time for each local path and the entire path
simultaneously by a multi-task loss function, capable of
balancing the tradeoff between the individual and collec-
tive estimations. For estimating the entire path accurately,
we design a multi-factor attention mechanism to learn the
weights for different local paths based on their hidden
representations and the external factors.

• We present an attribute component that integrates external
factors, including the weather condition, day of the week,
distance of the path, and the driver habit. The learned latent
representations are fed into several parts of the model to
enhance the importance of these external factors.

• We conduct extensive experiments on two real-world large
scale data sets which consists of GPS points generated
by taxis in Chengdu and Beijing. The percentage error on
these two datasets are 11.89% and 10.92% respectively,
which significantly outperforms the existing methods.

Preliminary

In this section, we first present several preliminaries and
define our problem formally.

Definition 1 (Historical Trajectory) We define a historical
trajectory T as a sequence of consecutive historical GPS
points, i.e., T = {p1, . . . , p|T |}1. Each GPS point pi con-
tains: the latitude (pi.lat), longitude (pi.lng) and the times-
tamp (pi.ts). Furthermore, for each trajectory we record its
external factors such as the starting time (timeID), the day
of the week (weekID), the weather condition (weatherID)
and corresponding driver (driverID).

We then illustrate the our objective.

Definition 2 (Objective) During the training phase, we
learn how to estimate the travel time of the given path and the
corresponding external factors, based on the spatio-temporal
patterns extracted from the historical trajectories as we de-
fined in Definition. 1. During the test phase, given the path

1The GPS devices usually generate one record for every fixed
length time gap. This can cause our model to learn a trival pattern
(e.g., simply counts the number of GPS records). To avoid such
case, we resample each historical trajectory such that the distance
gap between two consecutive points are around 200 to 400 meters.

Figure 2: DeepTTE Architecture. Dis: distance; concat: con-
catenate.

P , our goal is to estimate the travel time from the starting to
the destination through P , with the corresponding external
factors. We assume that the travel path P is specified by the
user or generated by the route planing apps.

During the test phase, to make the testing data consistent
with the training data, we convert a path P to a sequence of
location points with equal distance gaps. Each location is
represented as a pair of longitude and latitude.

Remark: In our experiment, to generate the test data, we
remove the timestamps in the historical trajectories and re-
sample each trajectory into a GPS location sequence with
equal distance gaps. In this paper, we do not consider how to
optimize the path P .

Model Architecture

In this section, we describe the architecture of our proposed
DeepTTE, as shown in Fig. 2. DeepTTE is comprised of three
components: attribute component, spatio-temporal learning
component, and multi-task learning component. The attribute
component is used to processes the external factors (e.g.
weather) and the basic information of the given path (e.g.
start time). Its output is fed to the other components as a part
of their inputs. The spatio-temporal learning component is
the main building component that learns the spatial correla-
tions and temporal dependencies from the raw GPS location
sequences. Finally, the multi-task learning component esti-
mates the travel time of the given path based on the previous
two components, capable of balancing the tradeoff between
individual estimation and collective estimation.

Attribute Component

As we mentioned, the travel time of a path is affected by many
complex factors, such as the start time, the day of week, the
weather condition and also the driving habits. We design a
simple yet effective component to incorporate such factors
into our model, in which we call it the attribute component.

As an example in Fig. 2, we incorporate the attributes of
the weather condition (rainy/sunny/windy etc.) , the driver ID,
the time information (day of the week and timeslot of travel
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start2). We use weatherID, driverID, weekID and timeID
to denote these attributes respectively. Note that these factors
are categorical values which can not feed to the neural net-
work directly. In our model, we use the embedding method
(Gal and Ghahramani 2016) to transform each categorical
attribute into a low-dimensional real vector. Specifically, the
embedding method maps each categorical value v ∈ [V ] to a
real space RE×1 (we refer to such space as the embedding
space) by multiplying a parameter matrix W ∈ RV×E . Here
V represents the vocabulary size of the original categorical
value and E represents the dimension of embedding space.
Usually, we have that E � V . Comparing with the one-
hot encoding (Gal and Ghahramani 2016), the embedding
method mainly has two advantages. First, since the vocab-
ulary size of the categorical values can be very large (e.g.,
there are 20442 drivers in our dataset), the embedding method
effectively reduces the input dimension and thus it is more
computationally efficient. Furthermore, it has been shown
that the categorical values with similar semantic meaning are
usually embedded to the close locations (Gal and Ghahra-
mani 2016). Thus, the embedding method helps find and
share similar patterns among different trajectories.

Besides the embedded attributes, we further incorporate
another important attribute, the travel distance. Formally,
we use Δdpa→pb

to denote the total distance of traveling
from GPS point pa to pb along the path, i.e., Δdpa→pb

=∑b−1
i=a Dis(pi, pi+1) where Dis is the geographic distance be-

tween two GPS points. Then, we concatenate the obtained em-
bedded vectors together with the travel distance Δdp1→p|T | .
The concatenation is used as the output of the attribute com-
ponent. We denote such output vector as attr.

Spatio-Temporal Component

The spatio-temporal component consists of two parts. The
first part is a geo-convolutional neural network which trans-
forms the raw GPS sequence to a series of feature maps. Such
component captures the local spatial correlation between con-
secutive GPS points. The second part is the recurrent neural
network which learns the temporal correlations of the ob-
tained feature maps.

Geo-Conv Layer We first present the Geo-Conv layer. Re-
call that a historical trajectory T is a sequence of GPS loca-
tion points {p1, . . . , p|T |} where each pi contains the corre-
sponding longitude/latitude(See Definition 1). As we men-
tioned in the introduction part, capturing the spatial depen-
dencies in the GPS sequence is critical to travel time esti-
mation. A standard technique to capture the spatial depen-
dencies is the convolutional neural network (CNN), which
is widely used in the image classification, object tracking
and video processing etc (Simonyan and Zisserman 2014;
Krizhevsky, Sutskever, and Hinton 2012). A typical convo-
lutional layer consists of several convolutional filters. For a
multi-channel input image, a filter learns the spatial depen-
dencies in the input by applying the convolution operation
on each of the two dimensional local patches. We refer to

2We divide one day into 1440 timeslots. Each timeslot corre-
sponds to one minute.

GPS location

GPS trajectory Geo- Conv with 
multiple kernels

Concatenate features 
and distance

pi i-th local 
path

16 channel 
features

Distance

Figure 3: Geo-Conv Layer.

such convolutional layer as 2D-CNN. (Zhang et al. 2016)
used the 2D-CNN to predict the citywide crowd flow. In their
work, they first partitioned the city into a I × J grid and
then mapped each GPS coordinate into a grid cell. However,
in our case, directly mapping the GPS coordinates into grid
cells is not accurate enough to represent the original spatial
information in the data. For example, we can not distinguish
the turnings if the related locations are mapped into the same
cell. Thus, our task requires a much finer granularity. Mo-
tived by this, we proposed a Geo-Conv layer which is able to
capture the spatial dependency in the geo-location sequence
while retains the information in a fine granularity.

The architecture of Geo-Conv layer is shown in Fig. 3. For
each GPS point pi in the sequence, we first use a non-linear
mapping

loci = tanh(Wloc · [pi.lat ◦ pi.lng]) (1)

to map the i-th GPS coordinates into vector loci ∈ R16,
where ◦ indicates the concatenate operation and Wloc is a
learnable weight matrix. Thus, the output sequence loc ∈
R16×|T | represents the non-linearly mapped locations. Note
that such sequence can be seen as a 16-channel input. Each
channel describes the geographical features of the original
GPS sequence. We introduce a convolutional filter, with pa-
rameter matrix Wconv ∈ Rk×16 (we refer to k as the kernel
size of the filter). It applies the convolution operation on the
sequence loc, along with a one-dimensional sliding window.
We use ∗ to denote the convolutional operation. The i-th
dimension of its output is denoted as,

locconvi = σcnn(Wconv ∗ loci:i+k−1 + b) (2)

where b is the bias term, loci:i+k−1 is the subsequence in loc
from index i to index i+k−1 and σcnn is the corresponding
activation function.

Definition 3 (Local Path) We refer to the sub-sequence
from point pi to point pi+k−1 as the i-th local path.

Thus, locconvi essentially captures the spatial feature of the
i-th local path. By concatenating the outputs of c filters, we
obtain a feature map of local paths with shape Rc×(|T |−k+1).
In the literature of natural language processing, such archi-
tecture is so called 1D-CNN (Kim 2014).

Nevertheless, in our task, the travel time is highly related
to the total distance of the path. It is hard for 1D-CNN to
extract the geometric distance directly from the raw longi-
tudes/latitudes. Therefore, in Geo-Conv layer, we further
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append a column to the previously obtained feature map.
The i-th element of the new appended column (green part in
Fig. 3) is

∑i+k−1
j=i+1 Dis(pj−1, pj), i.e., the distance of the i-th

local path. Thus, we obtain the final feature map of shape
R(c+1)×(|T |−k+1) by our Geo-Conv layer. We denote this
feature map as locf .

Recurrent Layer The feature map locf captures the spa-
tial dependencies of all the local paths. To further capture
the temporal dependencies among these local paths, we in-
troduce the recurrent layers in our model. The recurrent neu-
ral network (RNN) is an artificial neural network which is
widely used for capturing the temporal dependency in sequen-
tial learning, such as the natural language processing and
speech recognition (Krizhevsky, Sutskever, and Hinton 2012;
Graves, Mohamed, and Hinton 2013). The recurrent neural
network is able to “memorize” the history in the processed
sequence. When processing the current time step in the se-
quence, it updates its memory (also called hidden state) ac-
cording to the current input and the previous hidden state.
The output of the recurrent neural network is the hidden state
sequence at all the time steps in the sequence.

In our model, the input sequence of the recurrent neural
network is the feature map locf outputted by Geo-Conv layer.
The feature map locf can be regarded as a sequence of spatial
features with length |T | − k + 1. Moreover, we find that
incorporating the attributes information is helpful to further
enhance the estimating ability of the recurrent layers (recall
that we have obtained the attributes representation vector
attr in the attribute component). Thus, in simple terms, the
updating rule of our recurrent layer can be expressed as

hi = σrnn(Wx · locfi +Wh · hi−1 +Wa · attr) (3)

where hi is the hidden state after we processed the i-th local
path and σrnn is the non-linear activation function which we
specify in the experiment part. Wx, Wh and Wa are learn-
able parameter matrices used in the recurrent layer. In prac-
tice, Eq.(3) usually fails in processing the long sequence
due to vanishing gradient and exploding gradient problems
(Hochreiter and Schmidhuber 1997). To overcome such is-
sue, we use two stacked Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber 1997) layers instead. LSTM
introduces an input gate and a forget gate to control the in/out
information flow. Such gates enables LSTM to forget some
unimportant information and effectively alleviate the gradi-
ent vanishing/exploding problem. Furthermore, it has been
shown that a stacked LSTM is more efficient to increase the
model capacity compared with a single layer LSTM (Yao et
al. 2017).

Now, by utilizing the Geo-Conv layer and the recurrent
layer, we obtain the sequence {h1, h2, . . . , h|T |−k+1} which
represents the spatio-temporal features of the raw GPS se-
quence.

Multi-task Learning Component

We finally introduce a multi-task learning component which
combines the previous components and estimates the travel
time of input path. As we mentioned in the introduction, prior
work in estimating the travel time can be divided into two

types, the individual estimation and the collective estimation.
If we adopt the individual estimation, the local errors may
accumulate since such method does not consider the spatio-
temporal dependencies among the local paths. In the mean
time, if we use the collective estimation, we usually face the
data sparsity problem since only a few trajectories traveled
through the entire path or the longer sub-paths.

In our model, we combine these two methods with our
multi-task learning component. During the training phase,
we enforce the multi-task learning component to accurately
estimate the travel time of both entire path and each local
path simultaneously. During the test phase, we eliminate the
local path estimation part and report the estimated travel time
of the entire path.

Estimate the local paths Recall that we use the
spatio-temporal component to obtain a sequence {h1, h2,
. . . , h|T |−k+1}. Here each hi corresponds to the spatio-
temporal feature of local path pi → pi+1 → . . . → pi+k−1.
We simply use two stacked fully-connected layers with size
64 and 1 to map each hi to a scalar ri. Here ri represents the
travel time of the i-th local path, as shown in Fig. 2.

Estimate the entire path Note that the length of spatio-
temporal feature sequence {hi} is also variable. To estimate
the travel time of the entire path directly, we first need to
transform the feature sequence into a fixed length vector. A
simple method to achieve this is to use mean pooling, i.e.,
hmean = 1

|T |−k+1

∑|T |−k+1
i=1 hi. Such mechanism is simple

yet effective. However, the mean pooling method treats all the
spatio-temporal features hi equally. In fact, the uncertainty
of accurately estimating the travel time is usually caused by
several critical local paths. For example, if the path contains
multiple road intersections, traffic lights, or road segments
which can be extremely congested, we should pay more at-
tention to such parts since they are more difficult to estimate.
Motived by this, in our model, we adopt the attention mecha-
nism instead of the mean pooling. The attention mechanism
is essentially the weighted sum of sequence {hi}, where the
weights are parameters learned by the model. Formally, we
have that

hatt =

|T |−k+1∑

i=1

αi · hi (4)

where αi is the weight for the i-th local path, and the sum-
mation of all αi equals 1. To learn the weight parameter α,
we consider the spatial information of the local paths, as well
as the external factors such as the start time, the day of week
and the weather condition.

In our model, the vector attr in the attribute component
captures the effect of external factors, and the feature se-
quence {hi} captures the spatio-temporal features of local
paths. Thus, we devise our attention mechanism based on
attr and {hi}:

zi = 〈σatt(attr), hi〉
αi =

ezi∑
j e

zj
(5)

where 〈.〉 is the inner product operator and σatt is a non-linear
mapping which maps attr to a vector with the same length as
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hi. Substituting Eq. (5) into Eq. (4), we obtain the attention
based vector hatt.

Finally, we pass hatt to several fully-connect layers with
equal size (we use the size of 128 in our experiment). The
fully-connected layers are connected with residual connec-
tions (Residual fully-connected Blocks of Fig. 2) which is a
technique to train a very deep neural network (He et al. 2015).
The residual connection adds “shortcuts” between different
layers. Thus, previous information flow can skip one or more
non-linear layers through the shortcut and the skipped layers
just need to learn the “residual” of the non-linear mapping.
In our model, we use σfi to denote the i-th residual fully-
connected layer. For the first layer, the output of this layer is
σf1(hatt). For the rest of the residual fully-connected layers,
suppose the output of the i-th layer is x. Then, the output of
the (i+1)-th layer can be represented as x⊕σfi+1(x) where
⊕ is the element-wise add operation. It has been shown that
training the neural networks with residual connections is eas-
ier and more robust (He et al. 2015). At last, we use a single
neuron to obtain the estimation of the entire path, which we
denote as ren.

Model Training

We finally present the training procedure of our model. Our
model is trained end to end. During the training phase, we use
the mean absolute percentage error (MAPE) as our objective
function. Since MAPE is a relative error, we can enforce our
model to provide accurate results for both the short paths
and the long paths. However, we use multiple criterions to
evaluate our model, including the rooted mean squared error
(RMSE) and the mean absolute error (MAE).

Recall that during the training phase, we estimate the travel
time of all the local paths and the entire path simultaneously.
For the local path estimation, we define the corresponding
loss as the average loss of all local paths, i.e.,

Llocal =
1

|T | − k + 1

|T |−k+1∑

i=1

∣∣∣∣
ri − (pi+k−1.ts− pi.ts)

pi+k−1.ts− pi.ts+ ε

∣∣∣∣
(6)

where ε is a small constant to prevent the exploded loss
value when the denominator is close to 0 (in our experiment,
we set ε as 10 seconds). For the entire path, we define the
corresponding loss as

Len = |ren − (p|T |.ts− p1.ts)|/(p|T |.ts− p1.ts). (7)

Our model is trained to minimize the weighted combination
of two loss terms

β · Llocal + (1− β) · Len (8)

where β is the combination coefficient that linearly balances
the tradeoff between Llocal and Len. Be default, during the
test phase, we use the travel time estimation of the entire path
ren as our final estimation.

Experiment

In this section, we report our experimental results on two
large scale real-world datasets. We first compare our model

with several baseline methods, including the state-of-art col-
lective estimation method TEMP (Wang et al. 2016b). We
then present the effectiveness of our model by a set of con-
trolled experiments3.

Experiment Setting

Data Description We evaluate our model on two large
scale datasets:
• Chengdu Dataset: Chengdu Dataset consists of

9, 737, 557 trajectories (1.4 billion GPS records) of 14864
taxis in August 2014 in Chengdu, China. The shortest
trajectory contains only 11 GPS records (2km) and the
longest trajectory contains 128 GPS records (41km).

• Beijing Dataset: Beijing Dataset consists of 3, 149, 023
trajectories (0.45 billion GPS records) of 20442 taxis in
April 2015 in Beijing, China. The shortest trajectory con-
tains 15 GPS records (3.5km) and the longest trajectory
contains 128 GPS records (50km).

The trajectories in both datasets are associated with the
corresponding weekID, timeID and driverID. For Beijing
Dataset, we further collected the corresponding weather con-
ditions (16 types including sunny, rainy, cloudy etc) as well
as the road ID of each GPS point.

Parameter Setting The parameters we used in our experi-
ment are described as follows:
• In the attribute component, we embed weekID to R3,

timeID to R16, driverID to R8 and the corresponding
weather type to R3.

• In the geo-conv layer, we fix the number of filters c =
32 and we use ELU function (Clevert, Unterthiner, and
Hochreiter 2015) as the activation σcnn in Eq.(2). The ELU
is defined as ELU(x) = ex−1 for x ≤ 0 and ELU(x) = x
for x > 0. For the kernel size k, we evaluate our model
under different values of k.

• In the recurrent layer, we use tanh as the activation σrnn

in Equ. 3. We fix the size of the hidden vector hi as 128.
• In the multi-task learning component, we first use a fully-

connected layer with tanh activation as σatt in Eq. (5). we
use ReLU(x) = max(0, x) (Glorot, Bordes, and Bengio
2011) as the activation of residual fully-connected layers.
We fix the number of the residual fully-connected layers
as 4 and the size of each layer as 128. Furthermore, we
evaluate our model for different combination coefficient β
in Eq. (8) from 0.0 to 0.99.

For each dataset, we use the trajectories generated in the last
7 days as the test set and the rest of trajectories as the training
set. We adopt Adam optimization algorithm (Kingma and Ba
2014) to train the parameters. The learning rate of Adam is
0.001 and the batch size during training is 400. We train the
model for 100 epochs and select the best models by 5-fold
cross-validation.

Our model is implemented with PyTorch 2.0, a widely
used Deep Learning Python library. We train/evaluate our

3The code and the sample data can be downloaded at
https://github.com/UrbComp/DeepTTE
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Table 1: Performance Comparison
Chengdu Beijing

MAPE (%) RMSE (sec) MAE (sec) MAPE (%) RMSE (sec) MAE (sec)
AVG 28.1 533.57 403.71 24.78 703.17 501.23

D-TEMP 22.82 441.50 323.37 19.63 606.76 402.50
GBDT 19.32± 0.04 357.09± 2.44 266.15± 2.24 19.98± 0.02 512.96± 3.96 393.98± 2.99

MlpTTE 16.90± 0.06 379.39± 1.94 265.47± 1.53 23.73± 0.14 701.61± 1.82 489.54± 1.61
RnnTTE 15.65± 0.06 358.74± 2.02 246.52± 1.65 13.73± 0.05 408.33± 1.83 275.07± 1.48
DeepTTE 11.89± 0.04 282.55± 1.32 186.93± 1.01 10.92± 0.06 329.65± 2.17 218.29± 1.63

model on the server with one NVIDIA GTX1080 GPU and
24 CPU (2960v3) cores.

Performance Comparison

To demonstrate the strength of our model. We first compare
our model with several baseline methods, including:
• AVG: We simply calculate the average speed in the city

during a specific time interval (e.g. 13:00-14:00 PM on
Monday). We estimate the travel time of given trajectory
based on its starting time and the historical average speed.

• TEMP: TEMP (Wang et al. 2016b) is the state-of-art col-
lective estimation method. It estimates the travel time of
the given path based on the “neighbor” trajectories, i.e., the
trajectories which have the closed starting and destination
as the query path. This work outperforms the most out-
standing individual TTE (Wang, Zheng, and Xue 2014) as
well as Bing/Baidu Map API in their experiment. However,
there are about 10% paths that the original TEMP method
can not estimate due to the lack of neighbor trajectories.
For those paths, we enlarge the neighborhood dynamically
until we can find enough neighbor trajectories (10 trajecto-
ries in our experiment). We refer to such implementation
as dynamic TEMP (D-TEMP).

• GBDT: Gradient Boosting Decision Tree (GBDT) is a
powerful ensemble method (Friedman, Hastie, and Tibshi-
rani 2001) and widely used in practice. In our problem,
the input of GBDT is as same as the input of DeepTTE,
including all the inputs in the attribute component and the
raw GPS sequence. Note that since the length of GPS se-
quence is variable, GBDT can not handle such sequence
directly. Here, we uniformly sample (with replacement)
each GPS sequence to a fixed length of 128.

• MlpTTE: We use a 5-layer perceptron with ReLU acti-
vation to estimate the travel time. The input of MlpTTE
is almost the same as GBDT, except that the categorical
values are properly embedded to real vectors. The size of
hidden layers in MlpTTE is fixed as 128.

• RnnTTE: RnnTTE is also a simplified model of DeepTTE.
We use a vanilla RNN and mean pooling to process the
raw GPS sequence into a 128-dimensional feature vector.
We concatenate such feature vector and the output of the
attribute component. The concatenation then is passed to
the residual fully-connected layers to obtain the estimation.
For our model DeepTTE, we fix the kernel size as 3 and

combination coefficient β as 0.3. We repeat each experiment
for 5 times. We report the mean and the standard variation of
the different runs. The experiment result is shown in Table 1.

Figure 4: Error rates for trajectories with different lengths.

As we can see, simply using the average speed leads to
a very inaccurate result. In contrast, the collective method
D-TEMP and the ensemble method GBDT are much better
than AVG. MlpTTE shows a good performance on Chengdu
Dataset. However, it does not consider the spatio-temporal
dependencies in the data. For the dataset which contains
more complex traffic conditions (e.g., Beijing Dataset), we
find that MlpTTE tends to overfit the training data and thus
leads to a bad result. RnnTTE use the recurrent layers to
capture the temporal dependencies in the data. It achieves
15.65% and 13.73% on two datasets which are much better
than above mentioned methods. Our model DeepTTE further
significantly outperforms RnnTTE. The error rates in two
datasets are only 11.89% and 10.92%. We use Paired T-Test
(Friedman, Hastie, and Tibshirani 2001) to further test the
significance of our model. The p-value for all the test pairs
are less than 10−8 which demonstrates that our model is
significantly better than baselines. In Fig. 4, we compare the
model performances for the trajectories with different lengths.
When the path length goes larger, AVG and TEMP methods
face a serious individual-collective trade-off problem. As a
consequence, the error rates increase sharply. RnnTTE shows
a better result for the trajectories less than 35 km. However,
it fails to handle the long paths (with length greater than 35
km). In contrast, our model demonstrates remarkable results
for longer paths. Finally, recall that there are about 10%
paths that the original TEMP can not estimate. For the rest
of paths in two datasets, the average error rate is 19.96% for
the original TEMP but only 11.21% for our model.

Effect of Attribute Component

We show the effectiveness of different attributes, including
the weatherID, driverID and weekID. We devise a set of con-
trolled experiments on Beijing Dataset. For each experiment,
we eliminate exactly one attribute.We find that weatherID and
weekID affect the estimation significantly. Eliminating such
two attributes causes an error growth of 1.09% and 0.77%
respectively. This also conforms to our intuitive sense, i.e.,
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Figure 5: Error rates for different β.

we usually spend much more time for traveling the same path
under bad weather conditions. Eliminating the driver infor-
mation causes an error increment of 0.30% which seems not
significant. However, we stress the trajectories in our dataset
are generated by taxi drivers. Most of the taxi drivers are
very experienced and have similar driving habits. The driver
information might be more useful for estimating the travel
time of normal people. We leave it as an intriguing direction
for future work.

Effect of Geo-Conv

We first evaluate our model under the absence of Geo-Conv
layer. To achieve this, we eliminate the geo-conv layer and
directly pass the sequence of {pi.lat◦pi.lng} to the following
LSTM layers. The MAPE in Chengdu/Beijing Dataset under
this setting is 13.14% and 12.68% (comparing with 11.89%
and 10.92%).

We further test our model if we increase the kernel size k
in Equ. (2) from 3 to 4, 5 and 6. We find that the performance
of our model in Beijing Dataset decreases when the kernel
size goes larger. The percentage errors for k = 4, 5, 6 are
11.18%, 11.31% and 11.38%. The reason might be that when
the kernel size k = 3, a local path consists of two consecutive
road segments which can exactly represent the turnings or
road intersections (see Fig. 1). Thus, it is more easily for our
model to capture such spatial features in the local paths.

Effect of Multi-task Learning

To show the effectiveness of the multi-task learning compo-
nent, we first evaluate our model under different combination
coefficient β from 0.0 to 0.99. The result is shown in Fig 5.
We find that our model is pretty robust for a wide range of
β. The high error rates are only found in two ends, i.e., when
β = 0 or when β goes to 1. We then replace the attention
mechanism in the multi-task learning component with the
meaning pooling method. The error rates in Chengdu/Beijing
Dataset increase to 12.09% and 11.11% respectively.

Incorporate Road Information

Note that our model does not rely on any map-matching
algorithm but directly handle the raw GPS sequence. Never-
theless, it is very easy to incorporate the road information into
our model when it is available. We collect the corresponding
road ID of each GPS point in Beijing Dataset and embed each
road ID to a 32-dimensional vector. For each GPS point, we
use pi.rid to denote the embedded road ID of pi. To utilize
such road information, we can simply modify Eq. (1) into

loci = tanh(Wloc · [pi.lat ◦ pi.lng ◦ pi.rid])

in Geo-Conv layer. The MAPE of DeepTTE after incorporat-
ing the road information decreases from 10.92% to 10.59%.

Predicting Time

Despite the training time of DeepTTE is longer, the pre-
dicting is very efficient. During the test phase, estimating
every 1000 paths takes DeepTTE 0.037s, RnnTTE 0.031s,
MlpTTE 0.029s on GPU (including I/O time), GBDT 0.017s,
and TEMP 0.47s. The original TEMP is slower for search-
ing neighbors. Despite the searching can be accelerated with
more advanced data structures, it is out of scope of this paper.

Related work

There is a large body of literature on the estimation of travel
time; we only mention a few closely related ones.

Road Segment-Based Travel Time Estimation

Estimating travel time has been studied extensively (Zhong
and Ghosh 2001; Sevlian and Rajagopal 2010; Pan,
Demiryurek, and Shahabi 2012). However, these works es-
timated the travel time of individual road segment without
considering the correlations between the roads. (Yang, Guo,
and Jensen 2013) used a spatial-temporal Hidden Markov
Model to formalize the relationships among the adjacent
roads. (Wang et al. 2016a) improved this work through an
ensemble model based on two observed useful correlations in
the traffic condition time series. (Wang et al. 2016c) proposed
an error-feedback recurrent Convolutional neural network
called eRCNN for estimating the traffic speed on each indi-
vidual road. These studies considered the correlation between
different roads. However, they focused on accurately estimat-
ing the travel time or speed of individual road segment. As
we mentioned in the Section , the travel time of a path is
affected by various factors, such as the number of road inter-
sections and the traffic lights in the path. Simply summing
up the travel time of the road segments in the path does not
lead to an accurate result (Jenelius and Koutsopoulos 2013).

Path-Based Travel Time Estimation

(Rahmani, Jenelius, and Koutsopoulos 2013) estimated the
travel time of a path based on the historical data of the path.
However, the historical average based model may lead to a
poor accuracy. Moreover, as new queried path may be not
included in the historical data, it suffers from the data sparse
problem. (Yuan et al. 2013) built a landmark graph based on
the historical trajectories of taxis, where each landmark repre-
sents a single road. They estimate the travel time distribution
of a path based on the landmark graph. However, as the land-
marks are selected from the top-k frequently traversed road,
the roads with few traveled records can not be estimated accu-
rately. Furthermore, (Wang, Zheng, and Xue 2014) estimated
the travel time of the path, based on the sub-trajectories in
the historical data. They used the tensor decomposition to
complete the unseen sub-trajectory and such method enhance
the accuracy effectively. Nevertheless, it still suffers from the
data sparsity problem since there are many sub-trajectories
which were visited by very few drivers.
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Deep Learning in Spatial Temporal Data

Recently, the deep learning techniques demonstrate the
strength on spatio-temporal data mining problems. (Song,
Kanasugi, and Shibasaki 2016) built an intelligent system
called DeepTransport, for simulating the human mobility
and transportation mode at a citywide level. (Zhang, Zheng,
and Qi 2017) proposed a deep spatio-temporal residual net-
work for predicting the crowd flows. (Dong et al. 2016) stud-
ied characterizing the driving style of different drivers by a
stacked recurrent neural network. To best of knowledge, no
prior work studies estimating the travel time of the whole
path based on the deep learning approach.

Conclusion

In this paper, we study estimating the travel time for any
given path. We propose an end-to-end framework based on
deep neural networks. Our model can effectively capture the
spatial and temporal dependencies in the given path at the
same time. Our model also considers various factors which
may affect the travel time such as the driver habit, the day
of the week. We conduct extensive experiments on two very
large scale real-world datasets. The results show that our
model achieve a high estimation accuracy and outperforms
the other off-the-shell methods significantly.
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