
Modeling Attention and Memory for
Auditory Selection in a Cocktail Party Environment

Jiaming Xu,1,2 Jing Shi,1,2,3 Guangcan Liu,1,2,3 Xiuyi Chen,1,2,3 Bo Xu1,2,3,4∗
1Institute of Automation, Chinese Academy of Sciences (CASIA). Beijing, China

2Research Center for Brain-inspired Intelligence, CASIA
3University of Chinese Academy of Sciences

4Center for Excellence in Brain Science and Intelligence Technology, CAS. China
{jiaming.xu, shijing2014, liuguangcan2016, chenxiuyi2017, xubo}@ia.ac.cn

Abstract

Developing a computational auditory model to solve the
cocktail party problem has long bedeviled scientists, es-
pecially for a single microphone recording. Although re-
cent deep learning based frameworks have made significant
progress in multi-talker mixed speech separation, most exist-
ing deep learning based methods, focusing on separating all
the speech channels rather than selectively attending the tar-
get speech and ignoring other sounds, may fail to offer a satis-
factory solution in a complex auditory scene where the num-
ber of input sounds is usually uncertain and even dynamic. In
this work, we employ ideas from auditory selective attention
of behavioral and cognitive neurosciences and from recent
advances of memory-augmented neural networks. Specifi-
cally, a unified Auditory Selection framework with Attention
and Memory (dubbed ASAM) is proposed. Our ASAM first
accumulates the prior knowledge (that is the acoustic feature
to one specific speaker) into a life-long memory during the
training phase, meanwhile a speech perceptor is trained to
extract the temporal acoustic feature and update the memory
online when a salient speech is given. Then, the learned mem-
ory is utilized to interact with the mixture input to attend and
filter the target frequency out from the mixture stream. Fi-
nally, the network is trained to minimize the reconstruction
error of the attended speech. We evaluate the proposed ap-
proach on WSJ0 and THCHS-30 datasets and the experimen-
tal results demonstrate that our approach successfully con-
ducts two auditory selection tasks: the top-down task-specific
attention (e.g. to follow a conversation with friend) and the
bottom-up stimulus-driven attention (e.g. be attracted by a
salient speech). Compared with deep clustering based meth-
ods, our method conducts competitive advantages especially
in a real noise environment (e.g. street junction). Our code is
available at https://github.com/jacoxu/ASAM.

Introduction

Cocktail party problem describes human’s ability that listen-
ers can easily attend to one speaker in a multi-speaker envi-
ronment (O’sullivan et al. 2015). Since its first description in
1953 by Colin Cherry (1953), many researchers have sought
to understand and model the selective attention process of
multi-talker speech. Despite the significant progress made in
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the recent years due to the success of deep learning, devel-
oping a computational auditory model to solve the cocktail
party problem still has many unresolved issues, such as la-
bel ambiguity or permutation problem (Yu et al. 2017) and
output dimension mismatch problem (Chen, Luo, and Mes-
garani 2017). The former problem raises due to the fact that
the order of the sources in the mixture is irrelevant, while the
latter problem is usually encountered by a unfixed number of
sources in the mixture.

Recently, some researchers have attempted to alleviate
these problems. For example, Yu et al. (2017) proposed a
Permutation Invariant Training (PIT) method to solve the
permutation problem by pooling over all possible permu-
tation for N mixed sources (N ! permutations), and mini-
mize the source reconstruction error no matter how labels
are ordered. In order to solve both permutation and out-
put dimension problems, Hershey et al. (2016) proposed a
Deep Clustering (DC) method which first maps the time-
frequency units into a embedding space, and then gener-
ates a partition of the time-frequency units by employing a
clustering algorithm, such as k-means. Following DC, Chen
et al. (2017) proposed a Deep Attractor Network (DANet)
which first forms k attractor points (cluster centers) in the
embedding space and then pulls together the time-frequency
units corresponding to the attractor points. Although DC and
DANet are flexible to conduct speech separation on differ-
ent number of sources in the mixture without retraining and
produce the state-of-the-art separation, both of them require
a certain cluster number during evaluation to separate all the
speech channels.

Obviously, this assumption to be given a certain clus-
ter number is too strict to offer a satisfactory solution in a
complex auditory scene, where it is difficult to determine
the number of the input sources. From the previous re-
ports on dichotic listening behavior (O’sullivan et al. 2015;
Cherry 1953), human is not able to listen to, and remem-
ber two concurrent speech streams, while listeners usually
select the attended speech and ignore other sounds in the
conditions where signals are either mixed or presented to
separate ears. Such manner makes human auditory system
have the ability to attend their interesting speech in a com-
plex auditory scene without considering the number of the
input auditory signals. Thus, developing an auditory atten-
tive selection model to solve the cocktail party problem may
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Figure 1: Two specific attention tasks for auditory selec-
tion in a three speech mixture environment. One is top-down
task-specific attention, and the other is bottom-up stimulus-
driven attention.

be more practical.
Besides, the speaker identity is not fully utilized (or un-

intentionally ignored) in most existing methods which only
use the speaker identity to guide the label permutation. Ac-
tually, listener in a cocktail party environment always first
tries to determine the identity of the target speaker with the
help of visual perception or other information. If the listener
is familiar with the acoustic feature of the target speaker,
the corresponding acoustic memory would be extracted from
brain circuits directly to assist auditory attention based on
the speaker identity. While for a unknown target speaker,
the listener should first perceive the acoustic feature from a
salient speech and then update the memory corresponding
with the new speaker identity for the following continuous
auditory attention.

Following the ideas from auditory selective attention of
behavioral and cognitive neurosciences (Kaya and Elhilali
2017), two specific auditory attention tasks are illustrated in
Figure 1. Assume there are three speakers, Spk1, Spk2 and
Spk3, in a cocktail party environment. Task 1 shows a top-
down task-specific attention which requires the listener to
follow a conversation with a friend based on a given speaker
identity, such as Spk1. While task 2 is a bottom-up stimulus-
driven attention where the listener’s attention is attracted by
a given salient speech of the target speaker. Both of them
may usually work simultaneously in human’s auditory path-
way, or the bottom-up attention would be transformed into
a top-down attention after a few interactions. To make the
comparison clearer, we decompose the auditory attention
into two separate tasks: top-down and bottom-up, but inte-
grate them into one unified framework.

Specifically, this paper propose a unified Auditory Selec-
tion framework by modeling Attention and Memory (abbr.
to ASAM). Our method first accumulates the prior knowl-
edge (that is the acoustic feature to one specific speaker) into
a life-long memory which is one particular external memory
module without the need to reset it during training, mean-
while a speech perceptor is trained to extract the tempo-
ral acoustic feature and update the memory online when a
salient speech is given. Then the learned memory is utilized
to interact with mixture input to attend and filter the target
speech. Our main contributions are three-fold:

(1) To our best knowledge, this is the first time to inte-
grate top-down task-specific attention and bottom-up
stimulus-driven attention into one unified computational
auditory framework, which is closer to human auditory
behavior, fully trainable and easy to implement without
any specific settings, such as giving a certain number of
the input auditory signals during evaluation or setting a
threshold value to ignore the background noises.

(2) We exploit a life-long memory following one speech
perceptor to accumulate the prior knowledge during
training, which make our model have the ability to recall
the acoustic memory of the trained speaker or perceive
the salient speech stimulation in our unified framework,
and even update the memory online once the speaker
identity is determined after salient speech stimulation.

(3) We test and verify experiments based on two publicly
available speech datasets: WSJ0 and THCHS-30. The
various experimental results demonstrate that our ap-
proach successfully conduct two auditory selective at-
tention tasks, and even show the robustness in a real
noise environment.

The remainder of this paper is organized as follows: In
Section 2, we briefly survey several related works. Section 3
describes the proposed framework ASAM and gives imple-
mentation details. Experiments are presented in Section 4.
Finally, conclusions are given in the last Section.

Related Work
In the following subsections, we briefly introduce two direc-
tions that are related to the proposed research.

Speech Separation and Auditory Selection

As discussed before, in order to solve the cocktail party
problem via computational auditory system, researchers
have proposed many speech separation methods over the
decades, from Computational Auditory Scene Analysis
(CASA) (Brown and Cooke 1994), Non-negative Matrix
Factorization (NMF) (Schmidt and Olsson 2006) to deep
learning based approaches (Huang et al. 2014; Yu et al.
2017). NMF, as the most representative instance of dictio-
nary learning, decomposes each clean source into a set of
speaker-dependent dictionaries and activations during train-
ing, and optimizes the activation for each source to achieve
a global optimum. However, these decomposition based
methods mainly have the following limitations: (1) Most of
these methods achieve a global optimum through iterative
method, which usually results in high computational com-
plexity during evaluation. (2) The noise or unknown speaker
in the background would prevent the decomposition model
to achieve high quality separation, even though the target
dictionary has been pre-learned well. (3) When the total
number of available dictionaries is huge, attempting to re-
construct all possible sources is impractical even introduc-
ing group-sparsity penalty (Chen 2017). A prior knowledge
to choose a meaningful subset of the pre-learned dictionaries
is helpful for decomposition, however, in a complex auditory
scene, the input sources are usually uncertain and even dy-
namic. Although the recent Deep Clustering (DC) (Hershey

2565



Figure 2: An illustration of our Auditory Selection with Attention and Memory (ASAM). (a): The overall architecture of the
proposed ASAM. (b): Life-long memory module to memory the prior knowledge. In top-down attention scene, the dashed
boxes and arrow are only conducted in the training phase and removed in the evaluation time.

et al. 2016) and Deep Attractor Network (DANet) (Chen,
Luo, and Mesgarani 2017) have overcome the label permuta-
tion problem and output dimension mismatch problem. Both
of them also do not move away from the traditional compu-
tational framework for trying to separate all the signals in
the mixture input, which may fail to achieve a satisfactory
performance in a complex auditory scene.

Several recent studies on human’s auditory behavior and
selective processing have revealed that the cortical activi-
ties of one listener in a multi-talker environment were dom-
inated by the salient spectral and temporal features of the
attended speaker, and were only weakly correlated with the
unattended speaker (Mesgarani and Chang 2012; O’sullivan
et al. 2015). Furthermore, studies on the neurophysiology
of auditory selection showed that human’s primary audi-
tory cortex generates the frequency-selective attentional fil-
ter to tune into selective frequency channels (Da Costa et
al. 2013) and the specific object representations in auditory
memory enhances the perceptual precision of top-down at-
tention (Lim, Wöstmann, and Obleser 2015). Based on the
above observations, integrating selective attention and audi-
tory memory into the computational auditory model would
be a feasible solution for cocktail party problem.

Attention and Memory-Augmented Model

With the recent resurgence of interest of deep learning, many
researchers have concentrated on using deep neural net-
works to map text, image and speech into a fixed-length
vector (Sutskever, Vinyals, and Le 2014; Huang et al. 2014;
LeCun, Bengio, and Hinton 2015). The main merit of these
representation learning based methods is that they do not
rely on any handcrafted features. However, the fixed-length
vector representation is typically too small to accurately re-
member objects from the past, and may lose important de-
tails for response generation (Xu et al. 2016). To alleviate

this drawback, lots of deep learning methods with explicit
memory have been heavily studied recently, such as Mem-
ory Networks (MemNN) (Sukhbaatar et al. 2015), Neural
Machine Translation (NMT) (Bahdanau, Cho, and Bengio
2015) and Neural Turing Machines (NTM) (Graves, Wayne,
and Danihelka 2014). These methods exploit an external
memory to store the input sequence with a continuous rep-
resentation. Meanwhile, for automatically soft-searching the
most related parts from the memory, they explore various
attention mechanisms, such as vTh (dot), vTWh (general)
and gT tanh(W [v;h]) (concat) (Luong, Pham, and Manning
2015), where v is the probe vector, h is the attended memory,
and W and g are learned parameters.

However, the above memory modules work as a short-
term memory (Chaudhuri and Fiete 2016) which usually
persists the internal states during the current sample process-
ing and resets the states when the next sample comes. In or-
der to make the memory learn from the experience and recall
prior knowledge explicitly, Kaiser et al. (Kaiser et al. 2017)
give a novel long-term memory to accumulate the knowl-
edge from training samples in a life-long manner. Along the
direction of that work, we believe that introducing one life-
long memory1 into the computational auditory model can
enhance the auditory selection performance, especially in
top-down attention where the specific auditory object would
be accumulated over time.

Our Approach

The goal of our approach is to solve top-down and bottom-
up attention tasks in a unified computational auditory frame-
work by modeling attention and memory. The main chal-

1It is worth noticing that we use the term “life-long memory”
as mentioned in the previous work (Kaiser et al. 2017), and there is
no difference with the term “long-term memory” in this work.
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Table 1: Statistics of the selected datasets, including the mean length of the speech sounds, the male to female ratio, the number
of train/dev/test set samples and the max supplementary stimuli for each unknown speaker (Supp (Spk)). Note that task 1 refers
to the top-down attention, while task 2 refers to the bottom-up attention as described in Figure 1.

Datasets Mean Len Task 1 on Trained Speakers Task 2 on Unknown Speakers
M:F Train Dev Test M:F Test Supp (Spk)

WSJ0 5.03 s 4:6 4,410 810 2,250 2:3 500 10
THCHS-30 9.15 s 2:8 4,410 810 2,250 1:4 500 10

lenges of this idea are that: (1) How does our method ASAM
accumulate the prior knowledge into the life-long memory
and use it to respond to the task-specific and stimulus-driven
attention tasks; (2) How does the learned memory interact
with the mixture input to attend and filter the target time-
frequency units. The proposed method is described in detail
in the following subsections.

Model Architecture

As described in Figure 2, given a raw mixture input x, our
model first transforms it into time-frequency domain Xt,f

by Short-Time Fourier Transformation (STFT) and then
maps it into d-dimensional embedding space Ht,f,d via a
Bidirectional Long-Short Term Memory (BiLSTM). In top-
down attention scene, the target signal s is first fed into
another BiLSTM and then accumulated into the life-long
memory M corresponding with the attended speaker iden-
tity “Spk1” during training, and only the speaker identity
“Spk1” is given to recall the prior knowledge during evalu-
ation. While we directly use the model without retraining to
test the bottom-up attention task with the speech stimulation
ŝ of the unknown speaker “Unk”.

Accumulate the Prior Knowledge into Memory

To accumulate the speaker identity with their acoustic mem-
ory, one straightforward approach is to embed the i-th
speaker identity pi into d-dimensional vector by looking up
a speaker embedding matrix E ∈ R

|P |×d, where E is a
learned parameter and |P | is the total number of speakers in
the datasets. We denote this mode as ASAM-spk where the
speaker embedding is served as a long-term memory as men-
tioned in (Kumar et al. 2016). Since this base model ASAM-
spk directly trains the mapping matrix E rather than updates
the memory based on the perceptual encoding of the salient
speech, it may work well on top-down attention but could
not be able to conduct the stimulus-driven attention task.

Inspired by (Kaiser et al. 2017), we put forward to ac-
cumulate the acoustic feature of the training samples into a
life-long memory M following a speech perceptor, where
the speech perceptor is implemented by a BiLSTM in our
work and the memory M is formulated as a triple:

M = (Kmemory, Vmemory×vector, Amemory), (1)

which consists of a vector K of memory keys, a matrix V
of memory values and a vector A to track the age of items
stored in memory. Given one training triple sample: (mixture

input x, speaker identity p and target signal s), we first trans-
form the target signal s into time-frequency domain St,f by
STFT, then apply an average pooling layer following BiL-
STM on St,f to extract the acoustic feature v. If the memory
keyset already contains the given speaker identity p at the
place n, then the age tracking value is reset and the value
V [n] is updated by taking the average of the current value
and v and normalizing it:

A[n] ← 0, V [n] ← v + V [n]

‖v + V [n]‖ . (2)

Otherwise, we find a new or oldest place n′ =
argmaxiA[i] in the memory and write the pair (p, v) there:
K[n′] ← p, V [n′] ← v, A[n′] ← 0. With every memory
update, the age tracking values of all non-updated indices
also are incremented by 1.

In the test phase, our model can directly recall the cor-
responding memory vector v based on the given speaker
identity p for task-specific task. While in stimulus-driven
attention scene, the signal ŝ is first encoded by the trained
speech perceptor, BiLSTM, and then embed into the mem-
ory slot corresponding with “Unk” identity. In such way, the
stimulus-driven task is unified with the task-specific proce-
dure for the following continuous attention.

Obviously, if the memory size is larger than the total
number of the speakers |P |, our model would memory all
the acoustic features of the speakers. Otherwise, the forget-
ting mechanism would be triggered and the oldest memory
would be erased. Specifically, we set the vector size to d and
the memory size to |P | + 1 in our experiments. The extra
memory is used to store the acoustic features of the unknown
speakers temporarily, which usually occurs in the early stage
of stimulus-driven task, and the temporal memory would be
accumulated once the speaker identity is determined.

Be different from (Kaiser et al. 2017), we place the life-
long memory at the encoder side for perception enhance-
ment rather than the decoder side for response enhancement,
which results in that the matrix representation in the memory
is V rather than K. Considering the memory is trustworthy
gradually in the life-long learning phase, we also update the
memory with biased average rather than global average.

Attend the Target Time-Frequency Units

For the mixture input x, we first apply a BiLSTM layer along
the time dimension of the mixture spectrogram X to com-
pute the hidden state as follows:

h′
t =

→
LSTM(Xt) +

←
LSTM(Xt). (3)
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Table 2: Comparison of GNSDR results (mean±stdev) of our ASAM and baseline methods on the top-down attention task for
two and three speaker mixture. DC (-40) means that the background noise threshold is set to -40 dB of the input’s maximum
magnitude, as well as DC (-60) and DC (-80) which ignore about 76.5%/82.6%, 41.5%/51.6% and 26.8%/32.2% time-frequency
units on WSJ0/THCHS-30 respectively. ASAM-spk is similar to ASAM but the long-term memory is implemented with a
speaker embedding matrix as described in Section . We randomly select a third speaker’s speech and linearly mix it into the test
dataset to form the three speaker mixtures (abbr. to Three). Two (noise) means that we mix some background noises (recorded
in the street junction environment by (Barker et al. 2015)) into the two speaker mixtures in the test phase. (All of these models
are trained on two speaker mixtures)

Methods WSJ0 THCHS-30
Two Three Two (noise) Two Three Two (noise)

DC 4.78±0.23 4.09±0.02 2.61±0.01 2.83±0.92 4.01±0.07 2.77±0.12
DC (-40) 7.47±0.07 5.32±0.02 3.29±0.04 6.56±0.08 5.48±0.15 2.81±0.23
DC (-60) 6.89±0.20 4.95±0.04 3.23±0.10 6.36±0.05 5.36±0.10 2.84±0.16
DC (-80) 6.82±0.05 4.94±0.12 3.74±0.26 5.76±0.33 4.82±0.17 3.49±0.22
ASAM-spk 8.16±0.07 5.06±0.07 3.92±0.16 6.81±0.15 5.54±0.15 4.43±0.38
ASAM 7.46±0.11 5.02±0.05 4.36±0.13 6.05±0.26 5.02±0.11 3.95±0.48

Then, the hidden state h′
t is fed into one feed-forward

layer followed one reshape layer to generate the d-
dimensional embedding vector ht,f ∈ R

d of each time-
frequency unit Xt,f . Finally, we perform selective attention
on the mixture spectrogram X by using the probe vector v
extracted from the life-long memory and the time-frequency
hidden states ht,f as follows:

αt,f = sigmod(gT · tanh(W · v + U · ht,f )), (4)

where g ∈ R
d×1, W ∈ R

d×d and U ∈ R
d×d are

all learned parameters updated during training, and the at-
tention weight αt,f is adopted as frequency-selective at-
tentional filter (Da Costa et al. 2013) or informational
mask (Brungart 2001). Finally, our model ASAM produces
the predicted spectrogram X×α, and minimizes the follow-
ing objective function during training to learn the parame-
ters:

L =
∑

t,f

‖St,f −Xt,f × αt,f‖22, (5)

where S is the target spectrogram. Finally, the predicted sig-
nals are reconstructed by inverse STFT (iSTFT). From the
above procedures, we can see that the probe vector v ex-
tracted from the life-long memory works as the attractor
(magnet) generated from brain circuits (Kuhl 1991) to draw
the attentive sounds.

Experiments

Below, a series of experiments are designed and conducted
mainly to answer the questions: (1) How does the pro-
posed approach ASAM compare with the state-of-the-art
source separation method on top-down attention task; (2)
Whether our approach can successfully attend a unknown
target speaker on bottom-up attention task; (3) Whether a
reasonable memory can be learned with only few samples
of the target speaker.

Datasets and Setup

The auditory selection tasks are conducted on two selected
datasets of speech mixtures based on the Wall Street Journal
(WSJ0)2 corpus (Garofalo et al. 2007) and Tsinghua Chinese
30 hour (THCHS-30)3 database (Wang and Zhang 2015).
We select 10 speakers with their part of speech sounds for
top-down attention and other 5 speakers with their part of
speech sounds for bottom-up attention from these datasets.
We further linearly mix two speaker’s utterances respec-
tively. The mixtures generated from trained speakers are
split into train, dev and test sets, while 10 clean utterances
per unknown speaker are reserved as the stimuli. More sum-
mary statistics of these datasets are described in Table 1.
From the statistics, we can see that the male to female ratio
of THCHS-30 is biased which may make the task difficult.

In our experiments, the hyperparameters are set uniformly
for the datasets and the baselines. All data are resampled
to 8 kHz to reduce computational and memory costs. The
magnitude spectra is served as input feature, computed us-
ing Short-Time Fourier Transform (STFT) with 32 ms win-
dow length, 16 ms hop size and the sine window. In order to
augment the variety of training samples, we circularly ran-
domly shift (in the time domain) the signals and linearly mix
two-speaker signals. We randomly generate 32 samples for
one mini-batch, and per epoch contains 100 mini-batches.
The learned parameters are all initialized randomly from a
Glorot uniform distribution. Our models were trained using
Nesterov Adam with a fixed learning rate of λ = 0.002.
Training runs for up to 150 epochs with early stopping if the
validation loss has not decreased for 10 epochs.

For architecture, we use a 2-layer BiLSTM with 300 hid-
den units in each direction for mixture encoder, and another
2-layer BiLSTM with 20 hidden units in each direction for
speech perceptor along with the memory. The dimensions
of T-F embeddings and memory vectors are all fixed to
d = 40, resulting in a feed-forward layer of 5,160 hidden

2https://catalog.ldc.upenn.edu/LDC93S6A
3https://github.com/kaldi-asr/kaldi/tree/master/egs/thchs30
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Figure 3: GNSDR results of our ASAM and baselines on the bottom-up attention task with two unknown speaker mixture and
different time durations of the stimuli. For clarity, we only plot the base DC model and the best DC (-40) to compare our model,
while the other models DC (-60) and DC (-80) get 5.23/5.17 and 4.98/4.56 NSDR results on WSJ0/THCHS-30 respectively.

units (40×129) after the mixture encoder. We constructed
the baselines with the same configuration. To quantitatively
evaluate the auditory selection results, we report the overall
performance via the global signal-to-distortion improvement
(GNSDR) using BSS EVAL toolbox4 (Vincent, Gribonval,
and Févotte 2006). All experiments calculate the average re-
sults by repeating each experiment 5 times.

Results and Analysis

Performance on Top-down Attention In our experi-
ments, the top-down auditory attention is to select the tar-
get speech based on one given speaker identity, which is
a task-driven processing and usually needs to recall the
prior knowledge. Table 2 shows the GNSDR results of our
ASAM and other comparison methods which are all flexible
to deal with two and three speaker mixtures, even though
they are all trained on two speaker mixtures. We can see
that ASAM-spk conducts best performances in most situ-
ations, and ASAM performs competitive results with the
best DC based method DC (-40). However, the results of
DC based methods is quite heavily influenced by the back-
ground noise threshold which is a tricky technology. Fur-
thermore, DC based methods need to set the specific number
of the expected clusters during evaluation. Since it is tough
to determine the number of signal channels in the real audi-
tory scene, DC based methods may fail in a complex audi-
tory scene. In order to verify this assumption, we mix some
real environment noises into two speaker mixture without
retraining and report the results in Table 2. It is clear that
ASAM based methods perform better robustness.

Performance on Bottom-up Attention Considering
bottom-up auditory attention as stimulus-driven, we con-
duct the experiments on the unknown speaker mixtures. DC
based methods directly cluster the mixture time-frequency

4https://www.irisa.fr/metiss/bss eval/

units into different cluster spaces, while our ASAM uses
the supplemental speech sounds as stimuli to attract the
auditory attention. The GNSDR results are presented in
Figure 3 and we can see that our ASAM outperforms
the best DC based method after 2 s and 8 s respectively.
Furthermore, as the time duration increases, the GNSDR
performances become more stable with smaller deviation.
Compared with the results in Table 2, the task-specific
attention based on the accumulated prior knowledge indeed
gains an advantage over the stimulus-driven attention based
on the temporal acoustic features.

Effects of Attention with Different Amounts of Stimulus
In order to make the effects of attention more intuitive, we
give a visual example of auditory selective attention using
our ASAM over one male and female mixture sample from
WSJ0 test datasets in Figure 4. Figure 4(a) shows that the
performances of our model on this sample are increasing as
the time duration of the stimulus increasing, and Figure 4(f)-
(g) present that our ASAM shifts attention toward the target
speech by varying the time durations of the stimuli from 0.25
s to 1 s. The results reveal that the learned memory is sensi-
tive to the amount of data and more samples per speaker can
generate more reasonable memory. Despite this fact, another
interesting result is that our model still generate a positive-
going attentional filter (especially as shown near the right
border of Figure 4(f)) based on few samples per speaker,
such as the seeming chaotic stimulation with 0.25 s duration
(as shown in Figure 4(b)).

Discussion

We do not do exhaustive searching for optimal architectures,
but simply follow the previous work’s parameter setting in
DC (Hershey et al. 2016). Compared with DC based meth-
ods, our approach mainly have three advantages: (1) The
attractor (magnet) is extracted from the life-long memory
rather than the temporary input mixture, which would en-
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Figure 4: Effects of attention with different amounts of stimulus on one male and female mixture sample from WSJ0. (a) shows
the SIR (Signal-to-Interference Ratio), SAR (Signal-to-Artifacts Ratio) and NSDR results, (b)-(d) are the auditory stimuli
whose magnitudes are divided by the maximum magnitude, (e) is the mixture input spectrogram, (i) is the target spectrogram,
(f)-(h) are attention maps based on the corresponding auditory stimuli and (j)-(l) are the corresponding predictions with their
NSDR performances. (Best viewed in color)

sure that our approach uses the more reasonable attractor to
attend the target speaker. (2) Our auditory attention mod-
ule relaxes the strict assumption that the number of the in-
put sources should be given during evaluation, which make
our approach have the ability to deal with complex audi-
tory scene. (3) Our auditory memory would be updated on-
line once the speaker identity is determined after a salient
speech stimulus, which helps our approach to enhance the
learned memory online and even tackle the stimulus-driven
attention on unknown speaker mixtures. Based on the above
advantages, our approach performs competitive results on
various experimental settings, such as closed/open speaker
problems, two/three speaker inputs and mixing real back-
ground noises. An important issue worthy of research is
how to evaluate cocktail party problem. Maybe conduct-
ing subjective listening and intelligibility test would be bet-
ter, but yet Sources to Noise Ratio (SNR) based metrics,
such as SDR, are objective and fair quantitative criteria,
which do not rely on a particular type of separation algo-
rithm, but simply try to compare the estimated signal with
the target one (Kassebaum, Tenorio, and Schaefers 1990;
Vincent, Gribonval, and Févotte 2006).

Conclusion and Future Works

In this work, we first defined two attention tasks for au-
ditory selection: one is top-down task-specific attention to
follow a conversation with a familiar friend and the other
is bottom-up stimulus-driven attention to be attracted by a
salient speech of a unknown speaker. Then we proposed a
unified computational auditory model to solve the above two
tasks based on the ideas from auditory selective attention of
behavioral and cognitive neurosciences and from recent ad-
vances of memory-augmented neural networks. Finally, the
experimental results on WSJ0 and THCHS-30 show that our
model not only successfully conducts two attention tasks,
but also performs robustness in a real noise environment.

This work attempts to bridge cognitive neurosciences and
deep neural networks for designing a brain-inspired compu-
tational auditory model. We hope this solution would open
up a new way for solving cocktail party problem. In future
works, we intend to conduct further research on the switch-
ing and interaction between top-down and bottom-up atten-
tions, or explore the potential of visual perception to im-
prove auditory selection.
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Lim, S.-J.; Wöstmann, M.; and Obleser, J. 2015. Selective
attention to auditory memory neurally enhances perceptual
precision. Journal of Neuroscience 35(49):16094–16104.
Luong, M.-T.; Pham, H.; and Manning, C. D. 2015. Effec-
tive approaches to attention-based neural machine transla-
tion. In Proceedings of Empirical Methods in Natural Lan-
guage Processing, 1412–1421.
Mesgarani, N., and Chang, E. F. 2012. Selective cortical rep-
resentation of attended speaker in multi-talker speech per-
ception. Nature 485(7397):233–236.
O’sullivan, J. A.; Power, A. J.; Mesgarani, N.; Rajaram, S.;
Foxe, J. J.; Shinn-Cunningham, B. G.; Slaney, M.; Shamma,
S. A.; and Lalor, E. C. 2015. Attentional selection in a
cocktail party environment can be decoded from single-trial
eeg. Cerebral Cortex 25(7):1697–1706.
Schmidt, M. N., and Olsson, R. K. 2006. Single-channel
speech separation using sparse non-negative matrix factor-
ization. In INTERSPEECH.
Sukhbaatar, S.; szlam, a.; Weston, J.; and Fergus, R. 2015.
End-to-end memory networks. In Advances in Neural Infor-
mation Processing Systems, 2440–2448.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence
to sequence learning with neural networks. In Advances in
Neural Information Processing Systems, 3104–3112.
Vincent, E.; Gribonval, R.; and Févotte, C. 2006. Per-
formance measurement in blind audio source separation.
IEEE transactions on audio, speech, and language process-
ing 14(4):1462–1469.
Wang, D., and Zhang, X. 2015. Thchs-30: A free chinese
speech corpus. arXiv preprint arXiv:1512.01882.
Xu, J.; Shi, J.; Yao, Y.; Zheng, S.; and Xu, B. 2016. Hier-
archical memory networks for answer selection on unknown
words. In 26th International Conference on Computational
Linguistics, 2290–2299.
Yu, D.; Kolbæk, M.; Tan, Z.-H.; and Jensen, J. 2017.
Permutation invariant training of deep models for speaker-
independent multi-talker speech separation. In ICASSP.

2571


