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Abstract

Locally Linear Support Vector Machine (LLSVM) has been
actively used in classification tasks due to its capability of
classifying nonlinear patterns. However, existing LLSVM
suffers from two drawbacks: (1) a particular and appropri-
ate regularization for LLSVM has not yet been addressed;
(2) it usually adopts a three-stage learning scheme composed
of learning anchor points by clustering, learning local cod-
ing coordinates by a predefined coding scheme, and finally
learning for training classifiers. We argue that this decoupled
approaches oversimplifies the original optimization problem,
resulting in a large deviation due to the disparate purpose of
each step. To address the first issue, we propose a novel diver-
sified regularization which could capture infrequent patterns
and reduce the model size without sacrificing the representa-
tion power. Based on this regularization, we develop a joint
optimization algorithm among anchor points, local coding co-
ordinates and classifiers to simultaneously minimize the over-
all classification risk, which is termed as Diversified and Uni-
fied Locally Linear Support Vector Machine(DU-LLSVM for
short). To the best of our knowledge, DU-LLSVM is the first
principled method that directly learns sparse local coding and
can be easily generalized to other supervised learning models.
Extensive experiments showed that DU-LLSVM consistently
surpassed several state-of-the-art methods with a predefined
local coding scheme (e.g. LLSVM) or a supervised anchor
point learning(e.g. SAPL-LLSVM).

Introduction

Locally linear coding has been widely shown as a promis-
ing approach to approximate data on the nonlinear manifold
(Van Gemert et al. 2008; Wang et al. 2010). The key idea be-
hind this method is that a non-linear manifold behaves lin-
early in the local neighborhood, and that data on the man-
ifold can be encoded locally in a local coordinate system
established by a set of anchor points. Each data point can
then be approximated through a linear combination of sur-
rounding anchor points, and the weights are local coding co-
ordinates which can be used for subsequent model training.
Recently, several works have brought the advances of local
coding techniques into classification task to enhance the ca-
pability of modeling nonlinear data (Yu, Zhang, and Gong
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2009; Ladicky and Torr 2011; Gu and Han 2013). How-
ever, this work essentially divides the learning process into
three independent stages: (1)computeing the anchor points;
(2) encoding the training data with these anchor points; (3)
training the classifier based on the results of encoding. More
specifically, they first compute the anchor points with unsu-
pervised learning methods such as clustering (Van Gemert et
al. 2008) that does not take class label information into ac-
count, and then encodes the training data with a predefined
local coding scheme. Finally, they feed the results of encod-
ing to the downstream supervised classifier training process.
We argue that these decoupled approaches oversimplify the
original optimization problem, resulting in a large deviation
due to the disparate purpose of each step. While local coding
techniques minimizes the data reconstruction error and ex-
ploits unsupervised learning methods for anchor point learn-
ing, the primary objective of classifier learning is to mini-
mize the classification error. The anchor points are obtained
in an unsupervised fashion and the local coding coordinates
are calculated with the predefined local coding scheme. Un-
surprisingly, without making use of label information and
optimizing a unified formulation, these anchor points and
local coding coordinates are clearly not optimal for the clas-
sification task. It is desirable but challenging to achieve a
unified optimization of anchor points, the local coding coor-
dinates and the classifier model.

Furthermore, one key ingredient in the classification
model is the regularization, which reduces overfitting by
controlling the complexity of the model. While the effec-
tiveness of �2-norm has been validated, there is still much
room for improvement by designing a particular and ap-
propriate regularization for locally linear classifiers, which
has not been addressed yet. Specifically, each local classi-
fier with respect to anchor points can capture nonlinear pat-
terns according to discriminative information and geometric
characters. Therefore, a regularization that encourages the
local classifier to be diversified in terms of anchor points can
reduce the correlation and redundancy between these clas-
sifier. Besides alleviating overfitting problem, this regular-
ization can also (1) capture infrequent patterns: most local
classifiers can capture frequent patterns that have dominant
characteristic in the dataset, and promoting diversity among
local classifiers can drive them to give infrequent and fre-
quent patterns an equal treatment; they can also (2) reduce
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the model size without sacrificing modelling power: low cor-
relation and redundancy between local classifiers enhances
the representational power of the overall model (Xie, Deng,
and Xing 2015; Xie, Póczos, and Xing 2017).

In this paper, we propose a principled locally linear clas-
sifier called Diversified and Unified Locally Linear Support
Vector Machine (DU-LLSVM). Instead of involving a three-
stage learning scheme, we directly tackle the challenging
joint optimization that should be treated adequately along-
side locally linear classifiers. Our formulation is directly
based on original locally linear classifiers where we opti-
mize the anchor points, local coding coordinates and classi-
fier simultaneously. By doing so, the proposed DU-LLSVM
explicitly optimizes the anchor points and the local cod-
ing coordinates that fit the label information, and hence im-
proves the accuracy. Besides, we propose a novel diversified
regularization which encourages diversity between each lo-
cal classifier, so that they can reduce the model size without
compromising modelling power and better discover infre-
quent patterns. Experimental results on benchmark datasets
show that DU-LLSVM outperforms state-of-the-art methods
with predefined local coding scheme (LLSVM) or unsuper-
vised anchor point learning (SAPL-LLSVM).

Our contribution are summarized as follows:

• We propose a local coding based diversified regularization
in locally linear classifier that allows the local classifier to
be close to being uncorrelated according to anchor points.

• We propose a joint optimization algorithm over the anchor
points, local coding coordinates and classifiers to mini-
mize classification risk simultaneously. To the best of our
knowledge, DU-LLSVM is the first principled method
that directly learns sparse local coding schemes and can
be easily generalized to supervised learning model other
than SVM.

• Through extensive experiments performed on benchmark
datasets, we show that DU-LLSVM consistently sur-
passes several state-of-the-art methods with predefined lo-
cal coding scheme (LLSVM) or supervised anchor point
learning (SAPL-LLSVM).

Related Work

Diversified Regularization

Existing locally linear classifiers follow the popular �2-norm
regularization in SVM which promotes large margin (Mao et
al. 2015; Ladicky and Torr 2011; Gu and Han 2013). A spe-
cific regularization that could uncover the particular struc-
ture has not yet been discovered. Meanwhile, diversity pro-
moting regularization has been widely used in classification
(Malkin and Bilmes 2008), ensemble learning (Yu, Li, and
Zhou 2011), and latent space model (Zou and Adams 2012;
Xie, Deng, and Xing 2015; Xie, Singh, and Xing 2017).
Given the weight vectors {wi}Ki=1, Yu et al. (Yu, Li, and
Zhou 2011) define the regularizer as

∑
1≤j≤k≤K(1 − cjk)

where cjk defines the cosine similarity between weight vec-
tor j and k. In (Xie, Deng, and Xing 2015), the score is
defined as mean of {arccos(|cjk|)} minus the variance of
{arccos(|cjk|)}. A larger mean allows vectors to have larger

angles overall and a small variance encourages vectors to
differ evenly from each other. Zou et al. (Zou and Adams
2012) employ the determinantal point process (DPP) to en-
courage weight vectors to have a large volume by adjusting
the vectors to be close to orthogonal. From the perspectives
of uncorrelation and evenness, (Xie, Singh, and Xing 2017;
Li et al. 2017) proposed decorrelation regularizer which cap-
tures global relations among weight vectors. However, it is
unclear how to apply it for improving locally linear classi-
fiers. Our work advocates such a novel diversified regular-
ization but one focused on locally linear classifiers which is
fundamentally different from the above objectives.

Locally Linear Coding

Local coding methods offer a powerful tool for approximat-
ing data on the nonlinear manifold. All these methods em-
ploy a set of anchor points to encode data as a linear combi-
nation of surrounding anchor points, so as to minimize ap-
proximation error. Specifically, let V = {vi}mi=1 denote the
set of m anchor points, any point x is then approximated
as x ≈ ∑m

i=1 γx,vivi, where γx,vi is the local coding co-
ordinates, depicting the degree of membership of x to the
ith anchor point vi, constrained by

∑m
i=1 γx,vi = 1. Dif-

ferent encoding schemes haven been proposed in literature,
with (Liu, Wang, and Liu 2011) proposing localized soft-
assignment coding, which was defined as:

γx,vi =

{
exp(−βd(x,vi))∑

j∈Nk(x) exp(−βd(x,vj))
j ∈ Nk(x)

0 otherwise,
(1)

where Nk(x) represents the k-nearest neighborhood of x
defined by the distance function. In this coding , by us-
ing an “early-cut-off” strategy, the unreliable distant an-
chor points could be removed even when a small β is used.
Moreover, localized soft-assignment coding saves compu-
tation overhead comparing with previous soft-assignment
coding, which involves all the anchor points in the cod-
ing phase. Other local coding methods include local co-
ordinate coding (Yu, Zhang, and Gong 2009), inverse Eu-
clidian distance based weighting (Van Gemert et al. 2008;
Ladicky and Torr 2011), etc.

A number of locally linear classifiers have been proposed
based on local coding techniques. (Ladicky and Torr 2011)
calculates the local coordinates with fixed and predefined lo-
cal coding scheme, and then treats the local coordinates as
weights for assigning training data into different local re-
gions. Separate model are trained for each local region and
combined to form a locally linear classifier. (Gu and Han
2013) adopts K-means to partition the data into clusters and
then trains a linear SVM for each cluster. Meanwhile, each
cluster’s model needs to align with a global model, which
can be treated as a type of regularization.

One can thus easily see that the aforementioned locally
linear classifiers are essentially decoupled approaches where
anchor points learning, codes for training data and classifier
training are obtained through independent steps. The clas-
sification performance of these locally linear classifiers de-
pends heavily on the quality of the local coding, which fur-
ther depends on the anchor points being used. Therefore, as
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we will review later, it is well acknowledged that such de-
coupled relaxation suffers from a lager deviation from the
optimum. To the best of our knowledge, DU-LLSVM is a re-
search gap we aim to fill in this paper, and due to the generic
formulation in SVM, we believe that DU-LLSVM can be
easily generalized to supervised models other than SVM.

Methods

Locally Linear Support Vector Machine

Given a set of training samples S =
{(x1, y1), . . . , (xN , yN )}, A standard linear SVM bi-
nary classifier takes the form, fSVM (x) = wTx + b.
The optimal weight vector w and bias b are obtained by
maximizing the soft margin, which penalises each instance
by the hinge loss:

min
w,b

λ

2
‖w‖2 + 1

N

N∑
n=1

max(0, 1− ynf
SVM (xn)), (2)

where the first term is an �2 regularization encouraging large
margin and the second term is a hinge loss minimizing
the empirical loss. Linear SVM classifiers are sufficient for
many tasks, but they fail to capture the intrinsic decision
boundary in non-linear problems. In many cases, real data
naturally groups into clusters and lies on nearly disjointed
lower dimensional manifolds, so that linear SVM is inappli-
cable. One solution to address this limitation is the locally
linear classifiers (Ladicky and Torr 2011) which leverages
the manifold geometric structure to learn a non-linear func-
tion that can be effectively approximated by a linear function
with an coding under appropriate localization conditions. In
other words, we assume that in an sufficiently small region,
a nonlinear decision boundary is approximately linear and
each data point x can then be approximated with a linear
combination of surrounding anchor points, which is usually
called a local coding scheme. To encode local linearity with
linear SVM classifier, the weight vector w along with the
bias b should vary according to the location of the data point
x in the feature space as:

f(x) = w(x)Tx+ b(x) =

p∑
d=1

wd(x)xd + b(x), (3)

where data point x lies in a lower dimensional manifold of
the feature space whose dimensionality is p.

An important property of local coding is that any Lips-
chitz function ψ(x) defined on a lower dimensional space
can be approximated by a linear combination of func-
tion values ψ(v) of the set of anchor points as ψ(x) ≈∑m

j=1 γx,vjψ(vj), within the boundary given in (Yu, Zhang,
and Gong 2009). According to (Yu, Zhang, and Gong 2009;
Ladicky and Torr 2011), smoothness and constrained curva-
ture implies that the function w(x) and b(x) are Lipschitz
smooth in the feature space x. Thus we can approximate the
weight functions wi(x) and bias function b(x) in Equation
(3) employing the local coding as:

wd(x) =
m∑
j=1

γx,vj
wd(vj) b(x) =

m∑
j=1

γx,vj
b(vj). (4)

Substituting the above equations (4) into Equation (3), we
get the LLSVM decison function:

fW,b,v,γx,v (x) =

p∑

d=1

m∑

j=1

γx,vjwd(vj)xd +

m∑

j=1

γx,vj b(vj)

=
∑

γ�
x,v(Wx+ b) =

m∑

j=1

γx,vjf
SV M
vj

(x),

(5)

where W = [w(v1), ...,w(vm)]T denotes a m × p ma-
trix composed by stacking the m classifier weight vec-
tors in rows. b = [b(v1), ..., b(vm)]T and γx,v =
[γx,v1

, ..., γx,vm
]� are m-dimensional vectors of bias terms

and local coordinates respectively. This transformation can
be seen as a finite kernel transforming a p + 1-dimensional
problem into a m(p+ 1)-dimensional one. It can also be in-
terpreted as defining a locally liner classifier as the weighted
average of m separate linear classifiers with respect to each
anchor point, where the weights are determined by the local
coding coordinates.

To evaluate fW,b,v,γx,v(x) for each data point x, we need
to calculate the corresponding local coding coordinates γx,v,
that further depend on the anchor points v being used and
the local coding scheme. This means the prediction func-
tion fW,b,v,γx,v(x) depends on the model parameters W
and b, the anchor point variable v and local coding coordi-
nates γx,v. Similar to the optimization problem (2) of SVM,
the optimization problem for LLSVM is formulated as:

min
W,b,v,γxn,v

λ

2
‖W‖2F +

1

N

N∑
n=1

�(yn, fW,b,v,γxn,v(xn)),

(6)
where ‖W‖2F =

∑m
j=1

∑p
d=1 W

2
jd. Directly optimize

W,b,v, γxn,v simultaneously is very hard due to the non-
convexity of the objective (6). This leads to a natural three-
step approach taken by existing methods (Ladicky and Torr
2011; Yu, Zhang, and Gong 2009; Gu and Han 2013), which
first estimates the anchor points for each data point by adopt-
ing K-means clustering, and then evaluate the local coding
coordinates with a predefined scheme by utilizing exponen-
tial decay scheme or inversely-proportional decay scheme,
finally they feed the anchor points and the local coding coor-
dinates to the downstream supervised model training. Obvi-
ously, this two-step learning procedure is inconsistent with
the objective function and rather suboptimal as the predic-
tion information is not used in discovering the anchor points
and the local coding scheme. This motivates a joint opti-
mization method for local linear classifier which we will ad-
dress later.

Local Coding Based Diversified Regularization

In this work, we propose a diversified regularization by tak-
ing two factors into consideration. First, we encourage un-
correlation between each local classifier. Less correlation is
equivalent to more diversity, which would allow for local
classifiers to be mutually different and thus improve their
overall representation power. Second, we hope that the lo-
cal classifier could contribute differently to the modeling of
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Figure 1: An illustration of diversified regularization in
LLSVM. Red and green points correspond to positive and
negative samples, black stars correspond to the anchor points
and blue lines are the decision boundary. The dash line
shows the range of a anchor point that the interior data points
are relevant to.

data when considering the local coding system. For exam-
ple, as shown in Figure 1, the left anchor point with the
dotted line circle contains fewer data points as compared
to the right anchor point. Therefore, placing more weight
on the right local classifier may achieve a better perfor-
mance as a whole. An intuitive way to compute the impor-
tance of each local score is to count the total weight that
the total dataset has contributed to that anchor point. Specif-
ically, we define the important score with anchor point vi as

qi =
∑N

n=1 γxn,vi∑m
j=1

∑N
n=1 γxn,vj

=
∑N

n=1 γxn,vi
1.

We define the diversity among local classifier from a sta-
tistical perspective. For two local classifier wj1 and wj2
(here we omit the bias term b for brevity), we promote wj1
and wj2 to be close to being orthogonal, making their inner
product 〈wj1 ,wj2〉 close to zero and their norms ‖wj1‖2
and ‖wj2‖2 in proportion to their important scores qj1 and
qj2 . Therefore, the novel diversified regularization can be
achieved in the following manner: computing the Gram ma-
trix G = W�W, normalizing the matrix G̃ = G

tr(G) in

the sense that tr(G̃) = 1, where tr(·) denotes the trace of a
matrix, and then promoting G̃ to be close to Q = diag(q).
Off the diagonal of G̃ and Q are 〈wj1 ,wj2〉 and zero re-
spectively. On the diagonal of G̃ and Q are ‖wj1‖2 and
qj1 respectively. Making G̃ close to Q effectively encour-
ages 〈wj1 ,wj2〉 to be zero and ‖wj1‖2 in proportion to its
important scores qj1 , which is consistent with our original
intention.

To measure the closeness between G̃ and Q, we use
the Bregman matrix Divergence (Tsuda, Rätsch, and War-
muth 2005). If F is a real-valued strictly convex differen-
tiable function on the parameter domain R

d×d and f(w) =
∇WF (W), then the Bregman matrix divergence between

1Since we adopt stochastic gradient descent method, we accu-
mulatively calculate the important score that historic data has con-
tributed to.

two matrices W1 and W2 is defined as ΔF (W1,W2) =
F (W1)−F (W2)− tr((W1−W2)f(W)�). If we choose
F (W) = tr(W logW −W), which is called quantum en-
tropy, the Bregman matrix divergence becomes the quantum
relative entropy (Nielsen and Chuang 2011), which is formu-
lated as ΔF (W1,W2) = tr(W1 logW1 −W1 logW2 −
W1 + W2). Given the definition of quantum relative en-
tropy, we can employ it to measure the closeness between
G̃ and Q to promote the diversity in locally linear classi-
fiers. Since tr(G̃) = tr(Q) = 1, we have ΔF (Q, G̃) =

tr(Q logQ −Q log W�W
tr(W�W)

). Dropping the constant, we
define the Local Coding based Diversified regularization as

R(W) = tr(−Q log
W�W

tr(W�W)
), (7)

where R(W) is a smooth and convex function that is easy
to optimize.

Unified Optimization Framework

Algorithm 1 Local Coding Coordinates (LLC) Optimiza-
tion Algorithm

Input: data point x and anchor points V =
{v1, · · · ,vm}
Initialization: λ0 = u1 + 1, k = 0 and compute the
vector of ascending ordered distance u ∈ R

m

while λk > uk+1 and k ≤ n− 1 do
Update k ← k + 1
Compute λ based on (11)

end while
Output: The number of nearest anchor points k, compute
the local coding coordinates γx,v based on (10)

Adding the diversified regularization, our objective func-
tion is

min
W,b,v,γ

λ1

2
‖W‖2F+

λ2

2
R(W)+

1

N

N∑
n=1

�(yn, fW,b,v(xn)),

(8)
The objective function (8) is a non-convex optimization
problem, and thus we iteratively optimize γx,v,V,W,b un-
til convergence to obtain a local minimum.

We first present our optimization method for the local
coding coordinates γx,v. Considering w(x), we seek to find
the best local approximation in a sense of minimizing the
distance between this approximation and the ground truth.
Assuming that for any data point x, the ground truth holds
that wx = w(x) + εx, where w(·) is a Lipschitz con-
tinuous function that for any x1,x2 ∈ R

p it holds that
|w(x1) − w(x2)| ≤ L · d(x1,x2) for some distance func-
tion d(·, ·) and εx denotes a noise term that E[εx|x] = 0 and
|εx| ≤ b for some given b > 0. To minimize the absolute
distance between our approximation and the ground truth
w(x), we need to solve the following optimization problem:

min
γx,v

|
m∑

i=1

γx,viwvi −w(x)|s.t.
m∑

i=1

γx,vi = 1; γx,vi ≥ 0, ∀i.
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Decomposing the above objective into a sum of bias and
variance terms, we can transforms it into

|
m∑

i=1

γx,vi
wvi

−w(x)| ≤ |
m∑

i=1

γx,vi
εvi
|+ L

m∑

i=1

γx,vi
d(vi,x).

By Hoeffding’s inequality it follows that |∑m
i=1 γx,vi

εvi
| ≤

C‖γx,v‖2 for C = b
√
2 log( 2δ ), w.p. at least 1 − δ. With a

guarantee for solving the original objective with a high prob-
ability,, we can formulate the new problem as the following
optimization:

min
γx,v

C‖γx,v‖2 + γ�
x,vu s.t.

m∑

i=1

γx,vi = 1; γx,vi ≥ 0, ∀i, (9)

where u = {Ld(v1,x), · · · , Ld(vm,x)}. Its Lagrangian is
‖γx,v‖2+γ�x,vu+λ(1−∑m

i=1 γx,vi
)−∑m

i=1 θiγx,vi
, where

λ ∈ R and θ1, · · · , θm are the Lagrange multipliers. Since
the optimization problem is convex, we use KKT conditions
to find its global minimum. Setting the partial derivative of
L(γx,v, θ, λ) with respect to γx,v to zero gives: γx,vi

‖γx,v‖2 =

λ−ui+θi. Let γ�
x,v be the optimal local coding coordinates.

According to the KKT conditions, if γ�
x,vi

> 0 then θi = 0.
Otherwise, for any i such that γ�

x,vi
= 0 it implies λ ≤ ui.

Substituting it into the equality constraint
∑

i γ
�
x,vi

= 1, we
have

γ�
x,vi

=
λ− ui∑

γ�
x,vj

>0(λ− uj)
=

λ− Ld(vi,x)∑
γ�
x,vj

>0(λ− Ld(vj ,x))
.

(10)

It demonstrates that the optimal weight γ�
x,vi

of anchor point
vi is proportional to −d(vi,x), whose weight decay is quite
slow compared to the popular exponential decay scheme or
inversely-proportional decay scheme that is used in (Mao
et al. 2015; Gu and Han 2013; Ladicky and Torr 2011). It
also shows that parameter λ has a cutoff effect such that
only the nearest anchor points that λ − Ld(vi,x) > 0 are
considered for encoding data point x, while the weights for
the remaining anchor points are all set to zero. This is con-
sistent with the previous predefined local coding scheme.
The solution to find the optimal distance threshold λ is sim-
ple. Denoting by k the number of nonzero weights which
correspond to the k smallest value of u, we easily obtain

1 =
∑

γ�
x,vi

>0

γ�
x,vi

‖γ�
x,v‖2 =

∑
γ�
x,vi

>0(λ − ui)
2, which is

equivalent to kλ2−2λ
∑k

i=1 ui+(
∑k

i=1 u
2
i −1) = 0. Solv-

ing this quadratic equation with respect to λ and ignoring the
solution that violate γ�

x,vi
≥ 0, we get

λ =
1

k
(

k∑
i=1

ui +

√√√√k + (

k∑
i=1

ui)2 − k

k∑
i=1

u2
i ). (11)

Note that the objective (9) is a convex optimization prob-
lem, which can be efficiently solved using off-the-shelf tool-
box. Here we follow the method in (Anava and Levy 2016;
Liu et al. 2017b). The key idea is to greedily add neighbors
according to their distance from x until a stopping condition
is achieved. Our algorithm is presented in Algorithm 1.

Algorithm 2 Diversified and Unified Locally Linear SVM
(DU-LLSVM)

Input: Training Data (xn, yn)
N
n=1, the number of anchor

points m, parameters λ, t0, skip, μ.
Output: Classifier variables W,b and anchor points v, t =
0.
Initialize anchor points v by K-means.
while no convergence do

Sample a data point x randomly.
Compute the local coordinate γx,v according to Algo-
rithm 1 and the incurred loss �t.
if �t > 0 then

for each nearest anchor point vi to data point x do
update vi via Equation (12)(13).
update the Classifier parameters W and b via
Equation (15).

end for
end if
if t mod skip == 0 then

update weight matrices W via Equation (16).
end if
Update: t ← t+ 1

end while

For the anchor points and local classifiers estimation, we
apply the SGD method to the objective in (6) which is simple
and efficient. Since data point x is approximated as a linear
combination of its k-nearest anchor points, only k-nearest
anchor points need to be optimized at each iteration. To up-
date the anchor point v, we take partial derivative of γx,v
with respect to v, from which we obtain a p × m matrix,
among which only k columns are nonzero. The ith column
of ∂γx,v

∂zi
is computed as:

sμ(λ− μd(x,vi)−
∑

γx,vi
>0(λ− μd(x,vi)))∑

γx,vj
>0(λ− μd(x,vj))2

, (12)

where s = ∂d(x,vi)
∂vi

and μ = L/C, namely the Lipschitz to
noise ratio. The other nonzero columns are computed as:

− sμ∑
γx,vj

>0(λ− Ld(x,vj))2
, (13)

where vj belongs to the k-nearest neighbours of x and it is
not equal to vi. Then we can update anchor points vi via the
following formula:

v
(t+1)
i ← v

(t)
i +

1

ρanchor(t+ t0)
y
∂γx,v
∂vi

(W(t)x+ b(t)),

(14)

where t denotes the current iteration number and t0 is a pos-
itive constant that avoids too large steps in the first few iter-
ations. We follow the optimal learning rate 1

ρ(t+t0)
given by

(Shalev-Shwartz et al. 2011). The classifier variables W and
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Dataset #Training #Test #feature
phishing 7370 3685 68
Magic04 12680 6340 10
IJCNN 49990 91701 22

w8a 49749 14951 300
connect-4 40740 20368 126
Covtype 387342 193670 54

Table 1: Basic statistics of datasets.

b can be updated by:

W(t+1) ← W(t) +
1

ρ(t+ t0)
y(γx,vx

T ),

b(t+1) ← b(t) +
1

ρ(t+ t0)
yγx,v. (15)

To speed up the training process, we adopt a similar strat-
egy to (Bordes, Bottou, and Gallinari 2009) and perform a
regularization update every skip iterations by

Wt+1 ← Wt+1 − skip

t+ t0
(Wt+1 +∇R(Wt+1)). (16)

where ∇R(W) = 2W
tr(W�W)

−W(W�W)−1Q. Algorithm
2 summarizes the proposed DU-LLSVM algorithm.

Experiments

In this section, we empirically investigate our proposed DU-
LLSVM and U-LLSVM, compare them with three related
methods and exhibit the experimental results on six bench-
mark datasets.

Experimental Setup

We conduct experiments on six real-world datasets which
were normalized to have zero mean and unit variance in each
dimension. The statistics of the datasets after preprocessing
are summarized in Table 1. To make a fair comparison, all
the algorithms are repeated over 5 experimental runs of dif-
ferent random permutation.

In our experiments, we compared the following methods:

• SVM: Standard linear SVM without any local coding em-
bedding, which is a baseline method .

• LLSVM: Locally Linear SVM (Ladicky and Torr 2011).
We first initialized the anchor points by K-means clus-
tering and encode the training data with predefined local
soft-assignment coding, and finally fed the coding results
to the training model.

• SAPL-LLSVM: LLSVM with Supervised Anchor Points
Learning (Mao et al. 2015). This method learns the an-
chor points but using a fixed localized soft-assignment
coding scheme, which indicates that the number of an-
chor points is fixed for the whole dataset. This algorithm
can be viewed as a strong baseline to validate the efficacy
of the unified optimization framework we proposed.

• U-LLSVM: The proposed Unified LLSVM without the
diversified regularization.

phishing Test loss Acc(%) Test time
SVM 0.1964± 0.0006 92.24± 0.10 ×1

LLSVM 0.1861± 0.0042 92.66± 0.23 ×8.91
SAPL-LLSVM 0.1509± 0.0026 93.92± 0.18 ×9.27
U-LLSVM 0.1026± 0.0026 95.66± 0.17 ×8.66

DU-LLSVM 0.0965± 0.0020 95.84± 0.34 ×8.91
Magic04 Test loss Acc(%) Test time

SVM 0.5004 ± 0.0014 78.33± 0.13 ×1
LLSVM 0.4289 ± 0.0016 79.57± 0.30 ×21.56

SAPL-LLSVM 0.3923± 0.0031 81.60± 0.18 ×22.04
U-LLSVM 0.3339± 0.0017 84.88± 0.36 ×22.92

DU-LLSVM 0.3238± 0.0029 85.14± 0.44 ×22.92
IJCNN Test loss Acc(%) Test time
SVM 0.1863± 0.0006 90.50± 0.11 ×1

LLSVM 0.1130± 0.0039 94.51± 0.30 ×15.52
SAPL-LLSVM 0.1054± 0.0015 95.17± 0.21 ×15.78
U-LLSVM 0.0683± 0.0024 97.66± 0.11 ×16.30

DU-LLSVM 0.0584± 0.0018 98.26± 0.12 ×15.42
w8a Test loss Acc(%) Test time

SVM 0.0567± 0.0003 97.07± 0.05 ×1
LLSVM 0.0333 ± 0.0019 98.45± 0.25 ×11.72

SAPL-LLSVM 0.0274± 0.0005 98.74 ± 0.18 ×12.78
U-LLSVM 0.0262± 0.0004 98.74± 0.07 ×10.01

DU-LLSVM 0.0228± 0.0028 98.96± 0.31 ×10.28
connect-4 Test loss Acc(%) Test time

SVM 0.4257± 0.0008 81.50± 0.12 ×1
LLSVM 0.3196± 0.0021 87.30± 0.25 ×7.52

SAPL-LLSVM 0.2901± 0.0013 88.19± 0.15 ×8.78
U-LLSVM 0.2663± 0.0030 89.15± 0.23 ×9.30

DU-LLSVM 0.2225± 0.0020 90.94± 0.21 ×9.92
Covtype Test loss Acc(%) Test time

SVM 0.6535± 0.0007 68.73± 0.06 ×1
LLSVM 0.4809± 0.0024 79.17± 0.04 ×15.18

SAPL-LLSVM 0.4359± 0.0013 80.61± 0.10 ×16.72
U-LLSVM 0.4190± 0.0031 81.75 ± 0.11 ×14.30

DU-LLSVM 0.4095± 0.0040 81.99± 0.21 ×14.52

Table 2: Comparison of different algorithms in terms of test
loss, classification accuracy and test time (normalized to test
time of SVM).

• DU-LLSVM: The proposed Diversified and Unified
LLSVM.

For parameter settings, we performed grid search and
cross validation to select the best parameters for each
algorithm on the training set. We tuned the number
of anchor points m from range [10, 20, 50, 100], the
nearest neighbouring parameter in LLSVM and SAPL-
LLSVM from range [2, 3, 5, 8, 10], the learning rate
parameter ρ from range [0.01, 0.001, 0.0001, 0.00001],
learning rate parameter for anchor point from range
[0.01, 0.001, 0.0001], Lipschitz to noise ratio parameter μ
from range [0.01, 0.1, 0.5, 1, 10, 100], and skip parameter
from range [10, 100, 1000, 10000].

Experimental Results and Analysis

As shown in Table 2, DU-LLSVM and U-LLSVM signif-
icantly outperform other baselines which validates the effi-
cacy of unified optimization over the anchor point, local cod-
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ing coordinates and SVM model. Moreover, DU-LLSVM is
slightly better than U-LLSVM which confirms that promot-
ing the diversity in local classifier could uncover infrequent
patterns, and thus improve the performance. The test time
of DU-LLSVM and U-LLSVM is comparable with SAPL-
LLSVM and LLSVM even we adopt a unified optimization
framework and impose a diversified regularization. Figure
2 demonstrates the convergence rate of each algorithm de-
pending on epoch. It is clear to see that DU-LLSVM con-
verges to a lower hinge loss value compared with other base-
lines.
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Figure 2: Epoch-wise demonstration of different algorithms
with hinge loss on test data.

To illustrate the power of the local coding coordinates op-
timization method, we give the average number of nearest
neighbours conditioned on epoch in Figure 4. It is obvious
that the average number of nearest neighbours decreases and
is prone to convergence. This is because the local coding
scheme is being optimized, and Algorithm 1 will converge
to the optimal number of nearest neighbours for each data
point.

Figure 3 shows the test error of U-LLSVM and DU-
LLSVM with the number of anchor points m ranging from
10 to 100. The performance of both U-LLSVM and DU-
LLSVM increases with an increasing number of anchor
points and stabilizes as m exceeds a certain threshold. More-
over, DU-LLSVM achieves better performance with fewer
anchor points which confirms that the diversified regular-
ization could reduce the model size without compromising
modelling power and better discover infrequent patterns.
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Figure 3: anchor points number vs hingeloss.
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Figure 4: Epoch-wise demonstration of the average number
of nearest neighbour in DU-LLSVM.

Conclusion

In this work, we propose a local coding based diversi-
fied regularization which could capture infrequent patterns
and reduce model size without sacrificing the representa-
tion power. We develop a joint optimization algorithm over
the anchor points, local coding coordinates and classifiers
to minimize classification risk simultaneously. Extensive
experiments validated that DU-LLSVM consistently sur-
passed several state-of-the-art methods that use either prede-
fined local coding scheme (LLSVM) or supervised anchor
point learning(SAPL-LLSVM). Directions for future work
include employing it for recommendation task (Liu et al.
2017a).

2345



Acknowledgments

This research is supported by the National Research Foun-
dation, Prime Minister’s Office, Singapore under its Interna-
tional Research Centres in Singapore Funding Initiative.

References

Anava, O., and Levy, K. 2016. k*-nearest neighbors: From
global to local. In Advances in Neural Information Process-
ing Systems, 4916–4924.
Bordes, A.; Bottou, L.; and Gallinari, P. 2009. Sgd-qn:
Careful quasi-newton stochastic gradient descent. Journal
of Machine Learning Research 10(Jul):1737–1754.
Gu, Q., and Han, J. 2013. Clustered support vector ma-
chines. In Artificial Intelligence and Statistics, 307–315.
Ladicky, L., and Torr, P. 2011. Locally linear support vector
machines. In Proceedings of the 28th International Confer-
ence on Machine Learning (ICML-11), 985–992.
Li, J.; Zhou, H.; Xie, P.; and Zhang, Y. 2017. Improv-
ing the generalization performance of multi-class SVM via
angular regularization. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJ-
CAI 2017, Melbourne, Australia, August 19-25, 2017, 2131–
2137.
Liu, C.; Jin, T.; Hoi, S. C. H.; Zhao, P.; and Sun, J. 2017a.
Collaborative topic regression for online recommender sys-
tems: an online and bayesian approach. Machine Learning
106(5):651–670.
Liu, C.; Zhang, T.; Zhao, P.; Zhou, J.; and Sun, J. 2017b.
Locally linear factorization machines. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial In-
telligence, IJCAI 2017, Melbourne, Australia, August 19-25,
2017, 2294–2300.
Liu, L.; Wang, L.; and Liu, X. 2011. In defense of soft-
assignment coding. In IEEE International Conference on
Computer Vision, ICCV 2011, Barcelona, Spain, November
6-13, 2011, 2486–2493.
Malkin, J., and Bilmes, J. 2008. Ratio semi-definite clas-
sifiers. In Acoustics, Speech and Signal Processing, 2008.
ICASSP 2008. IEEE International Conference on, 4113–
4116. IEEE.
Mao, X.; Fu, Z.; Wu, O.; and Hu, W. 2015. Optimizing
locally linear classifiers with supervised anchor point learn-
ing. In Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos
Aires, Argentina, July 25-31, 2015, 3699–3706.
Nielsen, M. A., and Chuang, I. L. 2011. Quantum Compu-
tation and Quantum Information: 10th Anniversary Edition.
New York, NY, USA: Cambridge University Press, 10th edi-
tion.
Shalev-Shwartz, S.; Singer, Y.; Srebro, N.; and Cotter, A.
2011. Pegasos: Primal estimated sub-gradient solver for
svm. Mathematical programming 127(1):3–30.
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