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Abstract

We consider the problem of spatial regression where inter-
pretability of the model is a high priority. Such problems
appear frequently in a diverse set of fields from climatology to
epidemiology to predictive policing. For cognitive, logistical,
and organizational reasons, humans tend to infer regions or
neighborhoods of constant value, often with sharp disconti-
nuities between regions, and then assign resources on a per-
region basis. Automating this smoothing process presents a
unique challenge for spatial smoothing algorithms, which tend
to assume stationarity and smoothness everywhere.
To address this problem, we propose Maximum Variance Total
Variation (MVTV) denoising, a novel method for interpretable
nonlinear spatial regression. MVTV divides the feature space
into blocks of constant value and smooths the value of all
blocks jointly via a convex optimization routine. Our method
is fully data-adaptive and incorporates highly robust routines
for tuning all hyperparameters automatically. We compare
our approach against the existing CART and CRISP methods
via both a complexity-accuracy tradeoff metric and a human
study, demonstrating that that MVTV is a more powerful and
interpretable method.

Introduction

Many modern machine learning techniques, such as deep
learning and kernel machines, tend to focus on the “big data,
big features” regime. In such a scenario, there are often so
many features—and highly non-linear interations between
features—that model interpretability is a secondary consider-
ation. Instead, effort is focused solely on a measure of model
performance such as root mean squared error (RMSE). Under
that research paradigm, only a model that out-performs the
previous champion method warrants an investigation into
understanding its decisions.

By contrast, there is a parallel recent line of machine-
learning research in interpretable low-dimensional regression,
with relatively few features and with human intelligibility
as a primary concern. For example, lattice regression with
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monotonicity constraints has been shown to perform well
in video-ranking tasks where interpretability was a prereq-
uisite (Gupta et al. 2016). The interpretability of the system
enables users to investigate the model, gain confidence in
its recommendations, and guide future recommendations. In
the two- and three- dimensional regression scenario often
found in spatiotemporal data, the Convex Regression via
Interpretable Sharp Partitions (CRISP) method (Petersen,
Simon, and Witten 2016) has recently been introduced as
a way to achieve a good trade off between accuracy and
interpretability by inferring sharply-defined 2-dimensional
rectangular regions of constant value. Such a method is read-
ily useful, for example, when making business decisions or
executive actions that must be explained to a non-technical
audience.

Data-adaptive, interpretable sharp partitions are also use-
ful in the creation of areal data from a set of spatial point-
referenced data—turning a continuous spatial problem into a
discrete one. A common application of the framework arises
when dividing a city, state, or other region into a set of con-
tiguous cells, where values in each cell are aggregated to
help anonymize individual demographic data and create well-
defined neighborhoods for resource allocation. Ensuring that
the number and size of grid cells remains tractable, han-
dling low-data regions, and preserving spatial structure are
all important considerations for this problem. Ideally, one
cell should contain data points which all map to a similar
underlying value, and cell boundaries should represent signif-
icant change points in the value of the signal being estimated.
If a cell is empty or contains a small number of data points,
the statistical strength of its neighbors should be leveraged
to both improve the accuracy of the reported areal data and
further aid in anonymizing the cell, which may otherwise be
particularly vulnerable to deanonymization. Viewed through
this lens, we can interpret the areal-data creation task as
a machine learning problem, one focused on finding sharp
partitions that still achieve acceptable predictive loss.1

In this paper we propose MVTV: a method for inter-

1We note that such a task will likely only represent a single step
in a larger anonymization pipeline that may include other techniques
such as additive noise and spatial blurring. While we provide no
proofs of how strong the anonymization is for our method, we
believe it is compatible with other methods that focus on adherence
to a specified k-anonymity threshold (e.g., (Cassa et al. 2006)).
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pretable, low-dimensional convex regression with sharp par-
titions. MVTV involves two main steps: (1) an aggregate
variance maximization procedure that creates a data-adaptive
grid over the feature space; and (2) smoothing over this grid
using a fast total variation denoising algorithm (Barbero and
Sra 2014). The resulting model displays a good balance be-
tween four key measurements: (1) interpretability, (2) average
accuracy, (3) worst-region accuracy, and (4) degrees of free-
dom. Through a series of benchmarks against both a baseline
CART model and the state-of-the-art CRISP model, we show
both qualitatively and quantitatively that MVTV achieves
superior performance. Finally, we conduct a human study
on the predictive interpretability of each method. Our results
show that humans are better able to understand the predic-
tions made by MVTV, as measured by their ability to intuit
the surrounding spatial context of a smoothed region to pre-
dict the true underlying data. The end result is thus a fast,
fully auto-tuned approach to interpretable low-dimensional
regression and classification.

Background

Both CRISP and MVTV formulate the interpretable regres-
sion problem as a regularized convex optimization problem.
We first give a brief overview of the CRISP loss function and
its computational complexity. We then give a brief prelimi-
nary overview of total variation denoising, the approach used
by MVTV.

Convex Regression with Interpretable Sharp
Partitions

Recently work introduced and motivated the problem of low-
dimensional smoothing via constant plateaus (Petersen, Si-
mon, and Witten 2016). As in our approach, their CRISP
algorithm focuses on the 2d scenario and divides the (x1, x2)
space into a grid via a data-adaptive procedure. For each
dimension, they divide the space into q regions, where each
region break is chosen such that a region contains 1

q of the
data. This creates a q× q grid of differently-sized cells, some
of which may not contain any observations. A prediction
matrix M ∈ R

q×q is then learned, with each element Mij

representing the prediction for all observations in the region
specified by cell (i, j).

CRISP applies a Euclidean penalty on the differences be-
tween adjacent rows and columns of M . The final estimator
is then learned by solving the convex optimization problem:

minimize
M∈Rq×q

1

2

n∑

i=1

(yi − Ω(M,x1i, x2i))
2 + λP (M) ,

(1)
where Ω is a lookup function mapping (x1i, x2i) to the cor-
responding element in M . P (M) is the group-fused lasso
penalty on the rows and columns of M , and

P (M) =

q−1∑

i=1

[∣∣∣∣Mi· −M(i+1)·
∣∣∣∣
2
+
∣∣∣∣M·i −M·(i+1)

∣∣∣∣
2

]
,

(2)
where Mi· and M·i are the ith row and column of M , respec-
tively.

By rewriting Ω(·) as a sparse binary selector matrix and
introducting slack variables for each row and column in the
P (M) term, CRISP solves (1) via the Alternating Direction
Method of Multipliers (ADMM) (Boyd et al. 2011). The
resulting algorithm requires an initial step of O(n+ q4) op-
erations for n samples on a q× q grid, and has a per-iteration
complexity of O(q3). The authors recommend using q = n
when the size of the data is sufficiently small so as to be
computationally tractable, and setting q = 100 otherwise.

In comparison to other interpretable methods, such as
CART (Breiman et al. 1984) and thin-plate splines (TPS),
CRISP is shown to yield a good tradeoff between accuracy
and interpretability.

Graph-based Total Variation Denoising

Total variation (TV) denoising solves a convex regularized
optimization problem defined generally over a graph G =
(V, E) with node set V and edge set E :

minimize
β∈R|V|

∑

s∈V
�(ys, βs) + λ

∑

(r,s)∈E
|βr − βs| , (3)

where � is some smooth convex loss function over the value
at a given node βs. The solution to (3) yields connected
subgraphs (i.e. plateaus in the 2d case) of constant value. TV
denoising has been shown to have attractive minimax rates
theoretically (Sadhanala, Wang, and Tibshirani 2016) and is
robust against model mispecification empirically, particularly
in terms of worst-cell error (Tansey et al. 2016).

Many efficient, specialized algorithms have been devel-
oped for the case when � is a Gaussian loss and the graph
has a specific constrained form. For example, when G is a
one-dimensional chain graph, (3) is the ordinary (1d) fused
lasso (Tibshirani et al. 2005), solvable in linear time via
dynamic programming (Johnson 2013). When G is a d-
dimensional grid graph, (3) is typically referred to as to-
tal variation denoising (Rudin, Osher, and Faterni 1992)
or the graph-fused lasso, for which several efficient solu-
tions have been proposed (Chambolle and Darbon 2009;
Barbero and Sra 2011; 2014). For scenarios with a gen-
eral smooth convex loss and an arbitrary graph, the GFL
method (Tansey et al. 2017) is efficient and easily extended
to non-Gaussian losses such as the binomial loss.

The TV denoising penalty was investigated as an alter-
native to CRISP in past work (Petersen, Simon, and Wit-
ten 2016). They note anecdotally that TV denoising over-
smooths when the same q was used for both CRISP and TV
denoising. We next present a maximum-variance criterion
for choosing q in a data-adaptive way that prevents such
over-smoothing and leads to a superior fit in terms of the
accuracy-complexity tradeoff.

The MVTV Algorithm

We first note that we can rewrite (1) as a weighted least-
squares problem,

minimize
β∈Rq2

1

2

q2∑

i=1

ηi(ỹi − βi)
2 + λg(β) , (4)
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where β = vec(M) is the vectorized form of M , ηi is the
number of observations in the ith cell, and ỹi is the empirical
average of the observations in the ith cell. g(·) is a penalty
term that operates over a vector β rather than a matrix M .

We choose g(·) to be a graph-based total variation penalty,

g(β) =
∑

(r,s)∈E
|βr − βs| , (5)

where E is the set of edges defining adjacent cells on the
q × q grid graph.2 Having formulated the problem as a graph
TV denoising problem, we can now use an existing convex
minimization algorithm (Barbero and Sra 2014) (or any other
suitable algorithm) to efficiently solve (4).

We auto-tune the two hyperparameters: q, the granularity
of the grid, and λ, the regularization parameter. We take a
pipelined approach by first choosing q and then selecting λ
under the chosen q value.

Choosing bins via a maximum variance heuristic

The recommendation for CRISP is to choose q = n, assum-
ing the computation required is feasible. Doing so creates a
very sparse grid, with q − 1 × q empty cells. However, by
tying together the rows and columns of the grid, each CRISP
cell actually draws statistical strength from a large number
of bins. This compensates for the data sparsity problem and
results in reasonably good fits despite the sparse grid.

Choosing q = n does not work for our TV denoising ap-
proach. Since the graph-based TV penalty only ties together
adjacent cells, long patches of sparsity overwhelm the model
and result in over-smoothing. If one instead chooses a smaller
value of q, however, the TV penalty performs quite well. The
challenge is therefore to adaptively choose q to fit the appro-
priate level of overall data sparsity. We do this by choosing
the grid maximizing the sum of variances of all cells:

q = argmax
q

∑

c∈C(q)
v̂ar(yc) , (6)

where C(q) is the set of cells in the q× q grid and var(∅) = 0.
Choosing the grid is a tradeoff between each cell’s fit to the

data and the total number of cells. Each sample yi is assumed
to be IID conditioned on being in the same cell. We find that
maximizing the sum of variances as in (6) serves as a useful
heuristic for finding cells that fit well to the distribution of
the data and prevent overfitting by using too many cells.

A clear connection also exists between our heuristic and
principal components analysis (PCA). Since we are dealing
with univariate observations, maximizing the variance cor-
responds to finding the approximation to the first principal
component of the data. The TV penalty then helps to smooth
over these principal components by incorporating the spa-
tial adjacency information. Such a connection presents the

2Though our goal in this work is not to increase the computa-
tional efficiency of existing methods, we do note that CRISP can be
solved substantially faster via the reformulation in (4). The weighted
least squares loss enables a much more efficient solution to (1) via
a simpler ADMM solution similar to the network lasso (Hallac,
Leskovec, and Boyd 2015).

possiblity for future extensions to multivariate observations
and smoothing using group TV methods like the network
lasso (Hallac, Leskovec, and Boyd 2015).

Classification extension

The optimization problem in (4) focuses purely on the Gaus-
sian loss case. When the observations are binary labels, as in
classification, a binomial loss function is a more appropriate
choice. The binomial loss case specifically has been derived
in previous work (Tansey et al. 2016) and shown to be robust
to numerous types of underlying spatial functions. Therefore,
unlike CRISP, the inner loop of our method immediately
generalizes to the non-Gaussian scenario, with only minor
modifications. Extensions to any other smooth, convex loss
are similarly straightforward.

Choosing the TV penalty parameter

Once a value of q has been chosen, λ can be chosen by follow-
ing a solution path approach. For the regression scenario with
a Gaussian loss, as in (4), determining the degrees of freedom
is well studied (Tibshirani and Taylor 2011). Thus, we could
select λ via an information criterion such as AIC (Sakamoto,
Ishiguro, and Kitagawa 1986). We choose to select λ via
cross-validation as we found empirically that it produces
better results both in terms of subjective interpretability and
overall AIC.

Experiments

We compare results on a suite of both synthetic and real-world
datasets. We first compare MVTV against two benchmark
methods with sharp partitions, CART and CRISP, on a syn-
thetic dataset with varying sample sizes. We also compare
against CRISP with q fixed at the maximum variance solution
in a method we call MV-CRISP. We show that the MVTV
method leads to better Akaike information criterion (AIC)
scores. We then demonstrate the advantage of the maximum
variance criterion by showing that it chooses grid sizes that
offer a good trade-off between average and worst-cell accu-
racy. Finally, we test all four methods against two real-world
datasets of crime reports for Austin and Chicago. A human
evaluation on the results for Austin shows that the MV* meth-
ods are most interpretable.

Synthetic Benchmark

We generated 100 independent 100×100 grids, each with six
1000-point plateaus. Each plateau was generated via a ran-
dom walk from a randomly chosen start point and the means
of the plateaus were -5, -3, -2, 2, 3, and 5; all points not in a
plateau had mean zero. For each grid, we sampled points uni-
formly at random with replacement and added Gaussian noise
with unit variance. Figure 1 shows an example ground truth
for the means. Sample sizes explored for each grid were 50,
100, 200, 500, 1K, 2K, 5K, and 10K. For each trial, we eval-
uate the CART method from the R package rpart, CRISP,
and the MV* methods. For CRISP, we use q = max(n, 100)
as per the suggestions in (Petersen, Simon, and Witten 2016);
for the MV* methods, we use the maximum variance cri-
terion to choose from q ∈ [2, 50]. For both CRISP and the
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Figure 1: An example 100× 100 grid of ground truth means
ranging from −5 to 5. Each grid has six randomly-generated
plateaus of raised or lowered means from the background
mean (zero); darker colors correspond to regions of higher
value.

MV* methods, we chose λ via 5-fold cross validation across
a log-space grid of 50 values.

In order to quantify model complexity, we calculate the
number of constant-valued plateaus in each model. Intuitively,
this captures the notion of “sharpness” of the partitions by
penalizing smooth partitions for their visual blurriness. Sta-
tistically, this corresponds directly to the degrees of freedom
of a TV denoising model in the unweighted Gaussian loss
scenario (Tibshirani and Taylor 2011). Thus for all of our
models this is only an approximation to the degrees of free-
dom. Nonetheless, we find the plateau-counting heuristic to
be a useful measurement of the visual degrees of freedom.
Finally, to quantify the trade-off of accuracy and complex-
ity, we use the AIC with the plateau count as the degrees of
freedom surrogate.

Figure 2 shows qualitative results for the four smoothing
methods as the sample size grows from 100 to 2000. CART
(a-c) tends to over-smooth, leading to very sharp partitions
that are too coarse grained to produce accurate results even
as the sample size grows large. On the other hand, CRISP
(d-f) under-smooths by creating very blurry images. The MV-
based version of CRISP (g-i) alleviates this in the low-sample
cases, but tying across entire rows and columns causes the
image to blur as the data increases. The MVTV method (j-
l) achieves a reasonable balance here by producing large
blocks in the low-sample setting and progressively refining
the blocks as the sample size increases, without substantially
compromising the sharpness of the overall image.

Finally, Figure 3 shows the quantitative results of the ex-
periments, averaged over the 100 trials. The CRISP and MV*
methods perform similarly in terms of RMSE (Figure 3a), but
both CRISP methods create drastically more plateaus. In the
case of the original CRISP method, it quickly approaches one
plateau per cell (i.e., completely smooth) as denoted by the
dotted red horizontal line in Figure 3b. MVTV also presents a
better trade-off point as measured by AIC (Figure 3c). Using
the data-adaptive q value chosen by our maximum variance

criterion helps improve the AIC scores in the low-sample
regime, but as samples grow the MV-CRISP method begins
to under-smooth by creating too many plateaus. This demon-
strates that it is not merely the size of the grid, but also our
choice of TV-based smoothing that leads to strong results.

Maximum Variance Criterion Evaluation

To understand the effect of the maximum variance criterion,
for each MVTV trial and sample size, we exhaustively solved
the graph TV problem for a finely discretized grid of values
of q in the range [2, 50]. Figure 4 shows how the choice
of q impacts the average RMSE and maximum point error
for three different sample sizes; the dotted vertical red line
denotes the value selected by the MV criterion. As expected,
when the sample size is small, the MV criterion selects much
smaller values; as the sample size grows, the MV criterion
selects progressively larger q values. This enables the model
to smooth over increasingly finer-grained resolutions.

Perhaps counter-intuitively, the MV criterion is not choos-
ing the q value which will simply minimize RMSE. As the
middle panel shows, the MV criterion may actually choose
one of the worst possible q values from this perspective. In-
stead, the resulting model is identifying a good trade-off
between average accuracy (RMSE) and worst-case accuracy
(max error). In small-sample scenarios like Figure 4a, RMSE
is not substantially impacted by having a very coarse-grained
q. Thus this trade-off helps prevent over-smoothing in the
small sample regime—a problem observed previously when
using TV with a large q (Petersen, Simon, and Witten 2016).
But as the data grows (Figure 4b), both overly fine and overly
coarse grids may have problems, with the latter creating the
potential for the TV method to under-smooth, similar to how
CRISP performed in the synthetic benchmarks. Once sample
sizes become relatively large (Figure 4c), a very fine-grained
grid poses less risk of under-smoothing. The MV criterion
here prevents selecting low q, which would lead to a much
higher-variance estimate.

Austin and Chicago Crime Data

We applied all four methods to a dataset of publicly-available
crime report counts3 in Austin, Texas in 2014 and Chicago,
Illinois in 2015. To preprocess the data, we binned all obser-
vations into a fine-grained 100× 100 grid based on latitude
and longitude, then took the log of the total counts in each
cell. Points with zero observed crimes were omitted from the
dataset as it is unclear whether they represented the absence
of crime or a location outside the boundary of the local police
department. Figure 5 (a) shows raw data for Austin.

The maximum variance methods used q values in the range
[2, 100] and the CRISP method used q = 100. We ran a
20-fold cross-validation to measure RMSE and calculated
plateaus with a fully-connected grid (i.e., as if all adjacent
pixels were connected) which we then projected back to the
real data for every non-missing point. Figure 5 shows the
qualitative results for CART (b), CRISP (c), and MVTV (d).
MV-CRISP is omitted as it adds little insight. The CART
model clearly over-smooths by dividing the entire city into

3https://www.data.gov/open-gov/
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(a) CART
N = 100

(b) CART
N = 500

(c) CART
N = 2000

(d) CRISP
N = 100

(e) CRISP
N = 500

(f) CRISP
N = 2000

(g) MV-CRISP
N = 100

(h) MV-CRISP
N = 500

(i) MV-CRISP
N = 2000

(j) MVTV
N = 100

(k) MVTV
N = 500

(l) MVTV
N = 2000

Figure 2: Qualitative examples of each method’s performance as the sample size increases on the ground truth from Figure 1.
The MVTV method achieves a good subjective balance between limiting the number of plateaus and flexibly modeling the data,
as supported quantitatively in Figure 3.
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(a) RMSE (b) Plateau Count (c) Approximate AIC

Figure 3: Performance of the four methods as the sample size increases for the example grid in Figure 2 (a). While CRISP,
MV-CRISP, and MVTV achieve similar sample efficiency in terms of RMSE scores (a), CRISP and MV-CRISP do so with
drastically more change points (b); the dashed red horizontal line marks the maximum number of plateaus possible. Using AIC
as a trade-off measurement (c), both MV* methods initially perform similarly but as the sample size (and thus the size of q)
grows, the MVTV method continues to improve while the MV-CRISP method begins to over-smooth.

(a) N = 100 (b) N = 500 (c) N = 2000

Figure 4: RMSE (blue) and maximum error (orange) for the MVTV method for different sizes of the grid (q2) for three
different sample sizes; the dashed vertical red line indicates the value of q chosen by the maximum variance criterion. The results
demonstrate that the MV criterion chooses models which provide a balance between average and worst-case error.

huge blocks of constant plateaus; conversely, CRISP under-
smooths and creates too many regions. The MVTV method
finds an appealing visual balance, creating flexible plateaus
that partition the city well. These results are confirmed quan-
titatively in Table 1, where MVTV outperforms the three
other methods in terms of AIC on both datasets.

Austin Crime Data Human Evaluation

To evaluate the interpretability of the MV* methods against
the benchmark CART and CRISP methods, we ran a Mechan-
ical Turk study with human annotators. To smooth noisy data
in an interpretable way, huamns should be able to extrapolate
information from local patterns in the smoothed data. To test
this, we explore holding out information and determining
to what degree humans can guess that missing information
from smoothed neighboring data; that is, the ability to guess
the true underlying raw value given surrounding smoothed
values. We hypothesized that, in the absence of smoothing,
neighboring information would be too noisy to predict the
missing data. Further, we believed over-smoothing methods
like CART would provide too little neighboring informa-
tion to inform missing data, while under-smoothing methods
like CRISP would create problems similar to trying to guess

held-out information from raw neighbors.
To this end, we designed an annotation task: choose a

grayscale value for a held-out cell in the center of a 7 × 7
patch of smoothed (or raw) data (Figure 6). Each annotator
was shown a patch as rendered by MVTV, MV-CRISP, CART,
CRISP, and as raw data. Each annotator saw two randomly
sampled patches from the Austin crime dataset under each
method (5× 2 = 10 patches per annotator, shown in random
order). We added two additional uniformly-colored valida-
tion patches, placed randomly among the 10 real patches
(5 × 2 + 2 = 12 real plus validation patches per HIT). We
discarded data from annotators who were not within 10% of
the uniform value in these validation patches, because they
either did not understand the task, were trying to complete it
minimally (just touching the slider and clicking ‘Next’), or
were automated agents advancing through the task.

In this way, we gathered information from 207 annotators
for 190 patches, throwing out an additional 37 annotators
who failed validation. We measured the squared difference be-
tween the average annotators’ predictions per (patch, method)
combination against the true value in the raw data, shown in
Table 1 (rightmost column).

All of our hypotheses were borne out in the resulting an-

2465



Chicago Crime Data
RMSE Plateaus AIC

(raw) - - -
CART 1.04 9.25 43804.69
CRISP 0.84 9330.60 47245.57
MV-CRISP 0.85 8278.90 45314.71
MVTV 0.86 2270.15 34016.60

’

Austin Crime Data
RMSE Plateaus AIC Human error ×10−2

(raw) - - - 4.71±0.539
CART 1.05 10.40 11139.29 3.24±0.341
CRISP 0.94 4699.15 18326.33 3.99±0.664
MV-CRISP 0.96 1361.75 12064.25 2.72±0.355**
MVTV 0.97 384.35 10327.59 2.75±0.334**

Table 1: Results for the four methods on crime data for Chicago and Austin. The MVTV method achieves the best trade-off
between accuracy and the number of constant regions, as measured by AIC. The MV* methods also produce human annotator
predictions that are statistically significantly closer than when annotators are shown raw data for the Austin human experiment,
which neither CART nor CRISP achieve.

(a) Raw (b) CART

(c) CRISP (d) MVTV

Figure 5: Areal data results for the Austin crime data. The
maps show the raw fine-grained results (a) and the results
of the three main methods. Qualitatively, CART (b) over-
smooths and creates too few regions in the city; CRISP (c)
under-smooths, creating too many regions; and MVTV (d)
provides a good balance that yields interpretable sections.

notator predictions. The raw data is noisy and has high local
variance, and so annotators do poorly at the prediction task
without any smoothing. The over-smoothed CART values cre-
ate too many uniform plateaus where the annotators cannot
reasonably predict anything other than the missing uniform
value, which has low accuracy. The CRISP method fails to
sufficiently smooth the data, resulting in overly noisy patches
which again makes the prediction task difficult. MVTV and
MV-CRISP provide a good balance of smoothing and flexi-
bility.

According to a Tukey’s range test comparing pairwise
human annotations across methods, both MVTV and MV-
CRISP statistically significantly outperform the “raw” data

Figure 6: The Mechanical Turk interface used to gather hu-
man annotations. Annotators used the slider to fill in the miss-
ing value from a 7x7 patch of smoothed data from MVTV,
MV-CRISP, CART, CRISP, and raw (unsmoothed) data.

for the human prediction task. By contrast, CART and CRISP
fail to provide sufficient evidence to reject the null hypothe-
sis that they are indistinguishable from the “raw” data.. No
smoothing methods were shown to outperform one another
with significance.

Conclusion

This paper presented MVTV, a new method for interpretable
low-dimensional regression. Through a novel maximum vari-
ance criterion, our model divides the covariate space into a
finite-sized grid in a data-adaptive manner. We then use a fast
TV denoising algorithm to smooth over the cells, creating
plateaus of constant value.

On a series of synthetic benchmarks, we demonstrated
that our method produces superior results compared to a
baseline CART model and the current state of the art (CRISP).
Additionally, we provided additional evaluation through a
real-world case study on crime rates in Austin, showing that
MVTV discovers more interpretable spatial plateaus. Overall,
we believe the speed, accuracy, interpretability, and fully
auto-tuned nature of MVTV makes it a strong candidate for
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low-dimensional regression when human understanding is a
top priority.
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