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Abstract

In this paper, we propose a novel image inpainting framework
consisting of an interpolation step and a low-rank tensor com-
pletion step. More specifically, we first initial the image with
triangulation-based linear interpolation, and then we find sim-
ilar patches for each missing-entry centered patch. Treating a
group of patch matrices as a tensor, we employ the recently
proposed effective t-SVD tensor completion algorithm with
a warm start strategy to inpaint it. We observe that the in-
terpolation step is such a rough initialization that the similar
patch we found may not exactly match with the reference, so
we name the problem as Patch Mismatch and analyse the er-
ror caused by it thoroughly. Our theoretical analysis shows
that the error caused by Patch Mismatch can be decomposed
into two components, one of which can be bounded by a rea-
sonable assumption named local patch similarity, and another
part is lower than that using matrix. Experiments on real im-
ages verify our method’s superiority to the state-of-the-art in-
painting methods.

Introduction

Image inpainting (Bertalmio et al. 2000) aims to recover
missing values in images, and in general, the applications
can be classified into two groups by two motivations: the
first tries to remove unwanted objects and uses known back-
ground of the image to fill in a big missing hole (Criminisi,
Perez, and Toyama 2004), and the inpainting result is usu-
ally qualitatively evaluated by human visual judgments; the
second deals with small scratches or random missing pixels
mainly produced during the acquisition process (Liu et al.
2013), where the goal is trying to restore the original im-
age, and quantitative rules such as PSNR are also adopted
to evaluate the inpainting result. In this paper, we focus on
the second goal that is recovering a degraded image with
random missing pixels.

Nearly all the inpainting methods are designed in the light
of a key observation that the missing area contains repeated

∗Corresponding authors. This work is supported by the National
Natural Science Foundation of China under Grants 41431175,
61471274, 61771349, and 61711530239.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

patterns of global geometrical structure and local smooth-
ness of color transforms. Guided by the assumption, the
filling-in process is carried out through employing particu-
lar mathematical models. Briefly speaking, there are mainly
three categories of mature inpainting framework: partial dif-
ferential equations (PDE) based schemes, exemplar-based
schemes and low-rank schemes.

All of the three schemes have their own limitation, while
the design philosophies inside them are illuminating. PDE-
based schemes (Bertalmio, Bertozzi, and Sapiro 2001) draw
an analogy between local smoothness of images and phys-
ical phenomenon like liquid diffusion. The simulated dif-
fusion produces a piecewise smoothness but hard to pre-
serve the texture and thus introduces the blur. Exemplar-
based schemes (He and Sun 2012) copy the best matching
patch from known area to synthesize the background texture
and it is usually used to remove objects. Despite the fact that
exemplar-based schemes are not suitable for restoring ran-
dom missing pixels due to the difficulty of finding a com-
plete patch, the nonlocal manner inside the schemes are still
heuristic. Low-rank schemes (Liu et al. 2013) stem from ma-
trix and tensor completion which are first used in compres-
sive sensing problems, thus low-rank based inpainting meth-
ods are theoretical convincing due to the well-developed
guaranteed matrix/tensor completion algorithms. However,
some existing low-rank based methods suppose the whole
image to be low-rank. And other approaches such as (Dong
et al. 2014) which imposes low-rank property on a group of
patches lost the theoretical guarantee of recovery results.

Drawing advantages from the schemes mentioned above,
we propose a novel inpainting framework consisting of two
steps. Since image patch extraction is unattainable when
the image contains random missing values, the first step of
our framework is simply interpolating intensity values for
missing pixels, which is supposed to be faster than PDE
based methods, yet producing roughly the same results.
Then for each patch we find a set of similar patches to form
a third-order tensor, which is inspired by the classic nonlo-
cal denoising methods and exemplar-based inpainting meth-
ods. After that tensor is formed, we adopt a recently pro-
posed tensor completion method namely t-SVD (Zhang et
al. 2014). It is noteworthy that the similar patches are not

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

2419



exactly the most accurate match due to the blur effect intro-
duced during interpolation step, which we refer to as Patch
Mismatch problem. Fortunately, the error caused by Patch
Mismatch can be reduced by t-SVD and t-product system
we adopted. In summary, our contributions can be summa-
rized as follows:

• We propose an inpainting framework incorporating inter-
polation and low-rank tensor completion, which leverage
the merits of popular inpainting methods. In the proposed
framework, we first estimate an initial image with interpo-
lation and for each patch we group the similar candidates
to form a tensor. Then we employ t-SVD and ADMM (Al-
ternating Direction Method of Multipliers) with a warm
start strategy to complete the tensor.

• Based on the observation that natural images are piece-
wise smooth, we introduce a reasonable assumption that
if a patch is small enough the patch will contain nearly
the same information as its surrounding patches. And we
describe the assumption with formal mathematical lan-
guage, which may be useful for analysing other inter-
pretable image processing techniques.

• We analysis the error caused by Patch Mismatch thor-
oughly, and we prove that with reasonable assumptions
the error bound is lower than performing matrix comple-
tion thanks to the algebra properties of t-product system.

Related Work

Tensor Completion. Nowadays many data processing
problems are facing high dimensions and multiple classes
(Liu, Tsang, and Müller 2017) (Liu and Tsang 2017).
Tensor, also known as multi-dimensional array, is a good
model to mining the patterns inside complex data, thus has
been studied in many areas (Tao et al. 2006)(Tao et al.
2007)(Zhang et al. 2015). When a low-rank constraint is im-
posed to estimate a tensor with missing entries, it is rare
to use the basic definition from multilinear algebra named
CANDECOMP/PARAFAC (CP) rank, because CP rank can
be neither determined nor approximated by a convex or dif-
ferentiable function, which is quite different from matrix.
To avoid manually specifying the rank, a Bayesian approach
(Zhao, Zhang, and Cichocki 2015) combines CP rank with
a probability model and imposes sparsity on decomposi-
tion factors. Following the idea of dealing with decomposi-
tion factors, other decomposition formulas such as Tucker
decomposition is also employed (Filipovi and Juki 2015)
(Chen, Hsu, and Liao 2014). Besides, the low-rank con-
straint can also be imposed on other aspects of tensors. For
example, (Gandy, Recht, and Yamada 2011) and (Liu et al.
2013) use a linear combination of the unfolded matrix along
each mode to guarantee the tensor is low-rank, which needs
the coefficients determined by users thus not always produce
a stable result. Recently, (Braman 2010), (Kilmer and Martin
2011) and (Kilmer et al. 2013) propose a algebraic frame-
work for tensor namely t-product, in which we can obtain
tensor singular value decomposition (t-SVD). By defining
new operations among the tensor, matrix and vector, they
prove that a free module is constructed. We adopt t-product

system in this paper to complete our grouped patches to en-
sure a solid theoretical analysis.

Low-rank Based Inpainting. A majority of existing low-
rank based inpainting methods rely on the low-rank assump-
tion of an entire image, which is sometimes impractical. And
the problem has been elaborated in an inpainting review pa-
per (Guillemot and Meur 2014). To overcome the shortcom-
ing, one feasible solution is to impose a regularization of
local details on images. (Li, Ye, and Xu 2017) and (Ji et
al. 2016) integrate total variation into low-rank completion
problems by adding regularization terms into the objective
function. However, their methods need to determine before-
hand a crucial parameter which balances the low-rank term
and total-variation term. Another approach is to exploit the
nonlocal sparsity by patch grouping and then a low-rank ap-
proximation, and such idea has been studied by (Dong et
al. 2014) and (Feng et al. 2016). (Dong et al. 2014) first con-
struct a group of similar patches and then use the logdet(·) as
a replacement for the matrix rank. (Feng et al. 2016) make
better use of the structured sparsity of similar patches by
treating the patches as a tensor, and employing Schatten p-
norm as a nonconvex relaxation for the tensor rank. How-
ever, both methods estimate an initial image using a standard
compressive sensing method, which is slow and ad hoc. Our
proposed method advance further by not only formulating
a solid theoretical foundation but also providing intensive
analysis on real data sets.

Preliminaries

In this paper, scalars are denoted by lowercase letters, e.g.,
a. Vectors are denoted by lowercase letters with a vector ar-
row above, e.g., �a. Matrices are denoted by capital letters,
e.g., A. Higher-order tensors are denoted by boldface Euler
script letters, e.g., A. For a third-order tensor A ∈ R

r×s×t,
the ith frontal slice is denoted by Ai. In terms of MATLAB
indexing notation, we have Ai = A(:, :, i). For each entry,
we denote A(i, j, k) = Aijk. And in t-product system, the
circulant or block-circulant matrices are used. Specifically,
if �a = [a1, a2, · · · , an]T , then

circ(�a) =

⎡
⎢⎢⎢⎢⎣
a1 an an−1 · · · a2
a2 a1 an · · · a3
a3 a2 a1 · · · a4
...

...
...

. . .
...

an an−1 an−2 · · · a1

⎤
⎥⎥⎥⎥⎦

And the unfold command rearranges the frontal slices of A:

unfold(A) =

⎡
⎢⎢⎣
A1

A2

...
An

⎤
⎥⎥⎦ , fold(unfold(A)) = A

Now we introduce t-product system. At first the multipli-
cation between vectors is defined and then a commutative
ring with unity is constructed.

Definition 1. Let �a,�b ∈ R
n. then �a��b ≡ circ(�a)�b.
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Theorem 1. (Rn,+,�) is a commutative ring with unity,
where + denotes the usual addition of vectors.

In this paper, this ring is denoted with Kn just as in (Bra-
man 2010). Then a unitary module is constructed.

Definition 2. Let Rn×n
Kn

denote the space of n× n matrices
with real entries, together with scalars taken from Kn and
with scalar multiplication ◦ defined as follows:

For �a ∈ Kn, X ∈ R
n×n, �a ◦X ≡ Xcirc(�a)

Theorem 2. R
n×n
Kn

is a free module over Kn.

So in R
n×n
Kn

we are able to discuss generating set, which
corresponds to the basis in vector space. Moreover, we can
define rank on a group of matrices according to module ho-
momorphism in R

n×n
Kn

. Also, the multiplication between ten-
sor and matrix is by circulant matrix.

Definition 3 (t-product). Let A ∈ R
r×s×t and B ∈ R

s×p×t.
Then the t-product A ∗ B is a r × p× t tensor:

A ∗ B = fold(circ(A) · unfold(B)) (1)

And we consider a matrix X ∈ R
n×n as a tensor oriented

as a single lateral slice: Xi1j = X(i, j) for i, j = 1, · · · , n.
So

A ∗X = fold(circ(A) · unfold(X )) (2)

Being a slightly different from nuclear norm of matrix,
the tensor nuclear norm of A is denoted by the sum of the
singular values of all the frontal slice of Â, and Â is obtained
by taking the Fourier transform along the third dimension of
A. We use ‖A‖∗ to denote the nuclear norm of A. Then it is
known (Zhang et al. 2014) that

‖A‖∗ = ‖blkdiag(Â)‖∗ (3)

where blkdiag(Â) is a block diagonal matrix.

Proposed Framework

In this section, we propose our inpainting framework. We
first estimate the image with a interpolation step, then for
each patch we find the most similar candidate patches ac-
cording to their Euclidean distance and group them as a
tensor. For each tensor we inpaint them with t-SVD based
ADMM iterations which are solved with a warm start. After
describing our framework, we analyse the potential inpaint-
ing error bound and show that our algorithm can achieve a
lower bound thanks to the t-product system.

Inpainting Algorithm

Interpolation. Given a gray image A ∈ R
r×s with Ω indi-

cating observations, we inpaint the image with triangulation-
based linear interpolation. Specifically, for each missing en-
try P , we determine where the triangle in Ω that P lies and
three apexes of the triangle are denoted by P 1, P 2, P 3. First
solve u, v by {

Px = P 1
x + uP 2

x + vP 3
x

Py = P 1
y + uP 2

y + vP 3
y

(4)

where Px, Py are coordinates of the pixel, and then the in-
tensity of P is determined by

P = P 1 + uP 2 + vP 3 (5)

We denote the image after interpolation as Â and the missing
indices as Ω̄.

ADMM Iterations. After the interpolation step, for each
point Pi ∈ Ω̄, denote ΨPi

∈ R
n×n as the patch at position

Pi. If Pi is so close to the edge that a n× n patch is impos-
sible, then just use the patch near the edge. For example, if
(Pi)x < n, n < (Pi)y < s− n, then use the patch centered
at (n, (Pi)y). Then we find a set of similar patches of ΨPi in
Â by Euclidean distance, i.e., ‖ΨPi

− ΨQ‖F where ΨQ is a
candidate patch. Specifically, we select the T −1 most simi-
lar patches in {ΨQ : |(Pi)x −Qx| < N, |(Pi)y −Qy| < N}
where T is predefined size of the patch group and N is the
searching radius. After this patch grouping step, we obtain
a set of patches from Â, i.e., a set of matrix. Let ΨPi be the
first matrix in the group and we rearrange the matrices to a
tensor Mi where Mi(:, :, k)(k = 1, ..., T ) is the kth patch
in that group. Also, we take out the patches in Ω to get a ten-
sor indicating known pixels of Mi, and denote it with Ω′.
Then for each Mi we complete it through an optimization
problem (Zhang et al. 2014)

min
X

‖X‖∗
s.t. PΩ′(X ) = PΩ′(Mi)

(6)

where PΩ′ is the orthogonal projector onto the span of ten-
sors vanishing outside of Ω′. Let Θ = {X : PΩ′(X ) =
PΩ′(Mi)}, then problem (6) can be rewritten in ADMM
form as

min
X

‖X‖∗ + 1Θ(Z)

s.t. X = Z
(7)

where 1Θ(·) is the indicator function of set Θ. So the aug-
mented Lagrangian is

Lρ(X ,Z,Q) = ‖X‖∗ + 1Θ(Z) +
1

ρ
‖X − Z +Q‖2F (8)

Then (8) is solved by the following recursion⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X k+1 = argmin
X

1

ρ
‖X‖∗ + 1

2
‖X − Zk +Qk‖2F

Zk+1 = argmin
Z∈Θ

‖Z − (X k+1 +Qk)‖2F
Qk+1 = Qk + (X k+1 −Zk+1)

(9)

where ρ is a parameter controlling the convergence. In (9),
the solution to X -update is given by singular value thresh-
olding (Zhang et al. 2014). And Z-update is least-squares
projection onto the constraint.

Warm Start Strategy. Since we interpolate the image A

and get Â, so PΩ̄′(Mi) is a good initial guess to start the
iteration (9), which means X 0 = Mi. In (Dong et al. 2014),
they also estimate the image at first and then just simply set
Q0 = 0, which lacks theoretical motivations and may be not
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Algorithm 1: Nonlocal and low-rank tensor based
image inpainting

Input: an incomplete image matrix A ∈ R
r×s, index

of known entries Ω, patch size n, search range
N , patch group size T , parameters
ρ0,K, ε, μ1, μ2 and τ

1 Initialize A with triangulation-based linear
interpolation and the result is Â;

2 for each point Pi in Ω̄(missing area) do

3 Take out patch ΨPi centered at Pi from Â;
4 Find T − 1 nearest patches of ΨPi

in Â by
Euclidean distance;

5 Rearrange the patches as a tensor
Mi ∈ R

n×n×T ;
6 Set X 0 = Mi and compute Q0 by (19);
7 for k = 1 to K do

8 Update X k,Zk,Qk by (9);
9 Update ρk by (23);

10 if ‖rk‖2 < ε and ‖sk‖2 < ε then
11 break;
12 end

13 end

14 end
Output: the image A after completion

the best choice. In this paper, we initialize the dual variable
Q0 that satisfies dual feasibility as much as possible. Recall
that the necessary and sufficient optimally conditions for (8)
are primal feasibility,

X ∗ −Z∗ = 0 (10)

and dual feasibility,

0 ∈ ∂‖X ∗‖∗ +Q∗ (11)

0 ∈ ∂1Θ(Z∗)−Q∗ (12)

where ∂ denotes the subdifferential operator. Note that
1Θ(Z) is not continuous, so we only need to find a Q0 to
satisfy (11) as much as possible. More specifically, for our
initial points X 0,Q0, we have

0 ∈ ∂‖X 0‖∗ +Q0 (13)

Now we consider how to compute the subdifferential in (13).
Recall the SVD of M ∈ R

n1×n2 is

M =
∑
k

σkukv
∗
k (14)

where σk � 0 are the singular values, and the singular vec-
tors uk ∈ R

n1 and vk ∈ R
n2 are two sets of orthonormal

vectors. Define matrix PU , PV , E as

PU =
∑
k

uku
∗
k, PV =

∑
k

vkv
∗
k, E =

∑
k

ukv
∗
k.

(15)

Then the subdifferential is (Watson 1992; Lewis 2003)

∂‖M‖∗ = {E +W :W ∈ R
n1×n2 , PUW = 0,

WPV = 0, ‖W‖ � 1} (16)

where ‖ · ‖ is the spectral norm, which is dual to nuclear
norm. As for the subdifferential of tensor nuclear norm, let
A ∈ R

r×s×t and by Equation (3) we have

∂‖blkdiag(Â)‖∗ = {E +W :W ∈ R
rt×st, PUW = 0,

WPV = 0, ‖W‖ � 1}
(17)

where E,PU , PV are defined by the SVD decomposition
of blkdiag(Â) and (15). Note that E is also a block di-
agonal matrix, so we can rearrange E as a tensor E with
blkdiag(E) = E. If we set W = 0, it is obvious that
E ∈ ∂‖blkdiag(Â)‖∗. Then rearrange (17) as a third order
tensor, we have

E ∈ ∂‖A‖∗ (18)
Now we have our initial guess of Q0,

Q = −E (19)

then (13) is satisfied with our Q0.
Note that there is another important penalty parameter

ρ controling the convergence of our ADMM iterations. A
common trick to improve the convergence is determining ρ
varies by iterations and thus can balance the primal and dual
residual (He, Yang, and Wang 2000; Wang and Liao 2001).
More specifically, define primal residual as

rk = X k −Zk (20)

and dual residual as

sk+1 = ρ(Zk+1 −Zk), (21)

then the update scheme of ρ is

ρk+1 =

⎧⎪⎨
⎪⎩
τρk if ‖rk‖2 > μ‖sk‖2
ρk/τ if ‖sk‖2 > μ‖rk‖2
ρk otherwise

(22)

where μ > 1, τ > 1. Since a large value of ρ means a large
penalty for violations of primal feasibility, the dynamic ρ
update equations (22) try to keep ‖rk‖2 and ‖sk‖2 within a
factor of μ and thus both of the residual norms converge to
zero. In our algorithm, we also take into consideration that
the patch tensor may not be low-rank since the patterns in
an image are not always highly repetitive. Since we have a
good initial guess, when ‖sk‖2 is much larger than ‖rk‖2,
it indicates that the patch tensor may not be low-rank. So
at this situation we keep ρ unchanged to avoid overfitting.
Specifically, we updata ρ with

ρk+1 =

⎧⎪⎨
⎪⎩
τρk if ‖rk‖2 > μ1‖sk‖2
ρk/τ if ‖sk‖2 > μ1‖rk‖2, ‖sk‖2 < μ2‖rk‖2
ρk otherwise

(23)
where μ1, μ2, τ are parameters.

The overall algorithm is summarized as Algoritm 1.

2422



Error Analysis

As described in the previous section, the first interpolation
step leads to a noticeable blurring effect. In this part we dis-
cuss the error caused by blurred edges.

Patch Mismatch. To clearly illustrate why Patch Mis-
match matters, we perform our inpainting algorithm on an
image with only black diagonal strips. As shown in Figure
1(a), white points in the middle of the image mean miss-
ing entries, and the images from left to right are A,AΩ, Â
in our algorithm, respectively. With missing rate being 20%,
an interpolation step is performed on it and we get the right
image on which edges are vague. And the best similar can-
didate of the red patch in Â is the yellow patch, but we can
see from Figure 1(b) that they do not actually match with
each other. Such problem in our nonlocal algorithm is called
“Patch Mismatch”.

Local Patch Similarity. We build our error analysis on a
key observation which we refer to as local patch similar-
ity. When a patch slides on the image with a short distance
and then we have a new patch, obviously the new patch
have a large overlapping region with the old patch. Since
the image is piecewise smooth, it is reasonable to assume
that in most cases the difference of non-overlapping region
between old and new patch is small. Before describing the
assumption mathematically, we first define two operators on
patches, which represent the sliding action on the image. In
Figure 1(c), we show that the blue patch, denoted Ψb, is the
real candidate, and the displacement from Ψb to the yellow
patch Ψy is �v. In fact, Ψb moves along �v on image and it be-
comes Ψy . So we define this movement as F�v(·) and we have
F�v(Ψb) = Ψy . Then seeing that �v is a two dimensional vec-
tor, we may let �v = (x, y), where x means moving down x
pixels in vertical direction and y means moving left y pixels
in horizontal direction and negative x, y means moving up
and right respectively. And another operator on patch is de-
fied as G�v(Ψ) = P xΨP y , where P is a permutation matrix
and

P =

⎛
⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

⎞
⎟⎟⎟⎟⎠

Then we are able to adjust lines and columns of Ψy by G�v(·)
so that the overlapping region between Ψb and Ψy has the
same index in the matrix and then matrix norm can be used
to evaluate the difference of non-overlapping areas. Now the
local patch similarity assumption can be mathematically de-
fined.
Definition 4. An area of image is said to be locally patch
similar if for any patch Ψ with certain size in this area, when
the displacement vector is smaller than a threshold K, i.e.,
‖�v‖ < K, there exists a constant c such that

‖G�v(Ψ)− F�v(Ψ)‖ � c‖�v‖ (24)

where K only depends on the size of patch and c only de-
pends on the type of norm.

Original Image Observed Image Image After Interpolation

(a)

Reference

Patch

Original

Original

Candidate

Patch

Blurred

Blurred

(b) (c)

Figure 1: Illustration of the Patch Mismatch problem. (a)
The red patch is a reference patch and the yellow patch is
selected as candidate according to the image after interpola-
tion. (b) Details about red patch and yellow patch. The yel-
low patch is the best similar patch in blurred image, but not
in original image. (c) The blue patch in original is the best
matching. So there is a slight deviation of the candidate in
our algorithm and the displacement vector is denoted by �v.

Lower Bound. In this part, we consider the error caused
by Patch Mismatch and then we prove that our algorithm
has lower error bound than matrix based completion meth-
ods. Recall that the tensor M in our algorithm is composed
of a group of patch matrices. Without loss of generality, we
consider the error bound when the rank of the recovered M
is 1. (Because when the rank is higher than 1, we just need
to repeat the analysis of all bases in the group.) So now the
patch matrices are actually an exactly same patch with dif-
ferent missing entries, and in this part for simplification we
denote the reference patch by ΨΩ and candidate patches by
ΨΩ1 , · · · , ΨΩT

where the subscripts means different obser-
vations. So the ideal similar patch group should be

M = fold([ΨΩ, ΨΩ1 , · · · , ΨΩT
]) (25)

Unfortunately the real group is affected by Patch Mismatch.
In our analysis, we simply let only ΨΩ1 be affected since we
just need to multiply this error by T − 1 times if all of the
candidates are affected. Then the real similar patch group
becomes

M′ = fold([ΨΩ, F�v(ΨΩ1
), · · · , ΨΩT

]) (26)

We denote the recovery result of M and M′ are Ψ and Ψ ′
respectively. Also, since we are using t-product, now the
front slices of M,M′ are matrices from R

n×n
Kn

. We shall
now discuss the bound and for simplicity Frobenius norm is
employed. In R

n×n
Kn

let the linear coefficient of F�v(ΨΩ1
) be

2423



�a, so have
‖Ψ − Ψ ′‖F � ‖ (�a ◦ F�v(ΨΩ1)− Ψ)Ω1

‖F
� ‖�a ◦ F�v(Ψ)− Ψ‖F

(27)

The first inequality in (27) holds because ‖Ψ − Ψ ′‖ reaches
a maximum when all of the wrong information in F�v(ΨΩ1

)
are used to complete ΨΩ. Note that the subscript Ω1 means
that the indices not in Ω1 are zeros, so the second inequality
holds. Then
‖�a◦F�v(Ψ)− Ψ‖F

� ‖�a ◦ F�v(Ψ)− �a ◦G�v(Ψ) + �a ◦G�v(Ψ)− Ψ‖F
� ‖�a ◦ F�v(Ψ)− �a ◦G�v(Ψ)‖F + ‖�a ◦G�v(Ψ)− Ψ‖F

(28)
Now we first focus on the second item of (28) and we need

another important assumption on image to show the priority
of our algorithm. We assume that the change of Ψ is small
when the patch is moved in the vertical direction. This is
not a strict assumption since it is natural that an image has
vertical structures and we will prove that in these area our
algorithm is guaranteed to perform better. Mathematically,
the assumption means ‖P xΨ − Ψ‖F is small and we show
the detailed results as the following proposition:
Proposition 1. If all the entries of P xΨ − Ψ satisfy
|2(P xΨ − Ψ)ij | < |(P xΨ(P y − I))ij |, then there exists
�a ∈ R

n, such that ‖�a ◦G�v(Ψ)− Ψ‖ < ‖G�v(Ψ)− Ψ‖.

Proof. Let G�v(Ψ) = P xΨP y , then
‖G�v(Ψ)−Ψ‖F = ‖P xΨP y − Ψ‖F

= ‖P xΨ(P y − I) + (P x − I)Ψ‖F (29)

Denote A � P xΨ(P y − I), B � (P x − I)Ψ , so

‖G�v(Ψ)−Ψ‖F = tr(ATA+ 2ATB +BTB)

= tr(ATA+ 2ATB) + tr(BTB)
(30)

And �a ◦ G�v(Ψ) = G�v(Ψ) · circ(�a). If we set the ny − 1th
element in �a is 1 and other elements are 0, then it is easy to
verify that �a = (P y)−1, so

‖�a ◦G�v(Ψ)− Ψ‖F = ‖P xΨP y(P y)−1 − Ψ‖F
= ‖(P x − I)Ψ‖F = tr(BTB)

(31)

If we denote each entry of A,B as aij , bij respectively, then
we have |2bij | < |aij |, so aij + 2bij has the same sign as
aij , thus tr(AT (A+ 2B)) > 0.

Let us emphasize that Rn×n
Kn

is a module, so

�a ◦ F�v(Ψ)− �a ◦G�v(Ψ) = �a ◦ (F�v(Ψ)−G�v(Ψ)) (32)
According to the proof of Proposition 1, circ(�a) is an orthog-
onal matrix, then

‖�a ◦ (F�v(Ψ)−G�v(Ψ))‖F = ‖F�v(Ψ)−G�v(Ψ)‖F (33)
So by (28), the first item is bounded by our proposed local
patch similarity, and the second item is smaller under our
reasonable assumptions when t-product employed.

From the above theoretically analysis, we can see that
with the assumption of the local patch similarity, and as
long as an image has vertical structures, our t-product based
method is guaranteed to have a lower bound than matrix
based methods.

(a) Baboon (b) Barbara (c) Facade (d) Lena

Figure 2: RGB-color images used in our experiment.
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Figure 3: Comparison of convergence speed on grayscale
Facade image with 70% random missing pixels. The solid
line denotes our proposed warm start trick and the dashed
line denotes the vanilla version used in (Dong et al. 2014).

Experiments

In this section, we first evaluate the performance of our pro-
posed warm start strategy and then present extensive inpaint-
ing results of nature images. The recovered results are evalu-
ated with peak signal-to-noise ratio (PSNR), which is widely
used in image processing problems.

Parameter Setting

In the following experiments, we set the patch size as n = 7,
and search radius as N = 5n = 35. And the patch group
size is T = 6, so Mi ∈ R

7×7×5. Parameters controlling
the convergence of iterations are ρ0 = 1,K = 100, ε =
10−4, μ1 = 10, μ2 = 100 and τ = 2.

Color Image Inpainting

Although our method is designed for grayscale image, the
tensor completion methods target at inpainting color image
which is a third order tensor. So we perform our algorithm
on each color channel separately. Four 256×256 benchmark
RGB images are used in our experiments and the images are
shown in Figure 2.

Evaluation of Warm Start trick. We first investigate the
effectiveness of our proposed warm start trick for ADMM it-
erations. Specifically, we compare our methods with another
warm start trick, which only initializes X 0 by M and set the
dual variable Q being zero and is the scheme used in (Dong
et al. 2014) and (Feng et al. 2016). We conduct the two algo-
rithms on gray scale Facade image with different iterations.
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Observations FBCP Patch+FBCP HaLRTC Patch+HaLRTC t-SVD Ours

Figure 4: Visual effects of inpainting results with simulated scratches.

Table 1: PSNR of inpainting results with different missing
rates on Lena image.

Missing Rate 0.8 0.6 0.4 0.2
Ours 27.28 30.50 33.60 37.39

t-SVD 20.84 25.30 29.41 34.14
FBCP 23.51 27.84 31.71 36.16

Patch+FBCP 21.65 30.05 32.61 36.93
HaLRTC 20.93 25.66 29.88 34.66

Patch+HaLRTC 8.64 17.29 28.67 35.77

Table 2: PSNR of inpainting results on different image with
50% random missing pixels.

Image Baboon Barbara Facade Lena
Ours 25.40 30.79 28.69 31.85

t-SVD 23.03 26.63 30.83 27.28
FBCP 23.76 28.51 29.67 29.70

Patch+FBCP 25.03 28.88 28.19 30.98
HaLRTC 23.53 27.11 31.10 27.71

Patch+HaLRTC 21.21 23.49 23.43 23.64

The reason why we choose Facade image is the global repet-
itive structures inside it. And we transfer the RGB image to
grayscale since our interpolation steps only works for matri-
ces. The comparison of convergence speed is shown in Fig-
ure 3, from which we can see that our warm start indeed im-
proves the convergence speed and lead to a better solution.
The faster convergence speed may result from our initializa-
tion of Q, and the higher PSNR may result from our novel
ρ-update equations.

Inpainting Results with Different Missing Rates. We
select the comparison algorithms in two aspects: (1) we
choose three effective low-rank tensor completion algo-
rithms for image inpainting including HaLRTC, t-SVD and
FBCP; (2) since our algorithm consists of two steps, we re-
place our t-SVD step with the other two tensor completion
methods mentioned above. Global inpainting methods are
performed on the whole RGB image, and patch based meth-
ods are performed on each color channel separately. The
above global methods are performed with default parame-

ters. And in order to ensure the convergence, patch based
methods are performed with a little different settings: the
weight vector α in HaLRTC is [0.01, 0.01, 1]; the max rank
in FBCP of each grouped patch tensor is the threshold T .

First, we inpaint Lena image with randomly missing pix-
els and inpainting results with different missing rates are
shown in Table 1. From Table 1, one can see the follow-
ing facts. Firstly, our method outperforms the others ap-
parently. Secondly, the patch based versions sometimes are
even worse than those using the global completion algo-
rithms, and the reason may be that Patch Mismatch effect
leads to serious inpainting errors when the missing rate is
high.

Inpainting Results on Different Images. Table 2 shows
the inpainting results with different images. Also, the pix-
els of images are randomly missing with rate 50%. From
Table 2, we can see that images such as Baboon with more
repeated structural details are recovered better since our al-
gorithm benefits from the nonlocal property. And the global
image inpainting algorithms perform better on those images
with global structures such as Facade.

Visual Effects. In Figure 4, we show the inpainted images
of the algorithms mentioned above with simulated scratches.
As is shown in the figure, we can see that both Patch+FBCP
and Patch+HaLRTC have unwanted strange lines and blocks
in the results, while this problem does not exist in our algo-
rithm. The reason may be that these places do not have sim-
ilar patches so the grouped patch tensors are not low-rank.
And our results benefit from the ρ-update schema so the ex-
istence of similar patches has only a slight impact on our
results.

Conclusions

In this paper, we present a image inpainting framework
based on a triangulation-based linear interpolation step and
a low-rank tensor completion step with t-SVD. Since our
interpolation step provides only one good initial guess of
variables for the following ADMM iterations, we design a
warm start strategy to initialize dual variable effectively. Af-
ter proposing our framework, we analysis the potential er-
ror which we refer to as Patch Mismatch and then we prove
that with reasonable assumptions our algorithm has a lower
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bound than matrix based methods thanks to the t-product
system. In future works, we will investigate the error bounds
of other tensor completion methods and do more experi-
ments including results on other images and running time
comparison.
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