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Abstract

Electricity disaggregation identifies individual appliances
from one or more aggregate data streams and has immense
potential to reduce residential and commercial electrical
waste. Since supervised learning methods rely on meticu-
lously labeled training samples that are expensive to ob-
tain, unsupervised methods show the most promise for wide-
spread application. However, unsupervised learning methods
previously applied to electricity disaggregation suffer from
critical limitations. This paper introduces the concept of iter-
ative appliance discovery, a novel unsupervised disaggrega-
tion method that progressively identifies the ‘easiest to find’
or ‘most likely’ appliances first. Once these simpler appli-
ances have been identified, the computational complexity of
the search space can be significantly reduced, enabling itera-
tive discovery to identify more complex appliances. We test
iterative appliance discovery against an existing competitive
unsupervised method using two publicly available datasets.
Results using different sampling rates show iterative discov-
ery has faster runtimes and produces better accuracy. Further-
more, iterative discovery does not require prior knowledge
of appliance characteristics and demonstrates unprecedented
scalability to identify long, overlapped sequences that other
unsupervised learning algorithms cannot.

Introduction

Every year, wasted energy costs the United States $130 bil-
lion and produces over a gigaton of pollution, over half of
which comes from wasted electricity (Granade et al. 2009).
A variety of Artificial Intelligence applications have been
proposed to reduce waste, including automated energy pric-
ing and demand response (Malik and Lehtonen 2016), but
some of the largest potential savings require adjustments to
consumer behavior. Behavioral adjustments that have a min-
imal effect on consumers’ lifestyles could reduce residential
consumption by up to 20%, but applications to drive these
adjustments remain largely unimplemented due to limita-
tions in existing approaches (Frankel, Heck, and Tai 2013).
Electricity disaggregation is one such application.

Electricity disaggregation, also called Non-Intrusive Ap-
pliance Load Monitoring or Single Point Sensing (Gupta,
Reynolds, and Patel 2010), is the process of extracting en-
ergy usage for multiple appliances from a single aggregate
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electrical signal (Hart 1992). While existing smart meters
have the capability to monitor the consumption of individ-
ual appliances, the cost of purchasing a smart meter for ev-
ery appliance in a building greatly outweighs any potential
savings obtained by reducing waste. In contrast, electricity
disaggregation can monitor energy usage of all appliances
with a single smart meter (Carrie Armel et al. 2012).

Appliance-specific data has multiple uses. First, reporting
appliance-specific power consumption to consumers has a
measurable impact on reducing waste. Second, an automated
system could use such data to provide recommendations to
consumers on specific actions to reduce waste, identify out-
dated appliances and recommend efficient replacements, and
(if given authority) could automatically turn off unused ap-
pliances or shift their operation to times when electricity
is cheaper. Third, real-world data could help manufactur-
ers improve efficiency of future appliance models. Finally,
utility companies could use such data for better market seg-
mentation and load forecasting, reducing operational costs
by up to 28% (Lobaccaro, Carlucci, and Löfström 2016).

Despite significant research in electricity disaggregation,
existing methods remain unimplemented in the real world.
Supervised learning requires multiple isolated training sam-
ples for each appliance, a time-consuming task most con-
sumers are unwilling to perform. In contrast, unsupervised
learning methods have the potential to disaggregate appli-
ances without training samples, but their ability to discover
appliances is limited since they can only discover appliances
that happen to occur in isolation, require pre-existing appli-
ance models, or use brute force search and are restricted to
discovering appliances with very short sequence lengths.

Contributions: This paper introduces iterative appliance
discovery, an unsupervised disaggregation technique that
makes no prior assumptions on appliances. Iterative discov-
ery reconstructs appliances from detected events by identify-
ing the simplest appliances with the closest temporal events
first. Following each new discovery, iterative discovery re-
duces the search space complexity, enabling identification of
additional, more complex appliances. This novel approach
yields higher accuracy, faster execution time, and scalabil-
ity to longer event sequences than any previously intro-
duced unsupervised disaggregation algorithm. We demon-
strate these improvements on two publicly available datasets
containing 7 houses against an existing competitive method.
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Figure 1: Example of disaggregation from the BLUED dataset spanning 35 minutes. Aggregate power (dark blue) is first parsed
into events (dotted lines; power increases in blue, decreases in red). Valid episodes from appliances are shown in black. Most un-
supervised methods can discover non-overlapped episodes such as (e3,e4) and (e16,e17), while others can find short overlapping
episodes, such as (e2,e8) and (e1,e9). Only iterative discovery can find longer overlapped episodes like (e10,e11,e14,e18,e19).

Related Work

Supervised learning models applied to electricity disaggre-
gation include Discriminative Sparse Coding (Kolter, Batra,
and Ng 2010), 1-Nearest Neighbor (Gupta, Reynolds, and
Patel 2010), Semi-Definite Program Relaxation with Ran-
domized Rounding (Shaloudegi et al. 2016), Markov ran-
dom fields (Tomkins, Pujara, and Getoor 2017), and others
(Zoha et al. 2012). However, supervised learning methods
have limited application in real-world settings, since they
require labeled samples for training or separate meters for
each appliance, both of which are expensive to obtain.

Unsupervised disaggregation shows more promise in
real-world implementation (Zoha et al. 2012), but existing
methods have different limitations. AFAMAP (Kolter and
Jaakkola 2012) requires at least one instance of an appliance
to be observed in isolation, meaning appliances that never
occur in isolation will never be discovered. Temporal Mo-
tif Mining (Shao, Marwah, and Ramakrishnan 2013) limits
event sequence lengths to 3 or less, restricting discovery to
simple appliances under ideal sampling conditions. (Parson
et al. 2012) proposed an iterative approach to appliance dis-
covery, but it requires initial models of appliance types and
can only disaggregate a few appliances with large signatures.

A Review of Unsupervised Disaggregation

Unsupervised disaggregation consists of at least two distinct
steps: event detection and episode discovery. Event detec-
tion first segments the aggregate power data stream into sig-
nificant events. Each event corresponds to an appliance state
transition, such as a light turning on or off, or a TV changing
its brightness. Episode discovery then uses these detected
events to discover appliances. Figure 1 shows an example.

While the focus of this paper is on episode discovery, it
is worth noting that detecting events from real-world appli-
ances is a nontrivial problem. Figure 1 spans 35 minutes,
meaning all events may appear abrupt at first glance due to
the scale. However, each event has a different shape and dif-

ferent duration before power draw becomes steady again.
Background noise also varies significantly. Some states in
Figure 1 have minimal noise, while others have large vari-
ations in noise, such as the interval between events e12 and
e13. Finally, the time between events also varies, amplifying
the challenge of detecting events. Event detection methods
are further detailed in the Experimental Setup section, and
we focus the remainder of the paper on episode discovery.

Definitions

Given an aggregate time sequence T of real power obser-
vations, an event is a timestamp ei ∈ R

+ identifying a
state change in the aggregate power data stream. The se-
quence of detected events e1, e2, ..., en for T is chronolog-
ically ordered. The sequence p1, p2, ..., pn details the asso-
ciated changes in real power for each event, where pi ∈ R

denotes each change in real power associated with event ei.
An episode E = (en1

, en2
, ..., enL

) is a short subse-
quence of detected events, where n1, n2, ..., nL is a strictly
increasing sequence in N. This is similar to the data mining
definition (Mannila, Toivonen, and Verkamo 1995; 1997),
but in this context an episode must be a serial episode, mean-
ing events occur sequentially in a specific order.

An appliance cycle is a set of state changes for a single ap-
pliance where the appliance’s power draw begins and ends
at 0 watts. A valid episode is one that has been validated
through axiomatic constraints (detailed later) to be an appli-
ance cycle. A candidate episode is an episode that has not
been tested to see if it is valid; in other words, it may or may
not be valid sequence of events from an appliance cycle.

Search Complexity and Existing Limitations

Given a sequence of detected events e1, e2, ..., en, the goal
in unsupervised disaggregation is to reconstruct appliances
from these events. Previous attempts have been limited to
appliances that happen to occur entirely in isolation (Kolter
and Jaakkola 2012) or use brute force search to explore pos-
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sible episodes and cannot identify episodes with more than
3 events (Shao, Marwah, and Ramakrishnan 2013).

For a sequence of detected events of length n, there are(
n
L

)
possible subsequences of length L that preserve the or-

der of the original sequence. Generally, L << n, since ap-
pliance event sequences tend to be short. Even so, there is an
exponential increase in the number of candidate episodes as
L increases. While the 19 events in Figure 1 are a relatively
small number (Figure 1 spans only 35 minutes), there are(
19
2

)
= 171 candidate episodes of length 2,

(
19
3

)
� 1,000 can-

didates of length 3, and
(
19
5

)
> 11,000 candidates of length

5. Often the number of detected events will be much larger.
Furthermore, computing resources in electricity disaggre-

gation are extremely limited. To reduce waste, any disaggre-
gation algorithm must run in real time on inexpensive, low
power hardware. This leads us to iterative discovery.

Iterative Episode Discovery

Approach and Key Concepts

Iterative appliance discovery, which we will refer to inter-
changeably as iterative episode discovery, is based on two
intuitive concepts that are used to intelligently generate can-
didate episodes and avoid brute force search complexities.

First, the difficulty of discovering an appliance depends
on its complexity. Simpler appliances are easier to discover
than complex ones. Type I appliances, such as lights and
toasters, are the simplest since they only have 2 states: ON
and OFF. More complex type II appliances have multiple
discrete states, such as a pump or fan with LOW, MEDIUM,
and HIGH settings. Type III appliances such as dimmer
switches, TVs, and computers have a continuous number of
states and are the hardest to discover (Zoha et al. 2012).

While our approach does not rely on these different types
of appliances, it is natural to observe that identifying sim-
pler appliances first is easier than identifying complex appli-
ances. Simpler appliances tend to be shorter in duration and
have less variation in power changes than complex ones.

Second, events that are temporally close are more likely
to come from the same appliance than events that occur far
apart. In the ideal case, all of the events associated with an
episode occur in isolation, such as (e3, e4) and (e16,e17) in
Figure 1. In general, (ei, ei+1, ..., ei+L−1) represents an iso-
lated episode of length L starting at event ei.

However, an appliance’s operation will often not be iso-
lated and will overlap with other appliances. Given a valid
episode from a single appliance, we refer to events pro-
duced by other appliances as external events. For example,
the episode (e10,e11,e14,e18,e19) in Figure 1 has 5 external
events: e12, e13, e15, e16, and e17. Episodes with fewer ex-
ternal events are combinatorially easier to discover, and, in
general, are more likely to come from a single appliance.

Axiomatic Constraints for Episode Validation

To test for validity, we adopt two axioms from (Shao, Mar-
wah, and Ramakrishnan 2013) that are physical require-
ments for any appliance cycle. The axioms below test a can-
didate episode E = (en1 , en2 , ..., enL

) of length L with
associated power changes P = (pn1

, pn2
, ..., pnL

). Here,

n1, n2, ..., nL is a strictly increasing sequence of natural
numbers denoting the events in the candidate episode.

Axiom 1 (φ1): Conservation of Power. Since the power
draw for any appliance cycle must begin and end at 0 watts
(as defined in the Definitions section above), the sum of all
associated powers of any valid episode must be zero. This
is a physical property of any cycle of any appliance (Shao,
Marwah, and Ramakrishnan 2013; Haasz and Madani 2014).
Any candidate episode with a nonzero power sum represents
an incomplete cycle for a single appliance or contains events
from more than one appliance and, as such, is not valid. For
example, the power sequence (+250, +300, -550) is a valid
episode since it sums to zero, whereas (+400, -250) is not
valid since it has a nonzero sum.

In practice, there is noise in the power values associated
with detected events, meaning they will never sum to exactly
zero. As such, we mask this noise through a power threshold
ν to obtain the formal definition of φ1 in the equation below.
We discuss the impact of ν in the Algorithm section below.

Given : P = (pn1 , pn2 , ..., pnL
) | pni ∈ R

φ1(P ) =

{
True, if |pn1

+ pn2
+ ...+ pnL

| ≤ ν

False, otherwise

Axiom 2 (φ2): Positive Prefix Sum. The second axiom
required for a valid episode is that any sum of a prefix of its
power changes must be positive. This captures the property
that an appliance’s power draw can never be negative, since
appliances consume power, they never produce it.

φ2(P ) =

{
True, if (

∑ni

j=1 pj) > 0 ∀i ∈ [1, L− 1]

False, otherwise

Axiom 3 (φ3): Minimum Event Power. A third axiom,
minimum event power, was also introduced by (Shao, Mar-
wah, and Ramakrishnan 2013), which forced any power
change in a valid episode to be 10% of its overall power.

We omit φ3 as a constraint since it inhibited episode dis-
covery for three reasons. First, as the length of an episode
increases, the power change associated with each of its
events represents a diminishing percentage the episode’s
total power changes. Second, φ3 is not a physical prop-
erty required for appliances. Finally, this constraint actually
prevents the discovery of some episodes, since some high
power appliances have small power changes between states.

Iterative Episode Discovery Algorithm

We now detail iterative episode discovery in Algorithm
1. It begins with each event’s associated power changes
p1, p2, ..., pn, max episode length (Lmax), max horizon win-
dow (Wmax), and a power threshold (ν) for axiom φ1.

The algorithm first initializes empty lists for candidate
episodes (Ecand) and valid episodes (Evalid) (Line 1) and
sets the length of episodes to the minimum number possi-
ble, L = 2 (Line 2). An episode of length L = 2 would
indicate a Type I appliance turning ON and OFF.
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Algorithm 1: Iterative Episode Discovery
Input: Event Power Changes p1, p2, ..., pn,

Max Episode Sequence Length Lmax,
Max Window Wmax, Power Threshold ν

Output: Valid Episodes Evalid

1 Ecand,Evalid = {}
2 L = 2
3 while L ≤ Lmax do
4 W = L
5 while W ≤ Wmax do
6 for i = 1 to n−W + 1 do
7 Ecand = Candidate episodes of length L

in the interval [pi, pi+W−1]
8 foreach P = (pn1 , ..., pnL

) ∈ Ecand do
9 if (φ1(P )AND φ2(P )) then

10 Add (pn1 , pn2 , ..., pnL
) into

Evalid

11 Mark pn1
, pn2

, ..., pnL
as used

12 Ecand = {}
13 W = W + 1

14 L = L+ 1

15 Return Evalid

Next, the algorithm sets the horizon window, W , to the
episode length L (Line 4). Using each possible starting event
pi, it generates unexplored episodes of length L in the inter-
val [pi, pi+W−1] and saves them in Ecand (Lines 6-7).

Each episode in Ecand is tested for validity (Line 9) using
axioms φ1 and φ2, described earlier. If valid, the episode is
added to Evalid (Line 10), and its events are marked as used
so they are not included in any other episode (Line 11).

The horizon window W is progressively increased (Line
13), allowing for an increasing number of external events.
Once Wmax is reached, the sequence length L is then incre-
mented (Line 14) to search for episodes of 1 longer event
sequence length, and W is reset to W = L (Line 4). The
algorithm is complete once L exceeds Lmax, and it returns
the list of discovered episodes Evalid (Line 15).

During episode validation, it is possible for multiple
episodes containing the same event to be valid, meaning dif-
ferent valid episodes could be discovered depending on the
order they are tested. We observed this to be rare in our ex-
periments and visited the episodes in the same order (sorted
by starting event(s)) to ensure deterministic computation.

Iterative discovery has O(n2) complexity, the same as
brute force, since any candidate episode is generated at most
once. In practice, however, iterative discovery is signifi-
cantly faster since it progressively removes events, rapidly
shrinking the search space as the example below illustrates.

Example of Iterative Discovery

Consider the detected events e1, ..., e19 in Figure 1 with
Lmax = 5 and Wmax = 5. Iterative discovery starts search-
ing for episodes of length L = 2 using a window size of
W = 2. This generates 18 candidate episodes: {(e1, e2),

(e2, e3), ..., (e18, e19)}. Iterative discovery tests each candi-
date using φ1 and φ2 and finds 4 valid episodes: {(e3, e4),
(e6, e7), (e12, e13), (e16, e17)}. It marks these 8 events so
they are not included in future candidates, leaving 11 events.

Iterative discovery next increments W to W = 3. Since
events e2 and e8 are only separated by a single event now
(event e5), it discovers the valid episode (e2, e8). Similarly,
when W = 4, it finds (e1, e9). There are no more events
of length L = 2, and iterative discovery stops searching for
events of length L = 2 when W = 5 (i.e. W = Wmax). At
this point, 6 valid episodes have been discovered, 12 of the
19 events have been marked as used, and 7 events remain for
exploration of episodes of length L = 3 or more.

Iterative discovery will next search for episodes of length
L = 3, progressively incrementing W . It finds no valid
episodes of length L = 3 since there are none in this ex-
ample. Similarly, it won’t find any valid episodes of length
L = 4, but once it reaches L = 5, the algorithm will dis-
cover the episode (e10,e11,e14,e18,e19).

We omit the number of episodes generated for brevity, but
it can be shown that iterative discovery generates only 79
candidates to find all valid episodes of length L ≤ 5. In con-
trast, brute force search generates over 16,000 candidates.

Parameter Settings

We experimented with multiple parameter settings for Al-
gorithm 1. For the maximum episode length, Lmax, we
found diminishing returns for Lmax > 5, since episodes
of length 6 or more are rare even for high sampling rates.
The max horizon window, Wmax, is challenging to opti-
mize. Events do not occur at regular intervals, meaning a
fixed Wmax corresponds to different time intervals at dif-
ferent points in the event sequence. We experimented in the
range Wmax ∈ [5, 30], and set Wmax = 20 in our results
below. For the power threshold, we used a grid search to
explore ν ∈ [5, 100] watts in increments of 5 watts. The op-
timal ν varied for each house between 5 and 25 watts.

Appliance Reconstruction

Previously introduced unsupervised methods cluster de-
tected events (Gonçalves et al. 2011) or steady-state power
levels (Shao, Marwah, and Ramakrishnan 2013) prior to
episode discovery. In contrast, iterative discovery does no
clustering prior to episode discovery and instead associates
discovered episodes together to form individual appliances.

For two episodes to be equivalent, they must first have the
same length. Second, the average pairwise relative differ-
ence between each power change must be less than a spec-
ified threshold. All equivalent episodes are associated with
the same appliance. We found the best results with a rel-
ative difference threshold of 1%. Complex appliances can
have varying cycle lengths or different power changes for the
same cycle, limiting the accuracy of this approach, but these
are challenges for any method. Note that an unsupervised
method will not know the underlying label of any appliance
(i.e. ‘dishwasher’) it discovers unless it receives such labels
from the user. For our evaluations below, we associated each
discovered appliance with the closest labeled appliance.
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Figure 2: Precision, recall, and F-measure for iterative discovery (I.D. - in blue) and modified motif mining (M.M.M. - in red)
using the BLUED dataset. Dotted lines show performance using ground truth events and Bayesian change detected events at
1 Hz, 10 Hz, and 60 Hz, while the solid lines show the average over all 4 sets of detected events. Due to its brute force search,
modified motif mining did not return results for episodes of length 4 or 5 within the allotted time frame.

Experimental Setup

Publicly Available Datasets

The performance of any unsupervised disaggregation
method will vary depending on the number of appliances in
the aggregate data stream, each appliance’s complexity, and
the sampling rate used to measure real power. As such, we
use two publicly available, heavily cited datasets containing
147 appliances in 7 houses for empirical evaluation.

BLUED: The Building-Level fUlly-labeled dataset for
Electricity Disaggregation (BLUED) contains power mea-
surements sampled at 60 Hz over a period of 1 week for
a single house with 43 appliances (Anderson et al. 2012a).
BLUED is unique since it has gone through manual post-
processing to establish ground truth event data. In addition
to ground truth, we also use events detected by Bayesian
change detection (Adams and MacKay 2007; Valovage and
Gini 2017) at sampling rates of 1 Hz, 10 Hz, and 60 Hz to
measure the impact of sampling rates on episode discovery.

REDD: The Reference Energy Disaggregation Dataset
(REDD) contains real power measurements for six houses
(Kolter and Johnson 2011). REDD lacks ground truth events
and instead records power for each appliance/circuit.

REDD is a more challenging dataset than BLUED. First,
power is recorded at lower sampling rate (0.25 Hz). Second,
some appliances were recorded over the same circuit, such
as Kitchen outlets, Outdoor outlets, and Outlets unknown.
With these circuits, it’s possible for a method to correctly
separate two signals from different appliances but produce
lower accuracy since they were recorded on the same meter.

Event Detection

Event detection is required to segment the aggregate power
data stream prior to episode discovery. Previously intro-
duced event detection methods include clustering meth-
ods such as Dirichlet Process Gaussian Mixture Models

(Shao, Marwah, and Ramakrishnan 2013) to change detec-
tion methods such as modified Greatest Likelihood Ratio
(Anderson et al. 2012b). We use Bayesian change detection
(Adams and MacKay 2007) since it is robust to noise and
does not require parameter tuning (Valovage and Gini 2017).

Comparison Method

We compare iterative appliance discovery to temporal motif
mining (TMM) (Shao, Marwah, and Ramakrishnan 2013).
While other methods are limited to discovering appliances
in isolation (Kolter and Jaakkola 2012) or are only designed
to find Type I appliances (Gonçalves et al. 2011), TMM has
the ability to identify overlapping episodes of any appliance
without pre-existing models, similar to iterative discovery.
TMM generates candidate episodes up to length 3 by brute
force and tests for validity using the axioms listed above.
For fairest comparison with identical assumptions for both
methods, we implemented modifications to TMM and refer
to the resulting method as modified motif mining (MMM).

MMM’s modifications are as follows. First, we replaced
TMM’s event detection approach of Dirichlet Process Gaus-
sian Mixture Models (DPGMM) with Bayesian change de-
tection to detect events and genetic k-means to cluster them,
since we observed numerous false positives from DPGMM
(Valovage and Gini 2017). Second, we omitted axiom φ3 for
the reasons listed earlier. Third, we do not assume the num-
ber of appliances is known a priori, as this assumption is
unrealistic. Finally, we did not apply median filter smooth-
ing as (Shao, Marwah, and Ramakrishnan 2013) used dif-
ferent window sizes for different appliances, an unrealistic
assumption when appliances are not known a priori.

Note the MMM results below are not directly comparable
to TMM, particularly since (Shao, Marwah, and Ramakrish-
nan 2013) only ran their results on house H1 from the REDD
dataset and built synthetic aggregate data streams from ran-
domly generated subsets of only 14 of the 18 appliances,
making it impossible to directly recreate their results.
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Figure 3: Performance of iterative discovery (I.D. - in blue) and modified motif mining (M.M.M. - in red) using the REDD
dataset. Dotted lines show performance on houses H1 through H6 in the dataset, while the solid lines show the average of each
method across all houses. Modified motif mining did not complete for episode lengths larger than 3 in the allotted time.

Allotted Runtime

For each house, we allowed each method to run for 24 hours
on a conventional laptop. Modified motif mining did not fin-
ish for episode lengths longer than 3, while iterative discov-
ery completed in under 5 hours for lengths up to 5.

Performance Metrics

We use two metrics to compare the performance of iterative
discovery and modified motif mining. The first metric is F-
Measure using disaggregation for each time step. We use the
approach to measure true positives (ΨTPi), false positives
(ΨFPi), and false negatives (ΨFNi) as a portion of power at
each time step as originally proposed by (Shao, Marwah, and
Ramakrishnan 2013) and use their same parameter settings
of θ = 30 and ρ = 0.2. For appliance Ai, F-Measure is
defined through precision and recall in the equations below.

Prec.(Ai) =
ΨTPi

ΨTPi +ΨFPi
Recall(Ai) =

ΨTPi

ΨTPi +ΨFNi

F Measure(Ai) =
2

1
Precision(Ai)

+ 1
Recall(Ai)

The second metric, total power consumed, compares the
estimated power used by each appliance with the total actual
power used. Total power consumed can mask errors, but is
useful to report to consumers (Kolter and Johnson 2011).

Results

Results on the BLUED Dataset

Figure 2 displays the results on BLUED obtained by itera-
tive discovery and modified motif mining using the ground
truth detected events and Bayesian change detection events
at 1 Hz, 10 Hz, and 60 Hz. Motif mining was only able to
complete searches for episodes of length 2 and 3 within the
allotted time due to its brute force search. This is unsurpris-
ing, as the number of candidate episodes was nearly 1014 for

Figure 4: REDD F-Measure by appliance. In general, itera-
tive discovery found more appliances than motif mining.

some of the event sequences. In contrast, iterative discovery
found episodes up to length 5 well within the allotted time.

Both methods performed best when using BLUED’s
ground truth events. This is expected, since this is the best
possible input data for any episode discovery method, as
there are minimal errors in the ground truth events.

Using events detected by Bayesian change detection, per-
formance was highest for both methods at the 1 Hz sampling
rate and lowest at 60 Hz. This occurs because higher sam-
pling rates produce more detected events with larger varia-
tions. This produces false positives from candidate episodes
that happen to fit axioms φ1 and φ2, but actually contain
events from different appliances. False positives can also
create more false negatives, since an actual episode contain-
ing an event that has been used can’t be discovered.

Iterative discovery experienced a decrease in performance
when searching for episodes of lengths 4 and 5. In BLUED’s
ground truth events, there are no episodes of length longer
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REDD Motif Ground Iterative Color Legend REDD Motif Ground Iterative
House Mining Truth Discovery House Mining Truth Discovery

H1 H4

H2 H5

H3 H6

Figure 5: Pie charts showing the estimated and actual energy consumed for each house in REDD. Ground Truth columns show
the actual energy consumed, while the Iterative Discovery and Motif Mining columns show the estimated energy usage using
each method. Estimations from both methods contained roughly the same error for houses H2 and H3. Iterative discovery’s
estimations are more accurate for houses H1, H4, H5, and H6, where it correctly identified more episodes and appliances.

than 3, and even for higher sampling rates, episodes of these
lengths are rare compared to false positives generated. Over-
all, iterative discovery found longer episodes and performed
as well as or better than modified motif mining on BLUED
using less computation time.

Results on the REDD Dataset

Figure 3 shows precision, recall, and F-measure for the 6
houses in the REDD dataset along with the average perfor-
mance across all houses. Performance for both methods was
significantly lower than on BLUED due to the challenges
the REDD dataset poses to unsupervised disaggregation de-
scribed above. Low precision was caused by multiple false
positives, since both methods incorrectly combined some
events from different appliances into episodes. Recall was
better, particularly on house H2 which is expected, as house
H2 has 9 appliances, the fewest of any house in REDD.

Iterative discovery performed better than modified motif
mining with episodes of length 2 and 3. When the search
was expanded to episodes of length 4 and 5, this increased
the F-measure of iterative discovery on average, while motif
mining was unable to complete its search in the allotted time.

We note that the original temporal motif mining was only
run on house H1 in REDD. Modified motif mining imple-
mented here on house H1 achieved precision, recall, and F-
measure around 0.2, similar to the performance reported in
(Shao, Marwah, and Ramakrishnan 2013).

Figure 4 breaks down performance of each method by ap-
pliance type for the entire REDD dataset. Iterative discovery
identified continuously variable Type III appliances, such as
furnaces, dishwashers, appliances plugged into kitchen out-
lets, washers, and dryers with greater F-measure than motif
mining. These are the most difficult to discover since their
power draw varies over an infinite number of states (Zoha
et al. 2012). Iterative discovery also found appliances motif
mining could not, including the subpanel in H5, air condi-

tioners in H4 and H6, and disposals in H2, H3, and H5.
Finally, Figure 5 shows actual power consumed by ap-

pliance for each house and estimates produced by iterative
discovery and modified motif mining. The error in these esti-
mations varies but is roughly the same for both methods for
houses H2 and H3, while iterative discovery’s estimations
for houses H1, H4, H5, and H6 tend to be more accurate.

In house H1, motif mining attributes the vast majority of
used power to the 3 light sets in the house. This happens
for 2 reasons. First, motif mining discovers a disproportion-
ate number of episodes for the lights in H1 compared to the
other appliances. Second, these discovered episodes include
numerous false positives. This also occurs in H4 and H5
to a lesser extent. Iterative discovery suffers less from this
and is also able to correctly find more episodes from ap-
pliances like the stove, washer-dryer, and dishwasher in H4
and the subpanel in H5. In H6, motif mining had unallocated
power due to fewer false positives relative to the number of
episodes discovered, resulting a significant portion of power
that could not be attributed to any single appliance.

In summary, Figures 3-5 show iterative discovery pro-
duced better results than motif mining with less computation
time. While accuracy of the total power estimates from iter-
ative discovery is limited, we are not aware of better results
obtained through learning that is completely unsupervised
with no prior models or assumptions.

Conclusions and Future Work

This paper has introduced iterative appliance discovery, the
first appliance discovery technique that can identify appli-
ances overlapping in operation in an unsupervised manner
with no appliance models. Identifying the simplest appli-
ances first allows for better accuracy, faster computation,
and scalability to unprecedented sequence lengths.

Iterative discovery could be expanded to power sources,
such as solar panels and batteries like the Telsa Powerwall,
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by modifying axiom 2 to allow for negative prefix sums pro-
duced when such systems generate power. For widespread
deployment, further work is also needed to automatically
tune parameters and enable effortless setup for consumers.
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view of systems and technologies for smart homes and smart
grids. Energies 9(5):348.
Malik, F. H., and Lehtonen, M. 2016. A review: Agents in
smart grids. Electric Power Systems Research 131:71–79.

Mannila, H.; Toivonen, H.; and Verkamo, A. I. 1995. Dis-
covering frequent episodes in sequences extended abstract.
In 1st Conference on Knowledge Discovery and Data Min-
ing.
Mannila, H.; Toivonen, H.; and Verkamo, A. I. 1997. Dis-
covery of frequent episodes in event sequences. Data mining
and knowledge discovery 1(3):259–289.
Parson, O.; Ghosh, S.; Weal, M. J.; and Rogers, A. 2012.
Non-intrusive load monitoring using prior models of general
appliance types. In AAAi.
Shaloudegi, K.; György, A.; Szepesvári, C.; and Xu, W.
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