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Abstract

In this paper, we propose a refined scene text detector with
a novel Feature Enhancement Network (FEN) for Region
Proposal and Text Detection Refinement. Retrospectively,
both region proposal with only 3 × 3 sliding-window fea-
ture and text detection refinement with single scale high
level feature are insufficient, especially for smaller scene
text. Therefore, we design a new FEN network with task-
specific, low and high level semantic features fusion to im-
prove the performance of text detection. Besides, since uni-
tary position-sensitive RoI pooling in general object de-
tection is unreasonable for variable text regions, an adap-
tively weighted position-sensitive RoI pooling layer is de-
vised for further enhancing the detecting accuracy. To tackle
the sample-imbalance problem during the refinement stage,
we also propose an effective positives mining strategy for ef-
ficiently training our network. Experiments on ICDAR 2011
and 2013 robust text detection benchmarks demonstrate that
our method can achieve state-of-the-art results, outperform-
ing all reported methods in terms of F-measure.

Introduction

Text detection in natural scene is an important component
((Bissacco et al. 2013), (Yin et al. 2014), (Ye and Doer-
mann 2015), (He et al. 2016b), (He et al. 2017)) for vari-
ous intelligent applications based on computer vision. For
instance, blind navigation, multilingual translation, automo-
tive assistance and image-based geolocation, etc. Different
from conventional OCR technique, scene text detection are
often challenged by perspective distortions, variation of text
size, color or uncontrollable illumination intensity, etc.

In recent years, various methods have been successfully
applied for detecting scene text. However, they usually
comprise several processing steps, e.g. character or word
proposal generation ((Neumann and Matas 2012), (Huang,
Qiao, and Tang 2014), (Jaderberg et al. 2016)), proposals
filtering and clustering. They often entail much effort in de-
signing heuristic rules and tuning parameters to make each
module conduct well, which conversely reduces the speed of
text detection.

Currently, Deep Convolutional Neural Networks (DCNN)
have advanced general object detection substantially, which
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is also widely used in the scene text detection field. The main
differences between general object detection and scene text
detection have been discussed by some previous published
papers such as ((Tian et al. 2015), (Sun et al. 2015)), which
includes that the scene text are often smaller, thinner and
with rich diversity on the aspect-ratios and so on, which
makes the detection of scene text a very challenging problem
different from general object detection. Besides, for a better
performance, almost all object detection algorithms which
adopt the DCNN framework take the strategy: i.e. training
the proposed network by fine-tuning a model pre-trained on
ImageNet dataset (Russakovsky et al. 2015) which is used
for image recognition, a different task which requires the
extracted features are position-insensitive. Contradictorily,
the task for object detection is position-sensitive. Therefore,
(Dai et al. 2016) proposes the position-sensitive RoI pooling
layer to solve the problem. However, they only use the 3× 3
sliding-window feature for region proposal and single scale
high level feature for the refinement of object detection,
which is insufficient for general text detection task, specially
for smaller text regions; Meanwhile, their unitary position-
sensitive RoI pooling in general object detection is unrea-
sonable for much variable text regions. Motivated by their
work, we propose a refined scene text detection framework
via a novel Feature Enhancement Network (FEN) which can
directly generate word bounding boxes and be end-to-end
trainable.

Our key contributions in this paper are as follows:
• We propose a novel FEN network which promotes the re-

call rate and accuracy of text detection.
• We present an adaptively weighted position-sensitive Re-

gion of Interest (RoI) pooling module to further raise the
accuarcy of the Text Detection Refinement stage.

• We propose a positives mining strategy to solve the sam-
ple imbalence problem during the Text Detection Refine-
ment stage.

• Our approach shows state-of-the-art performance on IC-
DAR 2011 and 2013 robust text detection benchmarks.

Related Works
In general, text spotting in wild scene can be detailedly cat-
egorized by two sub-tasks: text detection and text recog-
nition. The former focuses on accurate text localization in
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Figure 1: The overall architecture of our FEN. It consists of three innovative components. 1, Feature Enhancement network
stem with Feature Enhancement RPN (FE-RPN) and Hyper Feature Generation; 2, Positives mining; 3, Adaptively weighted
position-sensitive RoI pooling.

terms of word or text-line bounding boxes in scene images;
The latter translates the localized text regions into machine-
interpretable character sequences. In this paper, we only
concentrate on the text detection task.

Currently, we roughly group mainstream methods for text
detection into three categories:
(1) Character-based: this kind of method mainly concen-
trates on the characteristics of individual characters and
the relationships between characters (Zhu, Yao, and Bai
2016), e.g. connected component based methods ((Zamber-
letti, Noce, and Gallo 2014), (Shi et al. 2013)). Some of
existed approaches often take advantage of Stroke Width
Transform (SWT) (Huang et al. 2013) or Maximally Sta-
ble Extremal Region (MSER) (Nistér and Stewénius 2008)
algorithms to first extract character candidates and then use
successive steps to filter non-text patches for exactly con-
necting the candidates. Although such methods are accurate,
they are partly constrained to preserve various true character
patches in practice (Cho, Sung, and Jun 2016).
(2) Word-based: Text words are considered as the gen-
eral object to be detected ((Zhong et al. 2016), (Gómez
and Karatzas 2017)). (Zhong et al. 2016) proposes a Faster-
RCNN based method (Ren et al. 2015). Word proposals
are generated with Region Proposal Network and then fol-
lowed by an embeded text detection refinement stage. How-
ever, their performance is not perfect. (Gupta, Vedaldi, and
Zisserman 2016) adopts the YOLO framework (Redmon et
al. 2016) which directly regresses the text localizations on
many regular grids and runs very fast. Nevertheless, it does
not perform well on a group of small text regions.
(3) Text-line-based: Text lines are first detected by ignor-
ing the noise of blank space between words and then par-
titioned into individual words. For instance, (Zhang et al.
2015) leverages the symmetric characteristics of text regions

to detect text lines and further puts forward to detect text
lines with fully convolutional networks (Long, Shelhamer,
and Darrell 2015) in year 2016 (Zhang et al. 2016).

Our method is inspired by R-FCN (Dai et al. 2016) and on
the basis of text word. Different from original R-FCN net-
work, we have improved the network by task-specific, low
and high level semantic features fusion, which observably
promote the performance of text detection. Besides, we pro-
pose a positives mining strategy and an adaptively weighted
position-sensitive Region of Interest pooling layer which can
both remarkably improve the accuarcy of text detection.

Proposed Methodology

The overall architecture of our FEN network is elaborated in
Figure 1. To the best of our knowledge, mainstream meth-
ods for general object detection often comprise two stages:
proposals generation and detection refinement, so is the R-
FCN (Dai et al. 2016) framework. In this paper, we inte-
grate three innovative components into the R-FCN frame-
work which inherits the well-known ResNet-101 architec-
ture (He et al. 2016a) and removes the last global pooling,
classification layers. By the FEN network, we first enhance
the text feature for region proposal through the FE-RPN and
for text detection refinement with Hyper Feature Generation
module; Then, we use Positives mining strategy on the re-
gion proposals to adjust the ratio between positive and neg-
ative samples; Finally, during the text detection refinement
stage, we apply the adaptively weighted position-sensitive
RoI pooling on the hyper-features to produce the accurate
text detection results.

Feature Enhancement Network Stem

In our FEN network, we use the ResNet-101 (He et al.
2016a) network as our backbone network. Besides, we have
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integrated following two components into it.
1) Feature Enhancement RPN (FE-RPN): Before, re-
searchers in the field of general object detection always
generate region proposals with only the 3× 3 convolutional
sliding-window feature on some intermediate layer, which
we reckon that it is inadequate for text region proposal.
Since widths of most words or text lines are generally much
greater than heights; In other words, their aspect-ratios
are usually much greater than one. Meanwhile, high level
semantic feature has much larger receptive field and con-
tains much contextual information which is conducive to
distinguish foreground objects from background objects. As
is shown in Figure 1 top-center: FE-RPN, we select Res30
layer from the network stem as the input layer of FE-RPN
and add two branches, one is the text-characteristic and
task-specific 1 × 3 convolution layer, the other holds max
pooling, 1 × 1 convolution, deconvolution layers, which
has two merits: 1) what we used is the deconvolution layer
proposed by (Odena, Dumoulin, and Olah 2016) which can
eliminate the influence of checkerboard artifacts of conven-
tional deconvolution operation radically, 2) it can make the
feature more salient and extract much contextual informa-
tion. Then, we concatenate the original 3 × 3 convolutional
sliding-window feature with the outputs of deconvolution
layer and 1 × 3 convolution layer; Finally, a new con-
volution layer as well as a ResNet block are exploited to
achieve the goal of feature enhancement for region proposal.

2) Hyper Feature Generation: Previous object detec-
tion approaches always make full use of single scale and
high level semantic feature to conduct the refinement of
object detection, which may lose much information of
object details and thus insufficient for accurate objection
localization, especially for smaller text regions. However,
the low level semantic feature from intermediate layers
will make compensate for the high level semantic feature
because of its capability of detail retention. In a word, high
level semantic feature is conducive to object classification
while low level feature is beneficial for accurate object
localization. Accordingly, (Kong et al. 2016) propose the
HyperNet to reinforce the feature map for accurate object lo-
calization. In their HyperNet, feature maps originated from
different intermediate layers have different spatial size and
are merged together by pooling, convolution, deconvolution
operations, which is computational complexity. For the
simplicity, we just compress the intermediate feature maps
along the channel dimension with bottleneck convolution,
which is widely acknowledged to refine the salient features
effectively. And more importantly, the intermediate feature
maps which we reuse for the hyper-feature are originally of
the same spatial size, which has three superiorities: 1) it can
directly provide the deep supervision information for some
intermediate residual blocks; 2) it parallelizes the residual
learning rather than the conventional serialization residual
learning; 3) it improves the efficiency of computation
simultaneously (see the left-bottom of Figure 1).

Text Proposals Generation

1) Text characteristic anchor design: Anchor mechanism
(Ren et al. 2015) is yet the most classical mechanism for ac-
curate object detection, and different tasks should have dif-
ferent anchor design principle. Specific text detection task
also has text characteristic anchor design. As aforemen-
tioned, aspect ratios of most words or text lines are prone to
be larger than one. Besides, text regions are normally smaller
than other general objects in natural scene. We empirically
select six scales (32, 64, 112, 192, 304 and 416) and five
aspect ratios (1, 2, 3, 4 and 6). Nevertheless, some anchors
designed before may be useless and unreasonable. For ex-
ample, scale = 416, aspect ratio = 6, it is almost im-
possible that a text word takes over the whole input image.
Finally, we manually keep a total of a = 24 anchors at each
feature point of the feature enhancement map from FE-RPN
sub-network.

Subsequently, we impose the well-designed anchors on
each feature point of the feature enhancement map by Equa-
tion 1 to attain candidate word proposals.

x = x0 + w0 ×Δx,

y = y0 + h0 ×Δy,

w = w0 × exp (Δw) ,

h = h0 × exp (Δh)

(1)

Where (x0, y0, w0, h0) represents the center coordinate,
width, height of each anchor, (x, y, w, h) indicates the
predicted center coordinate, width, height of each pro-
posal, (Δx,Δy,Δw,Δh) is the output of our FE-RPN
sub-network and simultaneously denotes the predicted
offset for each proposal relate to corresponding anchor. Yet,
numerous candidate word proposals are surplus and highly
overlap with each other. For this reason, we apply NMS
(Neubeck and Van Gool 2006) with an Intersection over
Union (IoU) overlap threshold of 0.7 to candidate word
proposals to hold the first 200 proposals which are ranked
by the scores from FE-RPN sub-network. The held 200
proposals most possibly cover all text regions emerged in
the input images and will be fed into the following Positives
mining layer.

2) Positives Mining: Basically, the batchsize of input
images in R-FCN (Dai et al. 2016) framework is only one,
which owns two traits: enhancing the memory of each
emerged sample; leading to samples imbalance, especially
that input images in ICDAR 2011 and 2013 robust text
detection datasets frequently contain only one text sample
and the text region is small, which will cover few anchors
for training. Hence, we opt the Positives Mining strategy.
As Figure 2 shows, boxes with shallow blue color and
textness scores are original proposals generated from FE-
RPN sub-network, others are scaled proposals with scales
{0.7, 1.3}. With these scales, the IoU overlap between
the new proposals and original proposals will not exceed
previously acknowledged threshold of the RPN NMS (i.e. =
0.7). Since we observe that almost all positive proposals
rank in top 50 by their scores and we only select the first
fifty original proposals as references, we call it Positives
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Figure 2: Positives mining. Boxes with shallow blue color
are original proposals, others are scaled proposals.

mining which can obviously solve the problem of samples
imbalance.

Text Detection Refinement

Although the text proposal generation stage can recall al-
most all text regions, it will have a much lower precision for
text detection. Thus, in a similar way, we also adopt the text
detection refinement stage, which is innovative and different
from (Dai et al. 2016) framework.
1) Adaptively Weighted Position-Sensitive RoI Pooling:
In (Dai et al. 2016) framework, they partition each RoI into
k × k (k = 7) bins by a regular grid to encode position in-
formation. For an RoI with size w × h, each bin is of size
w
k × h

k . Then, they produce k2 score maps for each cate-
gory by the last convolutional layer. Inside the (i, j)-th bin
(0 < i, j < k − 1), they compute the value of position-
sensitive RoI pooling layer by pooling only over the corre-
sponding position in the (i, j)-th score map:

rc (i, j|Θ) =
∑

(x,y)∈bin(i,j)

zi,j,c (x+ x0, y + y0|Θ)

n
(2)

In Equation 2, rc (i, j|Θ) is the pooled value in the (i, j)-
th bin for category c, zi,j,c represents a score map from the
k2(C + 1) score maps. (x0, y0) indicates the top-left cor-
ner coordinate of an RoI, n denotes the amount of pixels
in the bin, and Θ stands for all network parameters. Af-
ter the position-sensitive RoI pooling procedure, they will
get the coarse scores of each RoI via globally pooling on
the k2 position-sensitive score maps: rc (Θ) =

∑ rc(i,j|Θ)
k2 ,

which produces a (C + 1)-dimensional vector. Finally, with
the softmax operation across all categories:

sc (Θ) = erc(Θ)
/ C∑

c′=0

erc′ (Θ) (3)

They obtain the expected scores which are used for calcu-
lating the cross-entropy loss during training and for ranking
the RoIs during inference.

As for the bounding box regression, it will be done in a
similar way except replacing the aforementioned k2(C+1)-

d convolution layer with a sibling, class-agnostic 4k2-d con-
volution layer.

Although their position-sensitive RoI pooling layer per-
forms well on general object detection task, it behaves badly
on the scent text detection task. Not only because text re-
gions are normally smaller than general objects but also ow-
ing to the exaggerated aspect-ratios of text words. For exam-
ple, two text samples with spatial sizes 48×48, 48×256 are
in an input image, after the forward-propagate procedure,
the corresponding text regions in the feature map Res30 will
be 3 × 3, 3 × 16 respectively, and now it is obviously un-
reasonable to impose the position-sensitive RoI pooling op-
eration with conventional size 7 × 7. On the contrary, the
practical position-sensitive RoI pooling should be as Figure
3. Accordingly, as Figure 1 shows, we put forward the Adap-

Figure 3: Practical position-sensitive RoI pooling

tively Weighted Position-Sensitive RoI Pooling layer to solve
the problem. Firstly, we divide each RoI into wl × hl bins,
(wl × hl) ∈ {3× 3, 7× 7, 3× 8, 3× 11|l = 0, 1, 2, 3};
Secondly, with the previously generated hyper-feature maps,
we produce four kinds of wl × hl score maps with text-
characteristic filter sizes for each category; then, after ap-
plying position-sensitive RoI pooling and global pooling
for each RoI to the four kinds of score maps, each RoI
will correspond to four scores (Sl (Θ) |l = 0, 1, 2, 3), which
represent the textness scores with adaptive pooling sizes
{3× 3, 7× 7, 3× 8, 3× 11}; Finally, we will leverage the
four scores to evaluate the adaptive weight Wl (Θ) for each
kind of pooling size and the final textness score S (Θ) is as
follow:

Wl (Θ) =
Sl (Θ)

4∑
l′=0

Sl′ (Θ)

, (l = 0, 1, 2, 3) (4)

S (Θ) = Sl (Θ)×Wl (Θ), (l = 0, 1, 2, 3) (5)
Clearly, different pooling sizes are suitable for different text
regions which own different spatial sizes and aspect-ratios,
the most suitable pooling size will get the highest score.
Correspondingly, its adaptive weight will be the highest and
it will naturally contribute most to the final textness score.
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Vice versa. Moreover, with regard to bounding-box regres-
sion, we will share the evaluated adaptive weight and do it
in the same way, i.e.

B (Θ) = Bl (Θ)×Wl (Θ), (l = 0, 1, 2, 3) (6)

which makes our approach achieve the state-of-the-art re-
sults.

Optimization

During the training procedure, we choose the similar multi-
task loss functions for both text region proposal and text de-
tection refinement stages, i.e.

L (s, c, b, g) =
1

N
(Lcls(s, c) + λ× Lloc(b, g)) (7)

where N is the amount of anchors or proposals that match
ground-truth boxes, and λ (λ = 1) is a balance factor which
weighs the importance between two losses (i.e. Lcls : clas-
sification error; Lloc : localization error). s and c represent
the predicted class and ground-truth class respectively. Sim-
ilarly, b and g separately denote the estimated bounding-box
and ground-truth box.

Experiments and Discussion

To prove the effectiveness of our approach, we have tested
it on two challenging benchmark datasets, i.e. ICDAR
2011 (Shahab, Shafait, and Dengel 2011) and ICDAR 2013
(Karatzas et al. 2013) robust text detection datasets.

Datasets

ICDAR 2011 includes 229 and 255 challenging scene im-
ages for training and testing, respectively. ICDAR 2013 con-
tains 229 training images and 233 testing images, which is
similar to the ICDAR 2011 dataset. In view of the facts that
all above datasets have few training samples and meanwhile
almost all previous algorithms adopt the policy by collecting
a lot of extra real scene or synthesized images for training,
we also gather about 4000 real scene images for training our
network.

Qualitative evaluation

We vividly display the qualitative experimental results on
ICDAR datasets by Figure 4, where, in each sub-figure,
red bounding-boxes are our detected results and green
bounding-boxes are ground-truth boxes. Meanwhile, each
sub-figure is captioned by three evaluation indicators, e.g.
R: recall; P: precision; H: H-mean (F-measure). Obviously,
our approach performs very well on the challenging scene
images. Detailedly, sub-figures (a-c) show that our method
can recall and accurately localize all text regions with dif-
ferent scales and aspect-ratios; sub-figure (d) proves that our
detector can detect much smaller text word finely; some text
words in sub-figures (e-g) are disturbed by shadows and high
exposure which are hard for previous algorithms, here, they
can be robustly detected. However, there also exist some text
words or background objects we can not deal with finely. For
instance, in the last row of Figure 4, it results in false posi-
tive, missed detection. Besides, in sub-figure (g), for words

”HOT MILK”, the ground-truth bounding-box may be un-
reasonable in terms of word-based text detection. In a word,
a few erroneous detections are from above three cases.

Quantitative evaluation

1) The effectiveness of Feature Enhancement Network
Stem (FENS): The original R-FCN framework proposed by
(Dai et al. 2016) is suitable for the general object detection
and will not fit well for the specific text detection task, which
has been evidenced by the first row in Table 1. Clearly,
although its precisions are comparable to some methods
with our innovative components, it has a low recall rate. As
expected, in the last three row of Table 1, experiment results
on the two datasets consistently show approximatively 5%
gain on the recall rate and 3% gain on the F-measure with
our posed Feature Enhancement Network Stem (FENS).
However, good and evil are coexisted, our detection speed
is almost twice of theirs.

2) The effectiveness of Positives Mining (PM): As
Figure 5 shows, during the training procedure, the ratio
between the numbers of foreground and background sam-
ples is less than 1 : 4 by the original R-FCN framework,
which badly violates the widely acknowledged minimum
ratio 1 : 3 in all object detection algorithms. For the reason,
it has been elaborated in subsection Positives Mining. On
the contrary, our proposed Positives Mining strategy can
obviously improve the situation with approximatively 2 : 5
ratio, which resolves the conventional problem of sample
imbalance. Besides, we add the half-region proposals
(Gidaris and Komodakis 2015) during the test stage, which
can improve the precision clearly in the last four row of
Table 1. As a whole, this strategy promotes the F-measure
by 0.5% roughly.

3) The effectiveness of adaptively weighted position-
sensitive RoI pooling: In the last two and three rows of
Table 1, we have verified the effectiveness of our proposed
adaptively weighted position-sensitive RoI pooling layer.
On the ICDAR 2013 dataset, it avaragely improves the
F-measure by 1.8% against conventional position-sensitive
RoI pooling on both evaluation criterions; On the ICDAR
2011 dataset, it will not enhance the F-measure a lot, just by
1.1% against conventional position-sensitive RoI pooling
averagely.

4) Comparisons with other state-of-the-art results:
Our approach and the original R-FCN are both trained and
tested with short side 720 except the multi-scale test, which
is a method that first tests each input image with different
resolutions (e.g. 720×1000, 960×1200, 1200×1600 etc.);
then merges all the results together; and last, applys the
NMS algorithm on all the results to produce the final results.
The multi-scale test strategy is also used for TextBoxes
(Liao et al. 2017). Although our short side is 720, we can
find from the comparison of single scale and multi-scale
test of our FEN that the input resolution doesn’t influence
the final results too much. All the experiments are carried
out on a PC with one Titan X GPU. As can be found in
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(a) R: 100%; P: 100%; H: 100% (b) R: 100%; P: 100%; H: 100% (c) R: 100%; P: 100%; H: 100%

(d) R: 100%; P: 100%; H: 100% (e) R: 100%; P: 100%; H: 100% (f) R: 100%; P: 100%; H: 100%

(g) R: 98.33%; P: 96.92%; H: 97.62% (h) R: 100%; P: 85.71%; H: 92.31% (i) R: 66.67%; P: 80%; H: 72.73%

Figure 4: Qualitative evaluation results on ICDAR datasets. Green boxes are ground-truth boxes, red boxes are detected results.
R: recall; P: precision; H: H-mean (F-measure)

Table 1: The effectiveness of different components of our method on ICDAR 2011 and 2013 robust text detection datasets. IC13
Eval: ICDAR 2013 evaluation criterion; DetEval: (Wolf and Jolion 2006); R: recall; P: precision; F: F-measure. PM: Positives
Mining. FENS: Feature Enhancement Network Stem. MT: multi-scale test.

Datasets ICDAR 2011 ICDAR 2013 Time/s
Evaluation protocol IC13 Eval DetEval IC13 Eval DetEval

Methods R P F R P F R P F R P F
R-FCN (Dai et al. 2016) 0.812 0.873 0.841 0.824 0.881 0.852 0.819 0.907 0.861 0.827 0.910 0.867 0.14

R-FCN + our PM 0.810 0.895 0.850 0.821 0.899 0.858 0.821 0.918 0.867 0.825 0.923 0.871 0.16
R-FCN + our FENS 0.865 0.874 0.869 0.872 0.886 0.879 0.878 0.907 0.892 0.884 0.918 0.90 0.27

our FEN 0.875 0.892 0.884 0.881 0.894 0.887 0.891 0.936 0.913 0.897 0.939 0.918 0.31
our FEN + MT 0.889 0.896 0.892 0.895 0.898 0.897 0.893 0.941 0.916 0.90 0.947 0.923 0.90

Table 2: Comparison with state-of-the-art methods on ICDAR 2011 and 2013 robust text detection datasets. IC13 Eval: ICDAR
2013 evaluation criterion; DetEval: (Wolf and Jolion 2006); R: recall; P: precision; F: F-measure. MT: multi-scale test.

Datasets ICDAR 2011 ICDAR 2013 Time/s
Evaluation protocol IC13 Eval DetEval IC13 Eval DetEval

Methods R P F R P F R P F R P F
TextFlow (Tian et al. 2015) 0.76 0.86 0.81 - - - 0.76 0.85 0.80 - - - 1.4

FCRNall + filts
(Gupta, Vedaldi, and Zisserman 2016)

- - - 0.75 0.92 0.82 - - - 0.76 0.92 0.83 >1.27

FCN (Zhang et al. 2016) - - - - - - 0.78 0.88 0.83 - - - 2.1
TextBoxes + MT (Liao et al. 2017) 0.82 0.88 0.85 0.82 0.89 0.86 0.83 0.88 0.85 0.83 0.89 0.86 0.73

DeepText (Zhong et al. 2016) - - - 0.81 0.85 0.83 0.826 0.904 0.863 0.842 0.907 0.873 1.7
CTPN (Tian et al. 2016) - - - 0.79 0.89 0.84 0.83 0.93 0.88 - - - 0.14

EASTtext (Zhou et al. 2017) - - - - - - 0.827 0.926 0.874 - - - 0.75
our FEN 0.875 0.892 0.884 0.881 0.894 0.887 0.891 0.936 0.913 0.897 0.939 0.918 0.31

our FEN + MT 0.889 0.896 0.892 0.895 0.898 0.897 0.893 0.941 0.916 0.90 0.947 0.923 0.90
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Figure 5: Training with/without Positives Mining (PM)

Table 2, the results of our proposed framework exceed all
other state-of-the-art methods by a large margin in terms
of no matter recall, precision, F-measure indicators, which
strongly proves the effectiveness of our method. In addition,
the speed of our approach is also comparable to other
state-of-the-art methods in light of single scale test. (We
haven’t compared with (Sun et al. 2015) which has achieved
superior results with many contributions on the ICDAR
2011 and 2013 datasets, however, they have used millions
of additional samples for training).

Conclusion

In this paper, we have presented the new Feature Enhance-
ment Network for accurate real scene text detection. It con-
tributes in three aspects: 1) improving the recall rate evi-
dently with innovative Feature Enhancement Network Stem
which includes both Feature Enhancement RPN and Hy-
per Feature Generation for text detection refinement; 2)
accurately detecting text regions with adaptively weighted
position-sensitive RoI pooling layer; 3) solving the sample
imbalance problem by positives mining strategy. Compre-
hensive evaluations and comparisons on benchmark datasets
show that our method can achieve the state-of-the-art results.

In the future, we will extend our work to multi-oriented
scene text detection and end-to-end word spotting.
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