
Dependence Guided Unsupervised Feature Selection

Jun Guo,1 Wenwu Zhu1,2

1 Tsinghua-Berkeley Shenzhen Institue, Tsinghua University, Shenzhen 518055, China
2 Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

eeguojun@outlook.com, wwzhu@tsinghua.edu.cn

Abstract

In the past decade, various sparse learning based unsupervised
feature selection methods have been developed. However,
most existing studies adopt a two-step strategy. i.e., select-
ing the top-m features according to a calculated descending
order and then performing K-means clustering, resulting in a
group of sub-optimal features. To address this problem, we
propose a Dependence Guided Unsupervised Feature Selec-
tion (DGUFS) method to select features and partition data
in a joint manner. Our proposed method enhances the inter-
dependence among original data, cluster labels, and selected
features. In particular, a projection-free feature selection model
is proposed based on l2,0-norm equality constraints. We uti-
lize the learned cluster labels to fill in the information gap
between original data and selected features. Two dependence
guided terms are consequently proposed for our model. More
specifically, one term increases the dependence of desired
cluster labels on original data, while the other term maxi-
mizes the dependence of selected features on cluster labels
to guide the process of feature selection. Last but not least,
an iterative algorithm based on Alternating Direction Method
of Multipliers (ADMM) is designed to solve the constrained
minimization problem efficiently. Extensive experiments on
different datasets consistently demonstrate that our proposed
method significantly outperforms state-of-the-art baselines.

1 Introduction

In many applications, high-dimensional features are often
correlated, redundant, or even noisy, which may lead to ad-
verse effects such as heavy computational complexity and
poor performance (John, Kohavi, and Pfleger 1994; Liu and
Motoda 2007). Therefore, various feature selection meth-
ods (Zhao and Liu 2007; He et al. 2012; Chang et al. 2014;
Wang et al. 2016; Han and Shen 2016; Li, Tang, and Liu 2017;
Cheng, Li, and Liu 2017) are proposed to filter out the unim-
portant features of high-dimensional data.

In terms of label availability, feature selection can be gen-
erally grouped into two major categories, i.e., supervised and
unsupervised (Kira and Rendell 1992; Kononenko 1994).
Supervised feature selection (Raileanu and Stoffel 2004;
Yang et al. 2013; Jian et al. 2016; Fan et al. 2017) aims
to select a group of discriminative features with the provided
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class labels of data which contain the essential discrimina-
tion. Supervised feature selection methods have drawn much
attention over the past decade. However, the acquisition of
label information is laborious and time-consuming, which
makes some related tasks more challenging. In contrast, un-
supervised feature selection (Law, Figueiredo, and Jain 2004;
Boutsidis, Drineas, and Mahoney 2009; Witten and Tibshi-
rani 2010) is desired to explore the properties of unlabeled
data in real-world applications.

Most unsupervised feature selection methods are based on
filters (Dash et al. 2002), wrappers (Roth and Lange 2004),
or embedding (Hou et al. 2014; Guo et al. 2017). In the past
decade, the success of manifold and sparse learning boosts
the research of embedding-based unsupervised feature se-
lection. To achieve encouraging performance, most existing
studies on embedding methods introduce pseudo-labels into
l2,1-norm based sparse learning and emphasize too much
on the resulting optimization problem. They usually adopt
a two-step strategy. After the overall sparse learning, these
unsupervised feature selection methods first calculate the
importance for each feature dimension based on some pre-
defined variables, e.g., Laplacian score (He, Cai, and Niyogi
2005), row/column-wise l2-norm of the latent feature ma-
trix (Wang, Tang, and Liu 2015) or projection matrix (Nie,
Zhu, and Li 2016). Next, a score vector can be obtained and
then sorted in descending order. Accordingly, previous works
select the top-m features to conduct K-means clustering.

However, this two-step strategy for unsupervised feature
selection will select a group of sub-optimal features. The
main reasons and analyses are two-folds:

• These methods do not directly select m features in the
optimization process. Feature selection aims to determine
a subset of m features from d (d > m) features, and the
selected subset should outperform other Cm

d − 1 subsets1.
The two-step strategy evaluates the importance for all d
features, then selects the top-m sorted ones. It is obviously
unreasonable to select m features without removing the
information of other d−m features in the learning phase.

• The two-step strategy suppresses the inter-dependence
among original data, cluster labels, and selected features.
From a general perspective, the three aspects are naturally

1Cm
d denotes the number of m-combinations from a given set

of d elements.
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(a) Existing sparse learning based unsupervised feature
selection methods.

(b) Our proposed DGUFS method.

Figure 1: Most existing sparse learning based unsupervised feature selection methods adopt a two-step strategy, hence they
cannot prevent selecting sub-optimal features. In response to this issue, our proposed Dependence Guided Unsupervised Feature
Selection (DGUFS) method provides a joint learning framework.

interrelated since they are different carriers for category
information. Original data contains all the category infor-
mation implicitly, so we need to fully exploit it. Cluster
labels are the direct form of category information, but they
are not given in unsupervised cases. Selected features are
the distillation of original data, which should be generated
with large inter-cluster differences. Therefore, it is neces-
sary to explore the inter-dependence among them in a joint
framework, but not in a two-step way.

This paper makes a beneficial attempt to address these
problems. We propose a method called Dependence Guided
Unsupervised Feature Selection (DGUFS) to select features
and partition data in a joint manner. Our method consists of
three components. First of all, l2,0-norm equality constraints
are introduced to present a projection-free feature selection
model. Different from previous sparse learning based meth-
ods involving l2,1-norm, the parameter m (i.e., the number of
selected features) is explicitly present in our model. In such a
way, an exact number of features can be directly selected. Fur-
thermore, we propose two dependence guided terms. Specifi-
cally, one term increases the dependence of desired cluster
labels on original data, while the other term maximizes the
dependence of selected features on cluster labels to guide the
process of feature selection. Based on Alternating Direction
Method of Multipliers, we design an effective algorithm to
solve the constrained minimization problem. Comparative
experimental analysis on several benchmark datasets demon-
strates that our proposed method outperforms state-of-the-art
sparse learning based unsupervised feature selection meth-
ods.

In summary, our main contributions are as follows:

• A joint learning framework for feature selection and clus-
tering is proposed. Our model is projection-free based on
l2,0-norm equality constraints.

• Two dependence guided terms are consequently designed
for our model. Then, original data, cluster labels, and se-
lected features are intimately intertwined.

• An iterative algorithm is designed to efficiently solve the re-
sulting optimization problem. Extensive experiments con-
vincingly demonstrate the superiority of DGUFS.

2 Related Work

In (Cai, Zhang, and He 2010), feature selection preserved the
multi-cluster structure of unlabeled data. Yang et al. (2011)
defined local discriminative scores with an l2,1 regularizer.
In (Li et al. 2012), feature correlations, local discriminative
information, and manifold structures were exploited simul-
taneously. Qian and Zhai (2013) jointly performed robust
learning for both labels and features. In (Wang, Tang, and
Liu 2015), feature selection was embedded into sparse learn-
ing without projection. By estimating latent cluster centers
for the projected data, Han and Kim (2015) conducted si-
multaneous orthogonal basis clustering and feature selection.
Wang et al. (2015) simultaneously maximized the total data
separability and preserved minimum within-class scatter. In
(Zhu et al. 2016), synthesis-analysis dictionary pair was used
for unsupervised feature selection. Liu et al. (2016) utilized
consensus clustering for pseudo-label in feature selection. In
(Du and Shen 2015) and (Nie, Zhu, and Li 2016), the simi-
larity matrix was learned adaptively in the joint framework
of feature selection and structure learning. Zhu et al. (2017)
learned an adaptive hypergraph to exploit the structure of
unlabeled data when selecting features.

Actually, there are still a lot of works on this topic not men-
tioned due to 8-page limitation. Despite good performance,
these methods cannot prevent selecting sub-optimal features
as analyzed in §1.

3 The Proposed DGUFS Method

3.1 Notation and Problem Definition

Except in some specified cases, lowercase letters (u, · · ·)
represent scalars. Bold uppercase letters (U, · · ·) denote
matrices, while bold lowercase letters (u, · · ·) are vectors.
Tr (U), rank (U), U−1, and UT denote the trace, rank,
inverse, and transpose of U, respectively. Ui· presents the
ith row of U and U·j is the jth column of U. Uij means
the ith element in the jth column of U. ‖U‖F and ‖U‖0
denote the Frobenius-norm (

√∑
i,j U

2
ij) and l0-norm (num-

ber of non-zero entries), respectively. ‖U‖2,0 is the l2,0-norm

(
∑

i

∥∥∥√∑
j U

2
ij

∥∥∥
0
). U � 0 means that the symmetric matrix
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U is positive semi-definite2. I and 1 denote the identity and
all-one matrix with compatible sizes, respectively. diag (·)
has two meanings: for a vector u, diag (u) returns a diagonal
matrix with the elements of u on the main diagonal; for a
square matrix U, diag (U) returns a diagonal matrix with
the same main diagonal elements as U.

Let X = [x1, · · · ,xn] ∈ R
d×n be the original data matrix

with n samples from c clusters. V = [v1, · · · ,vn] ∈ R
c×n

denotes the cluster label matrix of X. Each column of V is
a one-hot label vector: vi = [0, 0, · · · , 1, · · · , 0, 0]T , whose
non-zero position indicates the cluster label of xi. Figure 1
provides a basic example of the original data matrix X and
selected features Y, where n = 6, d = 5, m = 2, and c = 3.
Samples x1 and x5 are from cluster 1, x2 and x3 are from
cluster 2, x4 and x6 are from cluster 3.

Problem Definition: In the joint task of feature selection
and clustering, we aim to select m (m < d) most discrimina-
tive features whose learned pseudo-label indicators are much
closer to the true cluster labels. Therefore, the problem can
be generally formulated as

min
Y,V

J (X,V,Y)

s.t. Y = diag (s)X, V ∈ Ω,

s ∈ {0, 1}d, sT1d = m,

(1)

where J (X,V,Y) is a discrimination promotion function.
Ω is the candidate set of cluster label matrices that can exactly
partition data into c groups.

3.2 l2,0-norm Based Projection-free Model

The two constraints imposed on s make Eq.(1) a mixed inte-
ger programming problem which is difficult to solve. Con-
ventional sparse learning based methods employ a projection
matrix P and design a loss term �

(
PTY,V

)
. Consequently,

P and diag (s) are in the form of PT diag (s). Note that s is a
binary vector and only (d−m) rows of diag (s) are all zeros.
PT diag (s) has (d−m) all-zero columns. Most existing un-
supervised methods introduce a new matrix W = diag (s)P
and impose an l2,1-norm regularizer or constraint on W to
encourage a relaxed version of Eq.(1). This relaxation leads
to a two-step manner, i.e., first using learned variables to
calculate a score vector based on l2,1-norm, then selecting
the top-m sorted features and performing K-means cluster-
ing. Therefore, it is sub-optimal for not directly selecting m
features in the optimization process.

Different from the above relaxation strategy in previous
works, we explicitly utilize l2,0-norm equality constraints to
propose a projection-free model (2). In such a way, an exact
number of features can be directly selected. We rewrite Eq.(1)
as3

min
Y,V

J (X,V,Y)

s.t. ‖X−Y‖2,0 = d−m, ‖Y‖2,0 = m, V ∈ Ω.
(2)

Compared with previous l2,1-norm based works, our pro-
posed model (2) is free of sparse projection. The parameter

2Conventionally, definiteness is not for asymmetric matrices.
3In practice, it is often the case that the original data X does not

have all-zero rows. Therefore, Eq.(1) and (2) are equivalent.

m in our model has an explicit meaning, i.e., the number
of selected features. Hence, our method has superiority of
selecting an exact number of features.

To enhance the inter-dependence among original data
X, learned cluster labels V, and selected features Y, two
dependence guided terms are consequently developed for
the objective function, i.e., J (X,V,Y) = βJ1 (X,V) +
(1− β) J2 (V,Y), where β ∈ (0, 1) is a regularization pa-
rameter. We put the detailed descriptions of dependence
guided terms J1 and J2 in the following two subsections.

3.3 Dependence Guided Term J1
To increase the dependence of desired label matrix V on
the original data X, we design J1 based on the geometrical
structure and discriminative information of data.

Geometrical structure of data: For n original samples
x1, · · · ,xn, a similarity matrix S ∈ R

n×n is constructed.

Sij =

{
1 , j ∈ Ni or i ∈ Nj

0 , otherwise , (3)

where Ni is a set of indexes indicating the k nearest neigh-
bours of xi. It is well-known that samples within the same
cluster are close to each other while samples from different
clusters are far away. Sij = 0 indicates that xi and xj are
completely dissimilar, and thus may have different labels,
while Sij = 1 suggests that the two samples are likely to be
grouped into the same cluster.

Discriminative information of data: If xj belongs to
cluster i, Vij = 1 and the remaining entries of the jth col-
umn are zeros. L ∈ R

n×n denotes the linear kernel matrix
of V, i.e., L = VTV. Thus, if xi and xj belong to the same
cluster, Lij = vT

i vj = 1; otherwise, Lij = vT
i vj = 0.

Based on the above two observations, we propose to maxi-
mize Tr

(
STL

)
in order to keep L as close to the similarity

matrix S as possible. In some related studies, Tr
(
STL

)
is

formulated as 〈S,L〉, named Frobenius inner product. There-
fore, J1 = −Tr

(
STL

)
. Meanwhile, there are some mean-

ingful constraints imposed on L:
• From the preceding, we have L = VTV. Thus, the rank

of L is exactly the number of clusters: rank(L) = c.
• Then, L is symmetric and positive semi-definite: L � 0.

• Moreover, each element of L is binary: L ∈ {0, 1}n×n.
• Lastly, diag (L) = I. This constraint means that a sample

cannot be split into different clusters.

3.4 Dependence Guided Term J2
To maximize the dependence of selected features Y on the de-
sired label matrix V, we design J2 based on Hilbert-Schmidt
Independence Criterion (HSIC).

HSIC is a kernel-based dependence metric for random
variables (Gretton et al. 2005). It measures the dependence
between y and v by computing the Hilbert-Schmidt-norm
of the cross-covariance operator over the domain Y × V
in Reproducing Kernel Hilbert Spaces (RKHSs). Suppose
that Q and U are two RKHSs in Y and V , respectively.
Hence, by Riesz representation theorem, there are two fea-
ture mappings φ (y) : Y → R and ψ (v) : V → R,
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such that the kernel function K (y,y′) returns the inner
product φ(y)Tφ (y′) in Q, and L (v,v′) returns the inner
product ψ(v)Tψ (v′) in U . HSIC can be empirically esti-
mated in the RKHSs by a finite number of samples. Let
{(yi,vi)}ni=1 ⊆ Y × V denote n observations that are in-
dependently and identically drawn from the joint distribu-
tion PrY×V . Then, HSIC = 1

(n−1)2
Tr (KHLH), where

K,L,H ∈ R
n×n. Kij = K (yi,yj) and Lij = L (vi,vj).

H = I− 1
n1n1

T
n is the centering matrix4.

According to (Gretton et al. 2005), maximizing the empir-
ical estimate of HSIC will lead to the maximization of the
dependency between two random variables. In accordance
with §3.3, we adopt linear kernel matrix, i.e., K = YTY and
L = VTV. Therefore, J2 = −Tr

(
YTYHVTVH

)
.

3.5 Overall Model

Taking all together, the overall model of our proposed
DGUFS method is written as

min
Y,V

−βTr
(
STL

)− (1− β)Tr
(
YTYHVTVH

)
s.t. ‖X−Y‖2,0 = d−m, ‖Y‖2,0 = m,

V ∈ Ω, L = VTV, rank(L) = c,

L � 0, L ∈ {0, 1}n×n, diag (L) = I.

(4)

The meaningful constraints on L inspire us to solve L di-
rectly. As for V, we can adopt some classical algorithms to
decompose L at the end of optimization. We postpone the cal-
culation of V until next section. Since the rank (·) equality
constraint makes Eq.(4) difficult to solve, we have converted
it into a Lagrange multiplier. Based on these considerations,
we finally try to optimize

min
Y,L

−βTr
(
STL

)− (1− β)Tr
(
YTYHLH

)
+αrank(L)

s.t. ‖X−Y‖2,0 = d−m, ‖Y‖2,0 = m,

L � 0, L ∈ {0, 1}n×n, diag (L) = I,

(5)

where α > 0 is also a regularization parameter.

4 Optimization

4.1 Optimization Procedure

We can adopt Alternating Direction Method of Multiplier
(ADMM) (Boyd et al. 2011) to solve problem (5). By in-
troducing two auxiliary variables Z and M, Eq.(5) is first
rewritten as the following form:

min
Y,Z,M,L

−βTr
(
STL

)− (1− β)Tr
(
ZTYHLH

)
+αrank(L)

s.t. ‖X− Z‖2,0 = d−m, ‖Y‖2,0 = m, Z = Y,

L = M− diag (M) + I,

M ∈ {0, 1}n×n, L � 0.
(6)

The constraint L = M − diag (M) + I guarantees that
diag (L) = I. Besides, with the binary constraint imposed
on M, all elements of L are binary. Thus, the two constraints

4In the experiments, we absorb 1
n−1

into H as H = H
n−1

.

L = M − diag (M) + I and M ∈ {0, 1}n×n in Eq.(6)
are equivalent to the two constraints L ∈ {0, 1}n×n and
diag (L) = I in Eq.(5).

The augmented Lagrangian function of Eq.(6) is

min
Y,Z,M,L,Λ1,Λ2,μ

−βTr
(
STL

)− (1− β)Tr
(
ZTYHLH

)
+αrank(L) + Tr

[
ΛT

1 (Z−Y)
]

+Tr
[
ΛT

2 (L−M+ diag (M)− I)
]

+μ
2

(‖Z−Y‖2F + ‖L−M+ diag (M)− I‖2F
)

s.t. ‖X− Z‖2,0 = d−m, ‖Y‖2,0 = m,

M ∈ {0, 1}n×n, L � 0,
(7)

where Λ1 and Λ2 are two Lagrangian multipliers. μ > 0 is a
penalty parameter. Eq.(7) can be alternately optimized:

1) Update Y: With other variables fixed, we require to
solve the following problem:

min
Y

∥∥∥Y −
(
Z+ (1−β)ZHLH+Λ1

μ

)∥∥∥2

F
s.t. ‖Y‖2,0 = m.

(8)

It can be efficiently solved by the following Theorem (Luo,
Ding, and Huang 2010; Cai, Nie, and Huang 2013).

Theorem 1. The optimal solution of the optimization prob-
lem minY ‖Y −U‖2F , s.t. ‖Y‖2,0 = m takes the form

yπ(i) =

{
uπ(i) , i ≤ m
0 , i > m

, where yπ(i) and uπ(i) are the

π (i)
th rows of Y and U, respectively. π is the sorting index

vector such that
∥∥uπ(1)

∥∥
F
≥

∥∥uπ(2)
∥∥
F
≥ · · · ≥

∥∥uπ(d)
∥∥
F

.

Algorithm 1 can be utilized to obtain the optimal solution.
Apparently, if we let U = Z+ (1−β)ZHLH+Λ1

μ , then Y can
be updated by Algorithm 1.

2) Update Z: When other variables are fixed, we solve
the following problem:

min
Z

∥∥∥(X− Z)−
(
X−Y − (1−β)YHLH−Λ1

μ

)∥∥∥2

F
s.t. ‖X− Z‖2,0 = d−m.

(9)

The optimal (X− Z) can also be solved by Algorithm 1
with U = X−Y − (1−β)YHLH−Λ1

μ . The optimal Z can be
consequently acquired.

3) Update M: With other variables fixed, we solve

min
M∈{0,1}n×n

−Tr
[
ΛT

2 (M− diag (M) + I− L)
]

+μ
2
‖M− diag (M) + I− L‖2F .

(10)

According to the optimization rules in (Li, Cheong, and Zhou
2014), we can update M in two steps. Firstly, we solve

minM′∈{0,1}n×n

∥∥∥M′ −
(
L+Λ2

μ

)∥∥∥2
F
. The solution is ob-

tained by thresholding:

M′
ij =

⎧⎨
⎩

1 , if
(
L+Λ2

μ

)
ij

≥ 1
2

0 , if
(
L+Λ2

μ

)
ij

< 1
2

. (11)

Secondly, we update M = M′ − diag (M′) + I.
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Algorithm 1 Solve the optimization problem in Theorem 1
Input:

The matrix U with d rows;
The number of desired features m.

Output:
The objective matrix Y.

1: Calculate a vector f ∈ R
d×1, where fi =

√∑
j U

2
ij ;

2: Sort f in descending order and find out the indexes vector
g = [g1, · · · , gm]T corresponding to top-m sorted entries;

3: Assign the ith row of U to the ith row of Y if i ∈ g; assign
all-zero row vector to the ith row of Y if i /∈ g.

4) Update L: Based on the update of M, we update L by
solving the following optimization:

min
L�0

−βTr
(
STL

)− (1− β)Tr
(
ZTYHLH

)
+αrank(L) + Tr

[
ΛT

2 (L−M)
]
+ μ

2
‖L−M‖2F ,

(12)
which is equivalent to minL�0 ‖L−A‖2F + 2α

μ rank(L),

where A = M + (1−β)HYTZH+βS−Λ2

μ . Using Theorem 2
proposed by (Li, Cheong, and Zhou 2014), L is updated by
setting η = 2α

μ .

Theorem 2. For any square matrix A ∈ R
n×n, the unique

closed-form solution of minL�0 ‖L−A‖2F + ηrank(L)

takes the form L∗ = QTη(Ω)QT , where Ã = QΩQT is the
eigen-decomposition of Ã = A+AT

2 . Tη(Ω) is an element-
wise function acting on the diagonal matrix Ω, and defined

as Tη(Ωii) =

{
Ωii ,Ωii >

√
η

0 ,Ωii ≤ √
η .

5) Update Λ1, Λ2 and μ:

Λ1 = Λ1 + μ (Z−Y) , (13)
Λ2 = Λ2 + μ (L−M) , (14)
μ = min (ρμ, μmax) , (15)

where min (·, ·) returns the minimum value. ρ > 1 controls
the convergence speed, and μmax is a large number to prevent
μ from becoming too large.

As summarized in Algorithm 2, these update steps are
alternatively performed until convergence.

4.2 Algorithmic Analysis

It is worth noting that although there is no established theory
in literature for the global convergence of ADMM applied
to non-convex problems as the one solved in this paper. In
practice, we set a maximum iteration number.

The computational complexity for Y, Z and Λ1 are the
sameO (nd), while the computational complexity for M and
Λ2 are both O

(
n2

)
. The time complexity for L is O(n3),

which involves the eigen-decomposition. Therefore, the total
computational complexity of Algorithm 2 is O(n3 + nd)
for each iteration. The overall time cost tends to be small,
because we find that Algorithm 2 converges within less than
50 iterations for all datasets in our experiments.

Here are the time complexities of other previous al-
gorithms: MCFS (Cai, Zhang, and He 2010): O(dn2 +

Algorithm 2 The proposed DGUFS method
Input:

Data matrix X = [x1, · · · ,xn] ∈ R
d×n;

Number of desired features m and latent clusters c;
Number of each sample’s nearest neighbours k;
Regularization parameters β and α.

Output:
Selected features Y and cluster labels V.

1: Compute the similarity matrix S via Eq.(3);
2: Initialize Y = Z = Λ1 = 0d×n, L = M = Λ2 = 0n×n,

ρ = 1.1, μmax = 1010, and μ = 10−6.
3: repeat
4: Update Y by utilizing Algorithm 1 to solve (8);
5: Update Z by utilizing Algorithm 1 to solve (9);
6: Update M via (11) followed by M = M′−diag (M′)+I;
7: Update L according to Theorem 2;
8: Update Λ1, Λ2, and μ via (13), (14) and (15);
9: until convergence

10: Compute V by decomposing L.

cm3 + cnm2 + d log d), UDFS (Yang et al. 2011): O(d3),
NDFS (Li et al. 2012): O(cn + d3), and RUFS (Qian and
Zhai 2013):O(cn2+d3), EUFS (Wang, Tang, and Liu 2015):
O(dcn+ nc2). Thus, our DGUFS method has an acceptable
time cost. To handle data with a large n, it is reasonable
for our method to adopt a sample-level hierarchical strategy,
which is a promising future work.

4.3 Discussion

Calculation for the cluster labels: Readers can adopt the
Constrained Boolean Matrix Factorization (CBMF) algo-
rithm proposed by (Li, Cheong, and Zhou 2014). Here, we
recommend a simple yet effective strategy. Different from
the time-consuming CBMF method, we can employ eigen
decomposition and exhaustive search.

L = Rdiag (ξ)RT is the eigen decomposition of L,
which is equivalent to

L =
[
Rdiag

(√
ξ
)] [

Rdiag
(√

ξ
)]T

, (16)

where ξ is a vector storing the n non-negative eigenvalues of
the positive semi-definite L = VTV. Then, we can regard
V̂ �

[
Rdiag

(√
ξ
)]T

as the approximation of V. The final
cluster labels can be obtained by an exhaustive search, i.e.,
determining the position of the largest element (in magnitude)
in each column of V̂.

Relaxation for the auxiliary variable M: Motivated by
(Li, Cheong, and Zhou 2014), we recommend adding an l0
penalty on M to enforce sparsity on its entries and avoid
the trivial solution. Besides, to make the problem tractable,
readers can relax the constraint M ∈ {0, 1}n×n to obtain
real valued entries M ∈ [0, 1]

n×n. Then, the only change
lies in Eq.(11), which has a new formulation.

Adding a regularization γ ‖M‖0 will introduce an extra
parameter γ. We have observed that the above relaxation
with γ = 0.005 can help our proposed method achieve better
performance and converge faster.

2236



Table 1: Dataset Description.

Dataset # of
Samples

# of
Features

# of
Classes

ALLAML 72 7129 2
Prostate-GE 102 5966 2
LUNG 203 3312 5
UMIST 575 644 20
PIX 10P 100 10000 10
PIE 10P 210 2420 10

5 Experiments

5.1 Experimental Settings

In this section, we compare our proposed DGUFS approach
with state-of-the-art methods on several benchmark datasets.

Datasets: one mass spectrometry dataset ALLAML
(Fodor 1997), one microarray dataset Prostate-GE (Singh
et al. 2002), one cancer dataset LUNG (Bhattacharjee et al.
2001), and three face image datasets UMIST (Graham and
Allinson 1998), PIX 10P5, and PIE 10P (Gross et al. 2008).
Detailed information is listed in Table 1.

Comparing algorithms are as follows:

• All Features: All original features are adopted as the base-
line in the experiments.

• Laplacian Score (LapScore): Features corresponding to
the largest Laplacian scores are selected to preserve the
local manifold structure well (He, Cai, and Niyogi 2005).

• Multi-Cluster Feature Selection (MCFS): Features are
selected based on sparse regression and spectral analysis
problem (Cai, Zhang, and He 2010).

• Unsupervised Discriminative Feature Selection
(UDFS): Features are selected by joint l2,1-norm
minimization and discriminative analysis (Yang et al.
2011).

• Nonnegative Discriminative Feature Selection (NDFS):
Features are selected by joint l2,1-norm regularized regres-
sion and nonnegative spectral analysis (Li et al. 2012).

• Robust Unsupervised Feature Selection (RUFS): Fea-
tures are selected by joint l2,1-norm regularized regression
and l2,1-norm based Nonnegative Matrix Factorization
(NMF) with local learning (Qian and Zhai 2013).

• Embedded Unsupervised Feature Selection (EUFS):
Features are selected by joint l2,1-norm minimization and
graph embedding (Wang, Tang, and Liu 2015).

Settings: Different parameters may be utilized for differ-
ent datasets. For fair comparison, we tune the parameters
for all unsupervised feature selection algorithms by grid-
search strategy. Meanwhile, there are some parameters to
be set in advance. Parameter k is set to 5 for all datasets
to specify the size of neighbourhood. We set the numbers
of selected features as {50, 100, · · · , 300} for all datasets.
For the NDFS method (Li et al. 2012), we fix γ = 108 to
guarantee the orthogonality. Then, we report the best results
from the optimal parameters for all methods. Some results

5http://peipa.essex.ac.uk/ipa/pix/faces/

Figure 2: Accuracy (ACC) over PIX 10P dataset with differ-
ent β, α, and selected feature numbers.

in the tables are from the published papers. Following the
experiment settings in the previous works, two commonly
used evaluation metrics, i.e., Accuracy (ACC) and Normal-
ized Mutual Information (NMI) are employed to measure
the performance in clustering. The larger ACC and NMI are,
the better performance is. At the L-step of our method, itera-
tion based eigen-decomposition uses a random start, which
is varied. For other comparative methods, the initialization
of K-means is varied. Therefore, we repeat all experiments
20 times with random initialization. The mean and standard
deviation (STD) of ACC and NMI for all algorithms are
reported.

5.2 Clustering with Selected Features

We report the comparison results of clustering in Table 2
and 3. The number in the parentheses denotes the number
of selected features when the performance is achieved. We
have three observations. Firstly, it is necessary for clustering
tasks to conduct feature selection. The selected features can
not only reduce the computational cost, but also improve
the clustering performance. Secondly, simultaneous feature
selection and clustering can achieve better performance than
using two-step strategies, i.e., clustering after feature selec-
tion. Thirdly, our proposed DGUFS method tends to achieve
better results with usually fewer selected features.

As shown in Table 2 and 3, DGUFS outperforms its com-
petitors on all datasets. The major reasons are two-folds:
On the one hand, our work is free of sparse projection. The
parameter m in our model has an explicit meaning, i.e., the
number of selected features. Hence, our model has superi-
ority of selecting an exact number of features in the opti-
mization process. On the other hand, our method enhances
the inter-dependence among original data, cluster labels, and
selected features in a joint learning framework. One depen-
dence guided term strengthens the dependence of desired
cluster labels on original data, while the other dependence
guided term maximizes the dependence of selected features
on cluster labels to guide the learning process.

5.3 In-depth Empirical Study of DGUFS

In this subsection, we study the sensitivity of parameters.
After checking all details, we can find that the numbers of
hyper-parameters for our competitors MCFS, UDFS, NDFS,
RUFS, and EUFS are 4, 4, 6, 5, and 5, respectively. How-
ever, not all of them are major parameters to be fine-tuned.
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Table 2: Clustering results (ACC%±STD). The best results are in boldface.

ALLAML Prostate-GE LUNG UMIST PIX 10P PIE 10P
All Features 67.3±6.72 58.1±0.44 72.0±8.88 42.1±2.3 74.3±12.1 30.8±2.29
LapScore 73.2±5.52(150) 57.5±0.49(300) 62.1±9.05(300) 45.1±3.42(200) 76.6±8.10(150) 36.0±2.95(100)
MCFS 68.4±10.4(100) 57.3±0.50(300) 66.3±7.91(300) 45.4±3.21(150) 75.9±8.59(200) 44.3±3.20(50)
UDFS 70.4±0.41(150) 57.7±0.45(300) 68.2±7.84(300) 45.3±2.74(300) 75.8±8.11(250) 41.6±3.82(100)
NDFS 69.4±0.00(100) 58.3±0.50(100) 68.9±9.06(300) 48.2±3.62(150) 76.7±8.52(200) 40.5±4.51(100)
RUFS 72.2±0.00(150) 59.8±0.00(50) 70.4±8.28(250) 49.1±3.25(100) 73.2±9.40(300) 42.6±4.61(50)
EUFS 73.6±0.00(100) 60.4±0.80(100) 72.5±8.57(300) 51.5±3.09(150) 76.8±5.88(150) 46.4±2.69(50)
DGUFS 78.4±1.31(200) 65.3±1.11(250) 79.2±7.14(100) 57.1±3.36(100) 82.1±4.98(100) 51.9±2.04(50)

Table 3: Clustering results (NMI%±STD). The best results are in boldface.

ALLAML Prostate-GE LUNG UMIST PIX 10P PIE 10P
All Features 8.55±5.62 1.95±0.27 51.8±5.42 63.9±2.5 82.8±6.48 32.2±3.47
LapScore 15.0±1.34(100) 1.59±0.21(300) 44.9±5.12(300) 65.9±1.94(250) 84.3±4.63(150) 38.5±1.44(50)
MCFS 11.7±10.2(50) 1.53±0.21(300) 47.7±4.48(300) 67.3±2.61(150) 85.0±4.95(200) 54.3±3.39(50)
UDFS 12.7±0.42(150) 1.55±0.20(300) 51.6±5.08(300) 65.2±1.62(300) 84.9±4.87(250) 47.3±3.02(50)
NDFS 7.20±0.30(300) 2.02±0.25(100) 50.3±5.21(250) 66.5±2.20(200) 84.8±4.76(200) 46.0±3.14(100)
RUFS 12.0±0.00(150) 2.86±0.00(50) 51.1±5.11(250) 68.8±2.39(150) 81.1±6.23(300) 49.6±5.15(50)
EUFS 15.1±0.00(100) 3.36±0.48(100) 53.0±4.98(250) 69.7±1.78(150) 85.1±4.30(50) 49.8±3.10(150)
DGUFS 19.1±1.78(150) 6.59±0.84(250) 60.2±4.69(100) 74.4±1.67(100) 89.2±3.26(50) 55.0±2.86(50)

Hence, these papers do not need to list all hyper-parameters
in their algorithms. Parameters for minor cases, such as de-
termining convergence tolerance and avoiding singularity or
zero-denominator, can be set to small values, e.g., 10−6. The
number of desired features m should be determined by users.
In comparison experiments, all methods can have the same
range of m, e.g., m = {50, 100, · · · , 300} for fairness. The
number of latent clusters c is given prior, which is common
in existing works. The number of neighbouring parameter
k is set to 5 for all datasets to specify the size of neigh-
bourhood. This setting is consistent to previous works, e.g.,
MCFS, NDFS, RUFS, and EUFS. The remaining parame-
ters are main parameters for each method, which should be
fine-tuned. Actually, if there is no constraint, all methods will
tune them in a range of

{
10−6, 10−4, · · · , 106

}
.

As aforementioned, the number of neighboring parameter
k is set to 5 for all datasets to specify the size of neighbor-
hood, which is consistent with the settings in previous works.
There are two major parameters to tune in our algorithm,
i.e., β and α. Since β ∈ (0, 1) in our method, it cannot be
fine-tuned in the same range of

{
10−6, 10−4, · · · , 106

}
as

previous works. We set β from 0.1 to 0.9 with 0.2 as interval.
Generally, c� n. The rank of L ∈ R

n×n, i.e., rank(L) = c
is usually very small. Hence, we set the corresponding param-
eter α larger as

{
101, 102, · · · , 105

}
. Due to the page limit,

we only report the results of ACC over PIX 10P dataset. The
experiment results are shown in Figure 2. From the two 3D
graphs in Figure 2, we can see that the two parameters of
DGUFS have relatively wide ranges. Similar trends can be
observed on other datasets as well.

Finally, we display some toy examples of our proposed
DGUFS method. We randomly select two samples from dif-
ferent classes of the UMIST dataset as toy examples. After
conducting our proposed DGUFS method on original images,
we select m = {50, 100, · · · , 300} features. For illustration,
the selected features are set to green and the unselected fea-

Table 4: Toy examples of DGUFS on UMIST dataset.

Original
Image

# of Selected Features
50 100 150 200 250 300

tures maintain their original values. We draw them in Table 4.
As can be seen, the selected features of our proposed method
are concentrated. With each fixed number of selected fea-
tures, our method tends to catch compact and discriminative
parts, e.g., hair, eyes, and mouth, which could describe each
person’s character.

6 Conclusion

In this paper, we have proposed a joint learning framework
for feature selection and clustering. A projection-free feature
selection model is proposed based on l2,0-norm equality con-
straints. Meanwhile, we explicitly present two dependence
guided terms, enhancing the dependence among original data,
cluster labels, and selected features. Based on the Alternating
Direction Method of Multipliers (ADMM), an iterative algo-
rithm has been designed for efficient optimization. Extensive
experiments show that our proposed DGUFS approach out-
performs state-of-the-art sparse learning based unsupervised
feature selection methods.
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