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Abstract

In situations in which labels are expensive or difficult to ob-
tain, deep neural networks for object recognition often suffer
to achieve fair performance. Zero-shot learning is dedicated
to this problem. It aims to recognize objects of unseen classes
by transferring knowledge from seen classes via a shared
intermediate representation. Using the manifold structure of
seen training samples is widely regarded as important to learn
a robust mapping between samples and the intermediate rep-
resentation, which is crucial for transferring the knowledge.
However, their irregular structures, such as the lack in vari-
ation of samples for certain classes and highly overlapping
clusters of different classes, may result in an inappropriate
mapping. Additionally, in a high dimensional mapping space,
the hubness problem may arise, in which one of the unseen
classes has a high possibility to be assigned to samples of dif-
ferent classes. To mitigate such problems, we use a genera-
tive adversarial network to synthesize samples with specified
semantics to cover a higher diversity of given classes and in-
terpolated semantics of pairs of classes. We propose a simple
yet effective method for applying the augmented semantics to
the hinge loss functions to learn a robust mapping. The pro-
posed method was extensively evaluated on small- and large-
scale datasets, showing a significant improvement over state-
of-the-art methods.

Introduction

The significant performance improvement of deep neural
networks in recent years is in part due to the wide availability
of large labeled datasets. However, objects in the wild fol-
low a long-tailed distribution. For some uncommon objects,
only a limited number of samples can be provided, and new
categories of objects may even emerge dynamically. In such
cases, many state-of-the-art methods fail to deliver the same
high performance as when trained with sufficiently large la-
belled datasets. This challenge motivates a different learning
paradigm in which the number of labelled training samples
is limited or the number of new classes to be recognized in-
creases. One such candidate is zero-shot learning (Lampert,
Nickisch, and Harmeling 2009).
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Figure 1: Visualization of mappings from visual feature
space to semantic space. On top row, for ‘least auklet’, only
a limited number of images are available compared with the
other class ‘sayornis’, making embedding of this class dif-
ficult. Its embeddings tend to move away from its seman-
tic representation. The bottom row shows two classes that
have overlapping clusters of their visual representation with
a similar scale. This overlap may remain in semantic space,
which degrades recognition performance. Note that red ar-
rows show the expected direction for embeddings.

Zero-shot learning aims to recognize novel classes for
which no training samples were provided. In other words,
the test and training class sets are disjoint. Such a recogni-
tion task can be addressed by using an intermediate seman-
tic representation that is shared between seen and unseen
classes, and knowledge can be transferred from seen classes
to unseen classes. In (Lampert, Nickisch, and Harmeling
2009), so-called attributes were used as the intermediate rep-
resentation. For seen and unseen classes, a binary vector ex-
pressing their attributes is assigned. Given an example of
such attributes, we can look at animals like cows and horses.
Both share common attributes, such as ‘long legs’ and ‘long
tails’, but also have different attributes, such as ‘horns” for
cows (which horses do not have). However, such attributes
are difficult to obtain and require expert knowledge about
the target domain to design. In (Frome et al. 2013), a so-
called word embedding (Bengio et al. 2006) was introduced
as a drop-in replacement for the intermediate representation,
which can currently be efficiently trained on a large text cor-
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pus (Mikolov et al. 2013).
One of the most frequently used approaches to transfer

the knowledge is to embed features of seen classes and their
corresponding intermediate representations into the same se-
mantic space under the condition that the two are located
close to each other. In an ideal case, the unseen classes with
their intermediate representations and samples are embed-
ded in the same semantic space close to each other. There-
fore, the closest embedding of a class to a test sample is
returned as the result of a nearest-neighbor search. Learning
such an ideal embedding is crucial for zero-shot learning.

Using the inherent structure of seen samples has been
widely regarded as helpful for boosting recognition perfor-
mance (Changpinyo et al. 2016), (Changpinyo, Chao, and
Sha 2017). However, the existing methods implicitly ignore
more irregular structures for the distribution of seen classes
explained in Figure 1. In these situations, learning the map-
ping based on either regression (Shigeto et al. 2015) or hinge
loss function (Frome et al. 2013) will degrade recognition
performance. In addition, it has been pointed out in (Lazari-
dou, Dinu, and Baroni 2015) (Li, Tao, and Shaogang 2017)
(Shigeto et al. 2015) that, in a high dimensional semantic
space, a few unseen classes will always become the nearest
neighbor of many feature embeddings of test samples, which
is called the hubness problem (Radovanović, Nanopoulos,
and Ivanović 2010).

To mitigate the above two problems, we integrate a gen-
erative adversarial network (GAN) (Goodfellow et al. 2014)
into the framework of zero-shot learning. By using GAN,
we aim to generate two types of samples. First, we gener-
ate samples of given classes, which are called semantically
same samples, to cover more variations, increasing their di-
versity. Second, we synthesize semantically compound sam-
ples from more than one class by interpolating the inter-
mediate representations of known classes. It is argued in
(Lazaridou, Dinu, and Baroni 2015) that a mapping function
with a max-margin ranking loss can significantly mitigate
the hubness problem. For this reason, we integrate the rela-
tions among semantics into hinge loss functions to learn a
robust mapping. Our contributions are two folds:

1. To the best of our knowledge, this is the first study that
uses GAN in the field of zero-shot learning. This inte-
gration is simple, effective, and easy to implement. With
GAN, variations of samples belonging to the same class
and semantically compound samples belonging to more
than one class are synthesized. The synthesized samples
are used with hinge loss functions for learning a robust
mapping to the semantic space.

2. With extensive evaluation on small- and large-scale
datasets, we confirm a moderate improvement over other
state-of-the-art methods in the task of object recognition
by 2% to 4%, but a significant improvement for the task
of image retrieval by 10% to over 30%.

Related Work

Zero-shot learning has become a popular research topic in
computer vision and machine learning. Many studies in this
field inherently have a two-step process. In the first step,

an embedding function to map the intermediate represen-
tations and visual features into the same semantic space is
learned. There are three different kinds of methods of learn-
ing the embedding function. The first one maps visual fea-
tures onto the space of intermediate representations (Frome
et al. 2013); the second one maps the intermediate repre-
sentations onto the space of visual features (Shigeto et al.
2015) (Li, Tao, and Shaogang 2017); the last one maps both
the visual features and intermediate representations into a
common semantic space (Yang and Hospedales 2015). In the
second step, a nearest neighbor search in the mapped space
is carried out to predict the class label. Some studies have
only a one-step process, in which the embedding function
and prediction are jointly learned in a unified framework
(Changpinyo et al. 2016), (Akata et al. 2013), (Romera-
Paredes and Torr 2015). The proposed method belongs to
the one that has the two-step process.

As intermediate representation, attribute vectors and word
embeddings of class labels serve as two popular sources of
side information in zero-shot learning. Recently, textual de-
scription of an image category (Elhoseiny, Saleh, and El-
gammal 2013)(Ba et al. 2015)(Li, Tao, and Shaogang 2017)
and gaze information (Karessli et al. 2017) have been used as
side information. The proposed method only uses attribute
vectors and word embeddings.

According to how the test data is used, zero-shot learning
is categorized into two types of methods, which are induc-
tive and transductive zero-shot learning. Inductive methods
process unseen samples sequentially. In contrast, transduc-
tive methods (Fu et al. 2015a) (Zhang and Saligrama 2016)
often use the manifold structure of all unseen samples. In
fact, it is known that the distribution difference in visual ap-
pearance for a given attribute between seen and unseen sam-
ples exists, which may lead to the domain shift problem. Us-
ing the manifold structure of unseen samples can reduce the
distribution difference. However, such methods have not re-
ceived much attention, as the distribution of unseen samples
is required. New unseen classes cannot be added dynami-
cally, limiting their use in practice. The proposed method
belongs to inductive zero-shot learning.

GAN is a neural network model trained in an unsuper-
vised manner, aiming to generate new data with the same
distribution as the data of interest. It is widely applied in
computer vision and natural language processing tasks, such
as generating samples of images (Denton et al. 2015) and
generating sequential words (Li et al. 2017). Recently, in
(Akshay Mehrotra 2017), a GAN model was introduced
into residual pairwise networks for one shot learning. This
framework cannot be directly applied to zero-shot learning,
as at least one sample of a given target class is required to
train the network. The idea of adversarial training was used
in (Wang Xiaolong 2017) to make object detection more ro-
bust by learning occlusion and deformation.

Preliminary on GAN
In this section, the basics of GAN are introduced. A GAN
model consists of a generator G and discriminator D that
compete in a turn-wise min-max game. The discriminator
attempts to distinguish real training data from synthetic data,
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and the generator attempts to fool the discriminator by gen-
erating synthetic data that looks like real data. The D and G
play the following game on V (D,G)

min
G

max
D

V (D,G) = Ex∈pdata(x)[logD(x)] +

Ez∈pz(z)[log(1−D(G(z)))], (1)

where x represents a sample. pdata and pz represent the dis-
tribution of real samples and synthetic samples, and z repre-
sents a noise vector.

In the original GAN model, only z is used to generate
samples. In a variation called conditional GAN (CGAN), a
condition y, which is often a class label, is included in ad-
dition to z to control the sample generation. The objective
function becomes

min
G

max
D

V (D,G) = Ex∈pdata(x)[logD(x|y)] +
Ez∈pz(z)[log(1−D(G(z|y)))], (2)

where y could be a one-hot representation of the class label.
During training of the CGAN model, y is used to instruct the
generator G to synthesize samples for this given class.

Proposed Method

We denote the training data as D = {(xi, yi)}Ni=1, where
xi ∈ Rd and yi represent a sample and its class label, re-
spectively. N is the number of samples. In the context of
zero-shot learning, yi is often used for the intermediate rep-
resentation, which is typically a per-class attribute vector or
word embedding. Both are dense vectors with continuous
values. The proposed method is built up on two components:
discriminative embedding and training with augmented se-
mantics. Given two samples with different class labels, the
discriminative embedding is trained to differentiate the fea-
ture representations of those samples. During the training
with a GAN model, new samples that do not exist in the
training data are synthesized, making the embedding more
robust to recognizing unseen classes.

Discriminative Embedding

It has been stated in (Lazaridou, Dinu, and Baroni 2015) that
the max-margin loss function can mitigate the hubness prob-
lem that may occur for training embeddings with regres-
sive loss functions. Inspired by (Frome et al. 2013), we use
the hinge-loss based objective function for the discrimina-
tive embedding. Its purpose is to make the similarity within
samples and their class labels larger than that between those
samples and the other class labels. The objective function
can be written as

L =
∑
i �=j

max[0,m− s(xi, yi) + s(xi, yj)], (3)

where s(·, ·) measures the similarity between samples and
class labels based on embedding functions, and m is a mar-
gin. To reduce the computational cost, we only randomly
select K different class labels from yi. In the later section,
we introduce how the similarity is calculated.

Training with a CGAN model

This subsection focuses on the integration of a CGAN model
into the training of the discriminative embedding. We gener-
ate two types of samples to make a robust mapping: semanti-
cally same samples of one class and semantically compound
samples of different classes. There are different motivations
behind the generation of those two types of samples. First,
some classes may not have sufficient samples to cover all
their visual variations. Generating semantically same but vi-
sually different samples provides a higher degree of diver-
sity to those classes. Second, samples belonging to two dif-
ferent class labels may overlap in the feature space. As in-
dicated in Figure 1, with insufficient mapping, this overlap
will also occur in the embedding space. Generating seman-
tically compound samples is helpful for discriminating such
overlapping classes.

To control the semantics of synthesized samples, we use
the CGAN model, whose generator is denoted as G(z|yi),
where yi is the class label of sample xi. Mathematically, a
synthesized sample that has the same semantic as a given
class label yi is denoted as x̂i. It is expected to come
from the same distribution as xi. The semantically com-
pound sample is denoted as x̂ij . It has a semantic derived
from the interpolation of two different class labels, such as
yij = αyi + (1 − α)yj where α ∈ (0, 1). The interpolated
class label yij is used as the input of the generator, such as
G(z|yij).

We have the following two loss functions for x̂i.

Lg1 =
∑
i �=j

max[0,mg − s(x̂i, yi) + s(x̂i, yj)] (4)

Lg2 = ||s(xi, yi)− s(x̂i, yi)||2, (5)

where mg is a margin. Equation 4 requires that the mapping
of x̂i is closer to that of yi than yj , as x̂i is semantically
the same as yi. Equation 5 constrains x̂i to be semantically
similar to xi. We also have the following two loss functions
for x̂ij :

Lm1 =
∑
i �=j

max[0,mc − s(xi, yi) + s(x̂ij , yi)] (6)

Lm2
=

∑
i �=j

max[0,mc − s(x̂ij , yi) + s(xi, yj)], (7)

where mc is a margin. Equation 6 makes the similarity be-
tween x̂ij and yi smaller than that between xi and yi, as x̂ij

is the sample derived from the interpolated semantics of yi
and yj . Equation 7 makes the similarity between x̂ij and yi
larger than that between xi and yj . Since x̂ij is generated
from the interpolated semantics of yi and yj , it is natural to
have it semantically being between xi and xj . The between
relation serves as a criterion to separate the overlapped sam-
ples from two different class labels.

Similarity on Embedding Space

There are various approaches for calculating the similarity
between a sample and its class label. In any cases, mapping
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heterogeneous objects into the same space is mandatory. In-
spired by (Li, Tao, and Shaogang 2017), we map the visual
features of samples and their intermediate representations
into a common space. In the experiment section, we argue
that embedding into the common space is more likely to re-
sult in better recognition performance than other ways of
embedding, such as mapping into the space of intermediate
representation directly.

Two individual neural networks are trained to map the vi-
sual features of samples and their class labels into a common
space. The similarity is calculated as the dot product of their
embeddings in the common space. The similarity between
xi and yi can be obtained by:

s(xi, yi) = fΘi
(xi)

T · fΘc
(yi), (8)

where fΘi
(·) represents the mapping from the visual fea-

tures into the common space, and fΘc
(·) represents the

mapping from class labels into the common space. We use
Θ = {Θi,Θc} as short notation for the mapping parame-
ters to learn, where Θi and Θc represent the parameters for
mapping the visual features and class labels, respectively.

Learning Algorithm

In the CGAN model, both generator and discriminator are
designed as fully connected networks. The generator re-
ceives the intermediate representation of a given class as
well as a randomized noise vector and outputs a synthesized
sample. The discriminator receives both true and synthe-
sized samples of the given class, and outputs probabilities
of being determined as true samples. The generator and dis-
criminator are trained with the intermediate representations
of class labels. When generating semantically same samples,
the generator is required to feed the intermediate represen-
tation of a class label. When generating semantically com-
pound samples, the generator is required to feed an interpo-
lated semantic representation of two different class labels.

Generating good-quality samples is crucial for the opti-
mization of loss functions, such as Equations 4-7. Thus, we
pre-train the CGAN model before optimizing the hinge loss
functions to mitigate this cold start problem. In the simplest
way, we can train all loss functions together by combin-
ing Equations 3-7 with some balancing parameters. How-
ever, we observed through experiments that training such
a combined objective function often results in inappropri-
ate recognition performance. Fortunately, the optimization
of our method can be decomposed into three independent
threads: learning the discriminative embedding using Equa-
tion 3, learning with semantically same samples, and learn-
ing with semantically compound samples. To decouple the
multiple loss functions, the CGAN model is optimized inde-
pendently from the hinge loss functions due to the fact that
their parameters are disjoint. We denote Ψ as the parameters
of the CGAN model. The notations Ψg and Ψd represent the
parameters of the generator and discriminator, respectively.
We name our method GANZrl, and its learning process is
shown in Algorithm 1.

Algorithm 1 GANZrl

Input: training data xi and its label yi where i ∈ [1, . . . , N ]
Output: Θ

1: Initialize α, Θ, Ψd and Ψg .
2: Pretrain the CGAN model.
3: repeat
4: Ψd ←�Ψd

{Exi∈pdata(xi)[logD(xi|yi)]
+Ez∈pz(z)[log(1−D(G(z|yi)))]}

5: Ψg ←�ΨgEz∈pz(z)[log(1−D(G(z|yi)))]
6: x̂i ← G(z|yi)
7: x̂ij ← G(z|(αyi + (1− α)yj))
8: Θ ←�Θ L
9: Θ ←�Θ(Lg1 + Lg2 )

10: Θ ←�Θ(Lm1
+ Lm2

)
11: until

Experiments

We conducted experiments on various datasets to verify the
effectiveness of GANZrl. First, we introduce the datasets
used for evaluation. We then discuss two tasks of the exper-
iments, object recognition and image retrieval. Finally, we
give in-depth analysis to gain more insight into GANZrl.

In the experiments, we used three small-scale and
two large-scale benchmark datasets. The small-scale
datasets were Animals with Attribute (AwA), CUB-
200-2011 (CUB) and SUN with Attribute (SUN). The
large-scale datasets were ILSRC2010 (ImageNet-1) and
ILSVRC2012/ILSVRC2010 (ImageNet-2). In ImageNet-2,
the 1000 classes of ILSVRC2012 were used as seen classes,
and 360 classes of ILSVRC2010, which are not included in
ILSVRC2012, as unseen classes. The details of the datasets
are given in Table 1.

Table 1: Statistics on benchmark datasets. IR refers to type
of intermediate representation, IR-D represents dimension
of this semantic space, and A and W represent attribute vec-
tor and word embedding, respectively.

dataset #instances IR IR-D #seen #unseen
AwA 30475 A 85 40 10
CUB 11788 A 312 150 50
SUN 14340 A 102 707 10

ImageNet-1 1.28 ×106 W 500 800 200
ImageNet-2 1.69 ×106 W 500 1000 360

In the experiments, the intermediate representations of the
attribute vector and word embedding are treated as continu-
ous and dense vectors. The per-class attribute vector is calcu-
lated as the average of the binary per-image attribute vectors
of a given class. The word embedding was trained on a cor-
pus of 4.6M Wikipedia documents by using the skip-gram
word2vec model. For AwA, we used VGG-19 features (Si-
monyan and Zisserman 2014) provided by the official site.
For the other datasets, we used a variant of GoogLeNet fea-
tures, called Inception-ResNet (Szegedy et al. 2017). For the
mapping from visual features and intermediate representa-
tions to the common space, we empirically found that one
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Table 2: The comparison between GANZrl and the state-of-the-art methods. IR refers to the type of intermediate representation
utilized. References: DeViSE (Frome et al. 2013), ConSE (Mohammad et al. 2014), SSE (Zhang and Ziming 2015), JLSE
(Zhang and Ziming 2016), SECML (Maxime, Stéphane, and Frédéric 2016), VIL (Fu and Sigal 2016), DEM (Li, Tao, and
Shaogang 2017), UVDS (Long et al. 2017), SAE (Kodirov, Xiang, and Gong 2017), RRZSL (Shigeto et al. 2015), ESZSL
(Romera-Paredes and Torr 2015), AMP (Fu et al. 2015b), SS-VOC (Fu et al. 2015a), PDDM (Huang, Loy, and Tang 2016).
Note that results of DeViSE and ConSE are reimplemented by DEM and SS-VOC.

small-scale dataset large-scale dataset
Method IR AwA CUB SUN Method IR ImageNet-1 ImageNet-2
DeViSE A 50.4 33.5 - DeViSE W 31.8 12.8

SAE A 84.7 61.4 91.5 SAE W 46.1 27.2
DEM A 78.7 59.0 - DEM W 60.7 25.7
SSE A 76.3 30.4 82.5 ConSE W 28.5 15.5

RRZSL A 80.4 52.4 84.5 VIL W 16.8 -
JLSE A 80.5 42.1 83.9 AMP W 41.0 -

ESZSL A 75.3 48.7 82.1 SS-VOC W - 16.8
SECML A 77.3 43.3 84.4 PDDM W 48.2 -
UVDS A 82.1 45.7 86.5

GANZrl-IR A 82.97 ± 1.05 55.32 ± 0.26 90.31 ± 0.80 GANZrl-IR W 52.40 ± 0.97 29.36 ± 0.44
GANZrl-SS A 84.38 ± 0.53 58.89 ± 1.05 91.56 ± 0.58 GANZrl-SS W 56.13 ± 0.94 30.02 ± 0.37
GANZrl-SC A 82.76 ± 0.98 61.04 ± 0.49 91.41 ± 1.21 GANZrl-SC W 61.10 ± 0.68 30.80 ± 0.49

GANZrl A 86.23 ± 0.44 62.56 ± 0.30 93.59 ± 0.58 GANZrl W 54.95± 1.11 29.58 ± 0.31

layer of fully connected neurons with an activation function,
followed by a batch normalization (Ioffe and Szegedy 2015)
tends to result in higher classification performance. The de-
sign of the CGAN model is described as follows. In the gen-
erator, the noise prior and intermediate representation are
independently fed into a fully connected layer with an ac-
tivation function. These two layers’ individual outputs are
concatenated and mapped back to the visual feature space
by a different fully connected layer with an activation func-
tion. In the discriminator, the visual feature and intermediate
representation are first concatenated and fed into two layers
of fully connected neurons followed by activation functions.

The setting of parameters shared by all datasets is as fol-
lows. RMSprop was used as the gradient descent algorithm
for training the CGAN model with an initial learning rate
of 10−4. Adam was used for learning the mapping, and its
initial learning rate was set to 10−4 and 5 × 10−5. The
activation functions were chosen from sigmoid, tanh, and
leakyrelu. The batch size was set to 64. The margins m and
mg of Equation 3 and Equation 4 were set to 0.1 or 0.2. The
margin mc of Equations 6 and 7 was set to 1 or 2 times the
margin of m. The dimension of the noise vector was set to
30, and the dimension of the common space was set to 1024
or 2048. We empirically found that above parameters tend
to result in the highest classification performance.

In the object recognition task, flat hit@k classification ac-
curacy is reported. For hit@k, a test image is successfully
classified if the correct label is among the top k labels re-
turned. In the small-scale datasets, k was set to 1; in the
large-scale datasets, k was set to 5. In the task of image
retrieval, the mean average precision (MAP) is used. The
larger the MAP is, the better the ranking performance. We
only compare our results to other inductive zero-shot meth-
ods, since GANZrl belongs to this category.

Object Recognition

Table 2 shows the classification performance of GANZrl
compared to those of the state-of-the-art methods on the
small- and large-scale datasets. The average accuracies with
standard deviations are reported from 5 independent runs.
Attributes (A) and word embeddings (W) were used for the
small- and large-scale datasets, respectively. We also pro-
vide results for some variants of GANZrl. For the variant
called GANZrl-IR, visual features are mapped to the space
of intermediate representation (IR), where the similarity is
measured. The variant called GANZrl-SS optimizes the loss
functions of Equation 3 and the combination of Equations
4 and 5, meaning that only semantically same visual fea-
tures generated by the CGAN model are used. The variant
called GANZrl-SC optimizes the loss functions of Equation
3 and the combination of Equations 6 and 7, meaning that
only semantically compound visual features generated by
the CGAN model are used.

We observed that, for all the small- and large-scale
datasets, GANZrl and its variants were able to achieve
the best performance. Particularly, GANZrl-SC even out-
performed SAE by 3.6% on the ImageNet-2 dataset. We
can also see that, on the small-scale datasets, GANZrl-SS
and GANZrl-SC were inferior to GANZrl. However, on the
large-scale datasets, GANZrl-SC outperformed GANZrl-SS
and GANZrl. The reason might be that the number of sam-
ples for each given class in the small-scale datasets was
much smaller than that for the large-scale datasets. On large-
scale datasets, the synthesized samples of a class did not nec-
essarily cover more visual variation as covered by the large
number of samples given for that class. In such a situation,
semantically compound samples become more important for
discriminating two classes.

We also noticed that GANZrl-IR was inferior to GANZrl
on all datasets. It is in part due to the fact that the space of

2480



intermediate representation is inferior in differentiating vi-
sual information compared to a well-trained common space.
We empirically verified that mapping intermediate represen-
tations and visual features into a common space would be
the preferable choice. We also empirically found that us-
ing word embeddings or the combination of attribute vec-
tors and word embeddings does not improve classifica-
tion performance in the small-scale datasets. It seems like
human-designed attributes are semantically more discrim-
inative than word embeddings trained in an unsupervised
manner.

Image Retrieval

For the image retrieval task, images having a certain class
label that we are searching for are returned. Given a class
label together with its attribute vector, the nearest five im-
ages close to this attribute vector in the common space are
returned. In Table 3, we can see that GANZrl significantly
outperformed the state-of-the-art methods. With 31.62%, the
improvement on CUB was the most significant. This is in
part due to the fact that, together with the generation of vi-
sual examples, a very robust mapping of the visual features
and class labels into a common space is achieved. As a re-
sult, GANZrl can catch the small changes in the details of
the birds better than JLSE.

Table 3: Comparison on MAP. SSE (Zhang and Ziming
2015), JLSE (Zhang and Ziming 2016), SECML (Maxime,
Stéphane, and Frédéric 2016)

Method AwA CUB SUN
SSE-ReLU 42.60 3.70 44.55
SSE-INT 46.25 4.69 58.94

JLSE 67.66 29.15 80.01
SECML 68.10 25.33 52.68
GANZrl 75.63 60.77 90.12
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Figure 2: Image retrieval on CUB dataset

Besides measuring MAP, we also visualized the ranking
results on CUB and SUN, as shown in Figures 2 and 3, re-
spectively. We cannot visualize the ranking results for the
AwA dataset, as no images are provided. For each dataset,
two good cases and two bad cases are shown. The green
boader indicates correct retrievals belonging to the target
class, while the red boader indicates incorrect retrievals not
belonging to the target class. We can see that, on both

datasets, GANZrl was able to achieve reasonable ranking re-
sults. More specifically, in SUN, for 80% of the test classes,
all images in the top 5 are correct. Even for the worst 10% of
the classes, at least three correct images were within the top
5 ranking. In CUB, for 52% of the test classes, all images
in the top 5 were correct, while even for the worst 10% of
the classes, at least one correct image was within the top 5
ranking.
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Figure 3: Image retrieval on SUN dataset

Analysis and Discussion

To gain an insight into GANZrl, we examined how it per-
forms in different parameter settings. First, we examined
how the number of unmatched samples affects classification
performance. The number of unmatched samples represents
K different class labels, which is used in Equations 3, 5, 6,
and 7. The K was tuned from the set {5, 10, 15, 20, 25, 30}.
Figure 4 shows the performance changes for small- and
large-scale datasets. We can see that the number of un-
matched samples did not significantly affect performance.
Even for small numbers of unmatched samples, reasonable
performance was achieved. The performance of GANZrl in
the large-scale datasets was more stable than in the small-
scale datasets. As shown in Figure 4(a), GANZrl tended to
perform best in the SUN data set when the number of un-
matched samples was set to 15.

Second, we examined how α values affect classification
performance. The α determines the ratio of two different se-
mantics to be combined into one semantic. The α was tuned
from the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Fig-
ures 5(a) and 5(b) show the change in performance for small-
and large-scale datasets when the ratio of interpolation for
two different class labels changes. Similar to the number of
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Figure 5: Classification performance when ratio of interpo-
lation changes

unmatched samples, the ratio did not significantly affect per-
formance. Again, the performance of the large-scale datasets
was more stable than that of the small-scale datasets. As
shown in Figure 5(a), GANZrl was likely to perform best for
AwA and SUN datasets when the interpolation ratios were
set to 0.3 and 0.7. For CUB, setting the interpolation ratio to
0.4 tended to provide the best performance. With the above
observations, GANZrl shows its robustness, which makes it
easy to apply in different datasets and parameter settings.

To verify the effectiveness of the synthesized samples
generated with the CGAN model, we visualized the embed-
dings of the visual features and class labels in the common
semantic space. To ease visualization, we chose AwA and
CUB, which have less than 200 class labels in the training
data. Note that class labels in both AwA and CUB datasets
are represented by their attribute vectors. Figure 6 shows the
embeddings of class labels and synthesized visual features
in a 2-dimensional space using t-SNE (van der Maaten and
Hinton 2008). Take Figure 6(a) as an example. The class la-
bels ‘grizzly+bear’ and ‘horse’ are denoted as ‘2’ and ‘7’,
respectively. We can see that the blue triangles, which are
synthesized samples of class label ‘7’, were located near to
the embedding of class label ‘7’. The blue squares, which
are synthesized samples of class label ‘2’, were located near
the embedding of the class label ‘2’. The semantically com-
pound visual features generated by the interpolated seman-
tics from class labels ‘2’ and ‘7’ are denoted with green cir-
cles. As expected, those compound samples were located be-
tween the embeddings of class labels ‘2’ and ‘7’.

For AwA and SUN, we visualized the confusion ma-
trix for the test data with 10 class labels, as shown in
Figure 7. Due to limited space, we do not show the
confusion matrix for CUB as it has more than 10 test
classes. The numbers associated with the confusion ma-
trix of AwA represent these classes: ‘chimpanzee’, ‘gi-
ant+panda’, ‘leopard’, ‘persian+cat’, ‘pig’, ‘hippopotamus’,
‘humpback+whale’, ‘raccoon’, ‘rat’, and ‘seal’. The num-
bers associated with the confusion matrix of SUN rep-
resent these classes: ‘inn indoor’, ‘flea market indoor’,
‘lab classroom’, ‘outhouse outdoor’, ‘chemical plant’, ‘mi-
neshaft’, ‘lake natural’, ‘shoe shop’, ‘art school’, and
‘archive’. As shown in Figure 7(a), the classification ac-
curacy of the class ‘humpback+whale’ was relatively low.
Its samples were often missclassified as ‘chimpanzee’ or
‘seal’. Worth noting is that (Lampert, Nickisch, and Harmel-

ing 2009) with their attribute prediction method performed
best on this class due to the unique attribute combination
of the unseen class ‘humpback+whale’ to the two seen
classes ‘blue+whale’ and ‘killer+whale’. In the attribute
vector space, all those whales form a unique and dense clus-
ter easily separable from the other animals. However, in our
case, a synthesized sample derived from a whale and any
other animal disturbs this separation. This makes the sample
move towards the attribute vector of ‘chimpanzee’, which
is the nearest neighbour to the mean of all attribute vec-
tors of seen classes. This disturbance of synthetic compound
samples can also be identified as one of the reasons for the
low classification accuracy of the class ‘outhouse outdoor’
in SUN, as shown in Figure 7(b).

Conclusion
We proposed a method for zero-shot learning that mitigates
the problem of inappropriately handling irregular manifold
structures of seen classes and the hubness problem. We syn-
thesized samples with specified semantics through a GAN
model. These synthetic samples increase the visual diversity
of a given class as well as the compound semantics from
two different classes. These samples are used to learn a ro-
bust semantic mapping by applying them to hinge loss func-
tions. To the best of our knowledge, this is the first work that
integrates the CGAN model into zero-shot learning. The ex-
tensive experiments on small- and large-scale datasets show
significant improvements over the state-of-the-art methods
in tasks of object recognition and image retrieval.
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Figure 6: Visualization of embeddings of class labels and synthesized image features.
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Figure 7: Confusion matrix of AwA and SUN
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