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Abstract

In recent years, neural network approaches have been widely
adopted for machine learning tasks, with applications in com-
puter vision. More recently, unsupervised generative models
based on neural networks have been successfully applied to
model data distributions via low-dimensional latent spaces. In
this paper, we use Generative Adversarial Networks (GANs)
to impose structure in compressed sensing problems, replac-
ing the usual sparsity constraint. We propose to train the
GANs in a task-aware fashion, specifically for reconstruction
tasks. We also show that it is possible to train our model with-
out using any (or much) non-compressed data. Finally, we
show that the latent space of the GAN carries discriminative
information and can further be regularized to generate input
features for general inference tasks. We demonstrate the ef-
fectiveness of our method on a variety of reconstruction and
classification problems.

Introduction

The broad scope and generality of the field of compressed
sensing has led to many impressive applications, such as
rapid magnetic resonance imaging [Lustig, Donoho, and
Pauly, 2007], single-pixel camera [Duarte et al., 2008] and
UAV systems. The core problem of compressed sensing is
that of efficiently reconstructing a signal x ∈ R

n from
an under-determined linear system of noisy measurements
given by

y = Ax+ ζ (1)

where A ∈ R
m×n is the measurement sensing matrix,

m < n, and ζ ∈ R
m is the measurement noise [Donoho,

2006]. Since this is an under-determined system of equa-
tions, a unique solution does not exist, even in the absence
of noise, unless some assumptions are made on the structure
of the unknown vector x. Depending on applications, the
structural assumptions may vary, the most common one be-
ing that x is sparse [Donoho, 2006, Candes, Romberg, and
Tao, 2006b, Candes and Wakin, 2008]. Under this specific
assumption, the problem of recovering x has been widely
studied, and different conditions on the matrix A have been
established to guarantee reliable recovery [Bickel, Ritov, and
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Tsybakov, 2009]. These conditions include the Restricted
Isometry Property (RIP) or the Restricted Eigenvalue Condi-
tion (REC) [Candes, Romberg, and Tao, 2006a, Pati, Rezai-
ifar, and Krishnaprasad, 1993].

Even though the sparsity assumption on x is the most
common choice, it is not the only possible one. Indeed,
other approaches, such as combining sparsity with addi-
tional model-based constraints [Baraniuk et al., 2010] or
graph structures [Hegde, Indyk, and Schmidt, 2015], have
been developed. Recently, in [Bora et al., 2017], a genera-
tive model was used and the unknown signal x was assumed
to be the output of this model. Generative models have been
successfully used to model data distributions, and include
the variational auto-encoder (VAE) [Kingma and Welling,
2013], generative adversarial networks (GANs) [Goodfel-
low et al., 2014], and variations thereof [Radford, Metz,
and Chintala, 2016,Chen et al., 2016,Lamb, Dumoulin, and
Courville, 2016]. In the GAN framework, two models are
trained simultaneously in an adversarial setting: a generative
model that emulates the data distribution, and a discrimina-
tive model that predicts whether a certain input came from
real data or was artificially created. The generative model
learns a mapping G from a low-dimensional vector z ∈ R

k

to the high dimensional space R
n.

The authors in [Bora et al., 2017] use a pre-trained gener-
ative model G, and recover an estimate of x from the com-
pressed measurements y, assuming it is in the range of G.
To this end, the following optimization problem is solved:

min
x̂,z

||Ax̂− y||22
s. t. x̂ = G(z) (2)

In the setting of [Bora et al., 2017], the pre-trained
G is unaware of the compressed sensing framework.
Furthermore, it is assumed that an abundance of real
(non-compressed) images is available to train G, which,
depending on the application, may not be a realistic assump-
tion [Lustig et al., 2008]. After all, the aim of compressed
sensing is to recover signals through the use of com-
pressed measurements. In this paper, we propose to train G
specifically for the task of recovering compressed measure-
ments. This makes our GAN task-aware, and improves the
compressed sensing performance. Our approach will also
address the case where no or very little non-compressed
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data is available for training, by complementing the training
set with compressed training data. Finally, we empirically
demonstrate that the low-dimensional latent vector z can
be used, not only to perform reconstruction via G, but also
for inference tasks such as classification. Our code has been
made publicly available at https://github.com/po0ya/csgan.

Our contributions:

1. We train the GAN in a task-aware fashion allowing it to
be specifically optimized for the reconstruction task. We
show that this consistently improves the reconstruction er-
ror obtained in [Bora et al., 2017] for various values of the
number of measurements m.

2. We consider training using a combination of a small num-
ber of (or no) non-compressed data and a larger set of
compressed training data. This is achieved by introducing
a second discriminator specifically for compressed data.

3. We show that we can regularize the latent space of z to
make it discriminative, given a desired inference task.

Related Work

In this work, we combine compressed sensing and gener-
ative models to perform reconstruction and classification
tasks. To this end, we explain the related work in two parts.
The first part addresses the use of generative models for re-
construction and classification tasks, and the second part re-
views inference tasks in compressed sensing.

Using a generative model for reconstruction tasks is a
fairly well-researched area. One line of work attempts to
map an image to the range of the generator [Dumoulin et
al., 2016, Donahue, Krähenbühl, and Darrell, 2016, Lipton
and Tripathi, 2017]. Unlike our setting, complete and non-
compressed knowledge of the images is assumed. In [Lip-
ton and Tripathi, 2017], gradient descent (GD) is used to
project the image samples onto the latent space of a pre-
trained generative model. In [Dumoulin et al., 2016, Don-
ahue, Krähenbühl, and Darrell, 2016], an inverse mapping
between the input space of x and the latent space of z
is jointly learned along with the generator in an adversar-
ial setting. Generative models can also be used for clas-
sification tasks [Mirza and Osindero, 2014, Springenberg,
2015, Odena, 2016, Lamb, Dumoulin, and Courville, 2016].
This can be achieved by modifying the discriminator of
the GAN to also output class probabilities [Springenberg,
2015, Odena, 2016] or augmenting the loss function with
discriminative features at training time [Mirza and Osindero,
2014,Lamb, Dumoulin, and Courville, 2016]. Such discrim-
inative features include ground-truth class labels [Mirza and
Osindero, 2014] and representations learned by a pre-trained
classifier [Lamb, Dumoulin, and Courville, 2016].

Another related line of work considers compressed sens-
ing frameworks for various machine learning and com-
puter vision tasks [Davenport et al., 2007, Cevher et al.,
2008,Maillard and Munos, 2009,Calderbank, Jafarpour, and
Schapire, 2009, Lohit et al., 2015]. In [Calderbank, Jafar-
pour, and Schapire, 2009] theoretical results are provided
showing that inference can be done directly in the com-
pressed domain. Of particular relevance to our work are

[Davenport et al., 2007, Lohit et al., 2015, Lohit, Kulkarni,
and Turaga, 2016] which develop various techniques for the
classification of compressed images. These methods oper-
ate directly on the compressed measurements, whereas we
perform classification on the latent variable z.

Finally, one last research area that is relevant to our ap-
plication is super-resolution, the task of increasing the res-
olution of an image. This can be seen as a special case of
compressed sensing where the sensing matrix A averages
neighboring pixels. In [Yang et al., 2010], a sparse repre-
sentation of image patches is sought and used to obtain a
high-resolution output. Our framework adopts the generative
model instead of the sparsity constraint. More recent work
uses deep convolutional networks [Dong et al., 2016, Kim,
Kwon Lee, and Mu Lee, 2016].

Model Description

Background Information

Before describing our approach, we provide some necessary
background information on compressed sensing and GANs.

In compressed sensing, the measurements are given as
y = Ax + ζ. A ∈ R

m×n is the measurement matrix and
is usually chosen to be a Gaussian random matrix because it
satisfies desirable properties with high probability [Donoho,
2006]. Unless otherwise specified, we will assume that A is
a zero-mean random Gaussian matrix with independent and
identically distributed entries. A is kept constant in a given
experiment.

GANs consist of two neural networks, G and D. G :
R

k → R
n maps a low-dimensional latent space to the high

dimensional sample space of x. D is a binary neural net-
work classifier. In the training phase, G and D are typically
learned in an adversarial fashion using actual input data sam-
ples x and random vectors z. An isotropic Gaussian prior is
usually assumed on z. While G learns to generate outputs
G(z) that have a distribution similar to that of x, D learns to
discriminate between “real” samples x and “fake” samples
G(z). D and G are trained in an alternating fashion to mini-
mize the following min-max loss [Goodfellow et al., 2014]:
min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))] (3)

GAN Training Algorithm At every iteration, (3) is max-
imized over D for a fixed G, using GD, and then minimized
over G, fixing D.

Motivation

In [Bora et al., 2017], a generative model is pre-trained on
a set of uncompressed training images, using the algorithm
described in [Radford, Metz, and Chintala, 2016]. In the
testing phase, the generative model is used to reconstruct
a compressed, previously unseen, test image using GD on
the problem in (2). It is shown that, when A is a random
Gaussian matrix, if ẑ minimizes ||AG(z)− y||2 to within
additive ε of the optimum, then for all x, and with high prob-
ability

||G(ẑ)− x||2 ≤ 6min
z

||G(z)− x||2 + 3||ζ||2 + 2ε (4)
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In other words, the observed reconstruction error is bounded
by the minimum possible error of any vector in the range of
the generator with some additional terms due to noise and
GD precision. We note that this upper bound depends on
how well G can represent the unknown signal x. Now, we
show that, under certain conditions, the expected value of
this error term converges to 0 as G is trained on x.

Theorem 1 Let Gt be the generator of a GAN after t steps
of the GAN training algorithm described above. Addition-
ally, as in [Goodfellow et al., 2014], we assume:

(i) G and D have enough capacity to represent the data.
(ii) At each update, D reaches its optimum given G.

(iii) At each update, G is updated to improve the min-max
loss in (3).

Furthermore, we assume that the training samples x come
from a continuous distribution with compact support. Then,

lim
t→∞Ex

[
min
z

||Gt(z)− x||2
]
= 0 (5)

Proof: Let gt(x) be the probability distribution function
(pdf) of Gt(z) and f(x) be the pdf of x. Then, from [Good-
fellow et al., 2014, Proposition 2], gt(x) converges to f(x)
pointwise in x. By assumption, f(x) has bounded support
X , i.e., μ(X ) is finite, where μ(·) is the Lebesgue measure.
We note that the assumption of X having bounded support is
reasonable, especially for computer vision tasks where pixel
values are usually bounded (for instance, in [0, 255]).

Then, by Egorov’s theorem, for all ε > 0, there exists a
set B ⊆ X such that μ(B) < ε and gt(x) converges to f(x)
uniformly on X \B. This implies that, for all x ∈ X \B and
for all ν, there exists t0 such that |gt(x)− f(x)| < ν, for all
t ≥ t0. This means that, for x ∈ X \ B, gt(x) = 0 implies
f(x) < ν. Additionally, gt(x) > 0 implies that there exists
z such that Gt(z) = x, i.e., minz ||x−Gt(z)||2 = 0.

Let Xν = {x ∈ X | f(x) ≤ ν}. Note that {x ∈ X \
B | gt(x) = 0} ⊆ Xν for all t ≥ t0. Then, for all ε, ν > 0
and t ≥ t0,

Ex

[
min
z

||x−Gt(z)||2
]

(6)

≤
∫
B

min
z

||x−Gt(z)||2 f(x) dx

+

∫
Xν

min
z

||x−Gt(z)||2 f(x) dx

+

∫
X\(B∪Xν)

min
z

||x−Gt(z)||2 f(x) dx (7)

≤
∫
B

min
z

||x−Gt(z)||2 dx

+ ν

∫
Xν

min
z

||x−Gt(z)||2 dx (8)

≤ μ(B) sup
x∈B

min
z

||x−Gt(z)||2
+ νμ(Xν) sup

x∈Xν

min
z

||x−Gt(z)||2 (9)

≤ (μ(B) + νμ(Xν)) sup
x∈X

min
z

||x−Gt(z)||2 (10)

= (μ(B) + νμ(Xν))max
x∈X

min
z

||x−Gt(z)||2 (11)

≤ C(ε+ νμ(X )) (12)

where C > 0 is a positive constant.
Equation (8) follows from the fact that

minz ||x−Gt(z)||2 = 0 for x ∈ X \ (B ∪ Xν),
f(x) ≤ 1 for x ∈ X , and f(x) ≤ ν for x ∈ Xν . Equation
(11) is obtained using the extreme value theorem since X is
compact. To prove (12) we proceed as follows:

max
x∈X

min
z

||x−Gt(z)||2 ≤ min
z

max
x∈X

||x−Gt(z)||2 (13)

≤ max
x∈X

||x−Gt(z̄)||2 (14)

= C (15)

Equation (13) follows from the max-min inequality. In
(14), z̄ is such that Gt(z̄) ∈ X . Such a z̄ always exists for
t ≥ t0. Equation (15) follows from the fact that X is com-
pact.

Therefore, we obtain (12) by noting that
supt≥t0 maxx∈X minz ||x−Gt(z)||2 ≤ C. Since μ(X )
is a finite positive constant and (12) is satisfied for any
ε, ν > 0, this proves the theorem. �
This theorem shows that the right-hand side of (4) is actu-
ally small, which justifies the setup adopted in [Bora et al.,
2017]. However, the conditions for Theorem 1 may be too
strict in practice. For example, [Goodfellow et al., 2014] as-
sume that at every step of adversarial training, the discrimi-
nator D is allowed to reach its optimal value given G, which
might be numerically infeasible. Therefore, the convergence
of ||G(ẑ)− x||2 might not be computationally attainable. To
this end, we consider a task-aware GAN training, which al-
lows G to be optimized specifically for the task of recon-
structing compressed measurements.

Task-Aware GAN Training

To make the GAN training task-aware, we propose to jointly
optimize z and train the GAN using these z’s. This is out-
lined in Algorithm 1, which alternates between three opti-
mizations on z, G, and D, respectively. In particular, we
add the GD steps in lines 5-7 of the algorithm to the origi-
nal GAN training framework. This enables the discriminator
and generator to be optimized on values of z which resem-
ble the ones seen at test time. As previously mentioned, the
original GAN training algorithm uses randomly generated z
values to train G and D. However, in our setting, the trained
GAN will not be given random z values at test time, but
rather specific z’s selected to minimize a loss function. It is
therefore beneficial to train the GAN on z’s obtained through
the same process. We note that the extra term λprior||z(i)||22 in
(16) comes from the negative log-likelihood of the Gaussian
prior on z [Bora et al., 2017].

GAN Training on Compressed Inputs

As mentioned earlier, a large set of non-compressed train-
ing data may not be available in practice. We, therefore, as-
sume that a small (or empty) set of non-compressed training
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Algorithm 1 Task-aware GAN training algorithm.

1: for number of training iterations do
2: Sample a batch of s training examples

{x(1), . . . ,x(s)}.
3: For all i, compute y(i) = Ax(i) + ζ(i).
4: Initialize s random latent variables {z(1), . . . , z(s)}

using a zero-mean Gaussian prior.
5: Initialize D and G.
6: for L steps do

7: For all i, update z(i) by GD on the loss:

||y(i) −AG(z(i))||22 + λprior||z(i)||22 (16)

8: end for
9: Update the discriminator by GD on the loss:

−1

s

s∑
i=1

[logD(x(i)) + log(1−D(G(z(i))))] (17)

10: Update the generator by GD on the loss:

1

s

s∑
i=1

log(1−D(G(z(i)))) (18)

11: end for
return {ẑ(1), ẑ(2), . . .}, Ĝ, D̂

data and a larger set of compressed training measurements
are available. We modify the training algorithm to reflect
this change. In particular, we train two discriminators and
a single generator using a combination of compressed and
non-compressed training data. The first discriminator is used
to distinguish between actual training data x and generated
data G(z). The second discriminator is used to distinguish
between actual compressed training data y and generated
data AG(z). The details of the training procedure can be
found in Algorithm 2. The addition of a second discrimina-
tor in Algorithm 2 does not affect the representative power
of the generator. In fact, similar arguments as in [Goodfel-
low et al., 2014, Proposition 2] can be made to show that,
with the two discriminators, the distribution of the generator
output being the same as that of the training data remains
optimal.

Contrastive Loss Regularization for Supervised
Learning Tasks

The low-dimensional vector ẑ, returned by Algorithm 1 or
2, can be used as an input to Ĝ to recover the original image
x. Since Ĝ learns to represent the overall data distribution
of x, ẑ must hold characteristic information specific to x.
This motivates us to use ẑ as an input feature for inference
tasks such as classification. Since ẑ is of much lower dimen-
sion than x (and, usually, y), using it as an input feature to
a classifier reduces the curse of dimensionality. To drive ẑ
to be more discriminative for the classification task, we add
a contrastive loss [Chopra, Hadsell, and LeCun, 2005] term
to (16). We assume that labeled training data is available,

Algorithm 2 GAN training algorithm using compressed
training data.

1: for number of training iterations do
2: Sample a batch of s1 non-compressed training ex-

amples {x(1), . . . ,x(s1)}.
3: For all i, compute y(i) = Ax(i) + ζ(i).
4: Sample a batch of s2 compressed training examples

{ỹ(1), . . . , ỹ(s2)}.
5: Initialize s1 random variables {z(1), . . . , z(s1)} and

s2 random variables {z̃(1), . . . , z̃(s2)} using a zero-
mean Gaussian prior.

6: for L steps do

7: For all i, update z(i) by GD on the loss:

||y(i) −AG(z(i))||22 + λprior||z(i)||22 (19)

8: For all i, update z̃(i) by GD on the loss:

||ỹ(i) −AG(z̃(i))||22 + λprior||z̃(i)||22 (20)

9: end for
10: Update the discriminators by GD on the losses:

−1

s1

s1∑
i=1

logD1(x
(i)) + log(1−D1(G(z(i)))) (21)

−1

s2

s2∑
i=1

logD2(ỹ
(i)) + log(1−D2(AG(z̃(i)))) (22)

11: Update the generator by GD on the loss:

1

s1

s1∑
i=1

log(1−D1(G(z(i))))

+
1

s2

s2∑
i=1

log(1−D2(AG(z̃(i)))) (23)

12: end for
return {ẑ(1), ẑ(2), . . .}, Ĝ, D̂1, D̂2

and the ground-truth label of x(i) is denoted by �i. The con-
trastive loss of a batch of z’s is given by:

Lcontr �
λcontr

s(s− 1)

s∑
i,j=1

[
1(�i = �j)||z(i) − z(j)||22

+1(�i �= �j)max{0,M − ||z(i) − z(j)||22}
]

(24)

where λcontr is a weight which dictates the relative impor-
tance of this loss, and M is a positive margin.

Experiments

In our experiments, we use three different image datasets:
the MNIST handwritten digits dataset [LeCun et al., 1998],
the Fashion-MNIST (F-MNIST) clothing articles dataset
[Xiao, Rasul, and Vollgraf, 2017], and the CelebFaces At-
tributes dataset (CelebA) [Liu et al., 2015].
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The MNIST and F-MNIST datasets each consists of
60, 000 training images and 10, 000 testing images, each of
size 28× 28. We split the training images into a training set
of 50, 000 images and hold-out a validation set containing
10, 000 images. The testing set is kept the same. The images
contain a single channel, therefore the input dimension n is
28× 28 = 784.

The CelebA dataset is a large-scale face dataset consist-
ing of more than 200, 000 face images, split into training,
validation, and testing sets. The RGB images were cropped
to a size of 64 × 64, resulting in an input dimension of
n = 64× 64× 3 = 12, 288.

For all datasets, our generative and discriminative models
follow the Deep Convolutional GAN (DCGAN) architecture
in [Radford, Metz, and Chintala, 2016]. We use the Adam
optimizer [Kingma and Ba, 2014] for training the GAN. All
hyper-parameters were either set to match the ones in [Bora
et al., 2017] or chosen by testing on the holdout validation
set. Our implementation is based on TensorFlow and builds
on open-source software [Kim, 2017,Bora et al., 2017]. De-
tails of the hyper-parameters used in our experiments can be
found in the code repository.

Reconstruction

We first perform a compressed sensing reconstruction task.
We train our model using Algorithm 1, assuming access
to the original non-compressed training set. We refer to
our trained model as Compressed Sensing GAN (CSGAN),
since the GAN was trained in a task-aware fashion for com-
pressed sensing. As a baseline, we compare our reconstruc-
tion results to those obtained by the method in [Bora et al.,
2017], which trains a DCGAN using the usual GAN train-
ing framework. At test time, both methods optimize (16) to
obtain ẑ, with the same learning rate and number of GD it-
erations. For both cases, we perform the same number of
random restarts on the initialization of z. The reconstruction
is then given by G(ẑ).

Additionally, we compare the results to Lasso, performed
directly on the pixel values for MNIST and F-MNIST,
and in the Discrete Cosine Transform (DCT) and Wavelet
Transform domains for CelebA as was done in [Bora et
al., 2017]. We also compare our results to two iterative
shrinkage-thresholding algorithms: the Two-step Iterative
Shrinkage-Thresholding algorithm (TwIST) [Bioucas-Dias
and Figueiredo, 2007] and the Fast Iterative Shrinkage-
Thresholding algorithm (FISTA) [Beck and Teboulle, 2009]
and, in the case of MNIST and F-MNIST, to reconstructions
based on the Split Bregman (SB) method with a total vari-
ation (TV) regularizer [Goldstein and Osher, 2009], and the
SB method with a Besov norm regularizer [Yin et al., 2008].
The SB method was not performed on the CelebA dataset as
the smoothness assumption is not applicable in the case of
RGB images when different channels are not treated inde-
pendently. We report per-pixel mean-squared reconstruction
error results in Figure 1, as we vary the number of measure-
ments m. It is shown that, and especially for very low values
of m, the task-aware training of CSGAN is able to more re-
liably reconstruct unseen samples x.

Remark 1 We note that the DCGAN results for MNIST in
Figure 1 differ from those reported in [Bora et al., 2017],
due to the use of a GAN instead of a VAE. As GANs and
VAEs vary in their training methods, for clarity of presenta-
tion, we have opted to only use GANs in this paper. However,
our method can be readily extended to VAE models.

GAN Training on Compressed Inputs

As previously mentioned, for some applications, it might
be prohibitive to acquire a large training set consisting
of non-compressed images. However, compressed training
data can be readily available. To empirically validate the
dual discriminator training method on compressed mea-
surements and non-compressed inputs, we study the ef-
fect of varying the size of the non-compressed training
set. Naturally, DCGAN can only be trained on the non-
compressed training images, and suffers from over-fitting.
The results are reported in Tables 1 and 2, and Figure 2,
where NC = Number of non-compressed training samples.
We can see that the addition of a compressed data discrimi-
nator has successfully allowed the training of a CSGAN us-
ing compressed measurements. Additionally, we note an in-
teresting trend: when NC = 0, CSGAN performs better than
when NC = 100 and 1, 000 (but not when NC = 8, 000).
In fact, when the discriminator for non-compressed data D1

overfits the small amount of training data, this negatively af-
fects the performance of the generator (which is shared by
both discriminators D1 and D2). In such cases, it is ben-
eficial to only use the compressed data discriminator D2.
The smallest number of non-compressed data needed to train
D1 can be determined using the validation set. Generally,
we can see that the compressed data discriminator is ex-
tremely useful especially when the amount of available non-
compressed training data is very low.

NC DCGAN CSGAN
0 - 0.0299

100 0.1138 0.1053
1, 000 0.0859 0.0322
8, 000 0.0894 0.0124

Table 1: MNIST: Reconstruction results for m = 200 when
varying the number of non-compressed training data.

NC A random Gaussian Super-resolution
DCGAN CSGAN DCGAN CSGAN

1, 000 0.1278 0.0514 0.1006 0.0510
4, 000 0.0837 0.0394 0.0582 0.0436
32, 000 0.0800 0.0308 0.0241 0.0247

Table 2: CelebA: Reconstruction results for m = 500 when
varying the number of non-compressed training data.

In the extreme case, where only compressed measure-
ments are available for training, we show qualitative results
of MNIST and F-MNIST reconstruction in Figures 2 and
3. We would like to emphasize that this CSGAN has never
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Figure 1: MNIST, F-MNIST, and CelebA reconstruction results for various measurements numbers m.

Figure 2: MNIST reconstruction results with m = 200.
Top to bottom rows: original images, reconstructions with
NC = 0, reconstructions with NC = 100, reconstructions
with NC = 1,000, and reconstructions with NC = 8,000.

Figure 3: F-MNIST reconstruction results when only com-
pressed training data is available. Top row: original image;
middle row: reconstructed image from m = 200 measure-
ments; bottom row: reconstructed image from m = 400
measurements.

seen any real training image and has been solely trained on
compressed measurements, yet can reconstruct reasonably
good samples. Additionally, quantitative reconstruction re-
sults for various values of the number of measurements m
can be found in Table 3.

m MNIST F-MNIST
20 0.2164 0.2829
50 0.0535 0.0988
100 0.0304 0.0534
200 0.0299 0.0579

Table 3: CSGAN reconstruction results when only com-
pressed training data is available (NC = 0) for various mea-
surements numbers m.

Super-Resolution

Super-resolution is the task of increasing the resolution
of an image. For this special case, where A is a matrix
that averages neighboring pixels, no theoretical guarantees

Figure 4: CelebA super-resolution results. Top row: origi-
nal image; middle row: blurred image; bottom row: recon-
structed image.

(such as (4)) are known. However, experiments using such
averaging matrices A’s still provide good results. Super-
resolution is actually a relevant application where an abun-
dance of non-compressed (i.e., high resolution) images may
not be available. Results when varying the number of non-
compressed training data are reported in Table 2 for com-
pressed measurements four times smaller than the original
images (3, 072 measurements). Additionally, qualitative re-
sults can be seen in Figure 4 on the CelebA dataset. We can
see that CSGAN produces realistic reconstructions that re-
semble the original image.

Classification

In this section, we use the discriminatively-regularized CS-
GAN with the additional contrastive loss defined in (24),
with λcontr = 100 and M = 0.1. We train a Convolutional
Neural Network (CNN) classifier based on the LeNet [Le-
Cun et al., 1998] architecture, with a fully-connected layer to
map the input latent variables ẑ to a 784-dimensional vector
as expected by LeNet. We train the network over 30 epochs
and pick the best model based on the holdout validation set.
Our results are reported in Tables 4 and 5. We can see that
inference can indeed be made even using an extremely small
number of measurements. When training this CNN using the
ẑ’s obtained from DCGAN, we obtain much lower classifi-
cation accuracies. This clearly demonstrates the effective-
ness of the regularization of CSGAN using the contrastive
loss.

In order to further investigate the structure of the GAN
latent space, we report classification accuracies using a ba-
sic 50-nearest-neighbor (50-NN) classifier based on the Eu-
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clidean distance in Tables 5 and 6. This simple 50-NN clas-
sifier clearly does not give state-of-the-art classification per-
formance. It, however, serves to show that the latent space
has indeed been regularized so that samples belonging to the
same class are represented by z’s which are close to each
other in the Euclidean distance sense. This is made even
clearer when compared to the performance of the same 50-
NN classifier on the DCGAN latent space.

Finally, we report per-pixel mean-squared reconstruction
error results on the MNIST and F-MNIST datasets when us-
ing the contrastive loss regularizer in Table 7. These results
serve to show that the addition of the discriminative regular-
izer does not hurt reconstruction performance.

m SF
LeNet

CSGAN DCGAN+ cont. ẑ
8 0.3697 0.4560 0.3814
39 0.4679 0.7572 0.4304
78 0.5645 0.8740 0.4296
196 0.7258 0.9257 0.4818

Table 4: Classification accuracy on MNIST using Smash Fil-
ters (SF) [Davenport et al., 2007] and the LeNet CNN clas-
sifier.

m
LeNet 50-NN

CSGAN DCGAN CSGAN DCGAN+ cont. ẑ + cont. ẑ
10 0.4881 0.4372 0.3937 0.3019
50 0.7410 0.6780 0.6073 0.4183
100 0.7705 0.7363 0.6377 0.4495
200 0.7830 0.7584 0.6456 0.4522

Table 5: Classification accuracy on F-MNIST using the
LeNet CNN and 50-NN classifiers.

m
CSGAN DCGAN+ cont. ẑ

8 0.3561 0.3679
39 0.5987 0.3951
78 0.6991 0.3957
196 0.7656 0.4555

Table 6: Classification accuracy on MNIST using a 50-NN
classifier.

Conclusion

In this paper, we present an effective method for training
task-aware generative models, specifically for compressive
sensing tasks. We show that this task awareness improves the
performance, especially when a very low number of mea-
surements is available. Additionally, we demonstrate that
it is also possible to train CSGANs with only compressed
measurements as training data, or, if available, only a small
number of non-compressed measurements. In the future, we

m
MNIST F-MNIST

CSGAN CSGAN CSGAN CSGAN
+ cont. ẑ + cont. ẑ

10 0.1042 0.0999 0.0627 0.0732
50 0.0353 0.0334 0.0253 0.0254
100 0.0285 0.0186 0.0220 0.0203
200 0.0199 0.0139 0.0179 0.0179
400 0.0169 0.0112 0.0175 0.0168

Table 7: Per-pixel mean-squared reconstruction error results
when using the contrastive loss regularizer (with z dimen-
sion k = 20).

would like to train the CSGAN and classifier jointly in an
end-to-end manner.
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Donahue, J.; Krähenbühl, P.; and Darrell, T. 2016. Adver-
sarial feature learning. arXiv preprint arXiv:1605.09782.
Dong, C.; Loy, C. C.; He, K.; and Tang, X. 2016. Image
super-resolution using deep convolutional networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence
38(2):295–307.
Donoho, D. L. 2006. Compressed sensing. IEEE Transac-
tions on Information Theory 52(4):1289–1306.
Duarte, M. F.; Davenport, M. A.; Takbar, D.; Laska, J. N.;
Sun, T.; Kelly, K. F.; and Baraniuk, R. G. 2008. Single-pixel
imaging via compressive sampling. IEEE Signal Processing
Magazine 25(2):83–91.
Dumoulin, V.; Belghazi, I.; Poole, B.; Lamb, A.; Arjovsky,
M.; Mastropietro, O.; and Courville, A. 2016. Adversarially
learned inference. arXiv preprint arXiv:1606.00704.
Goldstein, T., and Osher, S. 2009. The split Bregman
method for �1-regularized problems. SIAM Journal on Imag-
ing Sciences 2(2):323–343.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In Advances in Neural
Information Processing Systems.
Hegde, C.; Indyk, P.; and Schmidt, L. 2015. A nearly-linear
time framework for graph-structured sparsity. In Interna-
tional Conference on Machine Learning.
Kim, J.; Kwon Lee, J.; and Mu Lee, K. 2016. Accurate
image super-resolution using very deep convolutional net-
works. In IEEE Conference on Computer Vision and Pattern
Recognition.
Kim, T. 2017. A TensorFlow implementation of: Deep con-
volutional generative adversarial networks. Software avail-
able at https://github.com/carpedm20/DCGAN-tensorflow.
Kingma, D., and Ba, J. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.
Kingma, D. P., and Welling, M. 2013. Auto-encoding vari-
ational bayes. arXiv preprint arXiv:1312.6114.

Lamb, A.; Dumoulin, V.; and Courville, A. 2016. Discrim-
inative regularization for generative models. arXiv preprint
arXiv:1602.03220.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86(11):2278–2324.
Lipton, Z. C., and Tripathi, S. 2017. Precise recovery of
latent vectors from generative adversarial networks. arXiv
preprint arXiv:1702.04782.
Liu, Z.; Luo, P.; Wang, X.; and Tang, X. 2015. Deep learning
face attributes in the wild. In IEEE International Conference
on Computer Vision.
Lohit, S.; Kulkarni, K.; Turaga, P.; Wang, J.; and Sankara-
narayanan, A. C. 2015. Reconstruction-free inference on
compressive measurements. In IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops.
Lohit, S.; Kulkarni, K.; and Turaga, P. 2016. Direct in-
ference on compressive measurements using convolutional
neural networks. In IEEE International Conference on Im-
age Processing.
Lustig, M.; Donoho, D. L.; Santos, J. M.; and Pauly, J. M.
2008. Compressed sensing MRI. IEEE Signal Processing
Magazine 25(2):72–82.
Lustig, M.; Donoho, D.; and Pauly, J. M. 2007. Sparse MRI:
The application of compressed sensing for rapid MR imag-
ing. Magnetic Resonance in Medicine 58(6):1182–1195.
Maillard, O., and Munos, R. 2009. Compressed least-
squares regression. In Advances in Neural Information Pro-
cessing Systems.
Mirza, M., and Osindero, S. 2014. Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784.
Odena, A. 2016. Semi-supervised learning with generative
adversarial networks. arXiv preprint arXiv:1606.01583.
Pati, Y. C.; Rezaiifar, R.; and Krishnaprasad, P. S. 1993. Or-
thogonal matching pursuit: Recursive function approxima-
tion with applications to wavelet decomposition. In Asilo-
mar Conference on Signals, Systems and Computers.
Radford, A.; Metz, L.; and Chintala, S. 2016. Unsupervised
representation learning with deep convolutional generative
adversarial networks. In International Conference on Learn-
ing Representations.
Springenberg, J. T. 2015. Unsupervised and semi-
supervised learning with categorical generative adversarial
networks. In International Conference on Learning Repre-
sentations.
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-MNIST:
A novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747.
Yang, J.; Wright, J.; Huang, T. S.; and Ma, Y. 2010. Image
super-resolution via sparse representation. IEEE Transac-
tions on Image Processing 19(11):2861–2873.
Yin, W.; Osher, S.; Goldfarb, D.; and Darbon, J. 2008. Breg-
man iterative algorithms for �1-minimization with applica-
tions to compressed sensing. SIAM Journal on Imaging Sci-
ences 1(1):143–168.

2304


