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Abstract

To capture the inherent geometric features of many community
detection problems, we propose to use a new random graph
model of communities that we call a Geometric Block Model.
The geometric block model generalizes the random geometric
graphs in the same way that the well-studied stochastic block
model generalizes the Erdös-Renyi random graphs. It is also a
natural extension of random community models inspired by
the recent theoretical and practical advancement in commu-
nity detection. While being a topic of fundamental theoretical
interest, our main contribution is to show that many practical
community structures are better explained by the geometric
block model. We also show that a simple triangle-counting
algorithm to detect communities in the geometric block model
is near-optimal. Indeed, even in the regime where the average
degree of the graph grows only logarithmically with the num-
ber of vertices (sparse-graph), we show that this algorithm
performs extremely well, both theoretically and practically.
In contrast, the triangle-counting algorithm is far from be-
ing optimum for the stochastic block model. We simulate our
results on both real and synthetic datasets to show superior
performance of both the new model as well as our algorithm.

1 Introduction

The planted-partition model or the stochastic block model
(SBM) is a random graph model for community detection that
generalizes the well-known Erdös-Renyi graphs (Holland,
Laskey, and Leinhardt 1983; Dyer and Frieze 1989; Decelle
et al. 2011; Abbe and Sandon 2015a; Abbe, Bandeira, and
Hall 2016; Hajek, Wu, and Xu 2015; Chin, Rao, and Vu 2015;
Mossel, Neeman, and Sly 2015). Consider a graph G(V,E),
where V = V1�V2�· · ·�Vk is a disjoint union of k clusters
denoted by V1, . . . , Vk. The edges of the graph are drawn
randomly: there is an edge between u ∈ Vi and v ∈ Vj with
probability qi,j , 1 ≤ i, j ≤ k. Given the adjacency matrix of
such a graph, the task is to find exactly (or approximately)
the partition V1 � V2 � · · · � Vk of V .

This model has been incredibly popular both in theoreti-
cal and practical domains of community detection, and the
aforementioned references are just a small sample. Recent
theoretical works focus on characterizing sharp threshold of
recovering the partition in the SBM. For example, when there
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are only two communities of exactly equal sizes, and the inter-
cluster edge probability is b logn

n and intra-cluster edge proba-
bility is a logn

n , it is known that perfect recovery is possible if
and only if

√
a−√

b >
√
2 (Abbe, Bandeira, and Hall 2016;

Mossel, Neeman, and Sly 2015). The regime of the prob-
abilities being Θ

(
logn
n

)
has been put forward as one of

most interesting ones, because in an Erdös-Renyi random
graph, this is the threshold for graph connectivity (Bol-
lobás 1998). This result has been subsequently general-
ized for k communities (Abbe and Sandon 2015a; 2015b;
Hajek, Wu, and Xu 2016) (for constant k or when k =
o(log n)), and under the assumption that the communities
are generated according to a probabilistic generative model
(there is a prior probability pi of an element being in the ith
community) (Abbe and Sandon 2015a). Note that, the results
are not only of theoretical interest, many real-world networks
exhibit a “sparsely connected” community feature (Leskovec
et al. 2008), and any efficient recovery algorithm for SBM
has many potential applications.

One aspect that the SBM does not account for is a “tran-
sitivity rule” (‘friends having common friends’) inherent to
many social and other community structures. To be precise,
consider any three vertices x, y and z. If x and y are con-
nected by an edge (or they are in the same community), and
y and z are connected by an edge (or they are in the same
community), then it is more likely than not that x and z are
connected by an edge. This phenomenon can be seen in many
network structures - predominantly in social networks, blog-
networks and advertising. SBM, primarily a generalization
of Erdös-Renyi random graph, does not take into account
this characteristic, and in particular, probability of an edge
between x and z there is independent of the fact that there
exist edges between x and y and y and z. However, one needs
to be careful such that by allowing such “transitivity”, the
simplicity and elegance of the SBM is not lost.

Inspired by the above question, we propose a random graph
community detection model analogous to the stochastic block
model, that we call the geometric block model (GBM). The
GBM depends on the basic definition of the random geo-
metric graph that has found a lot of practical use in wireless
networking because of its inclusion of the notion of proximity
between nodes (Penrose 2003).
Definition. A random geometric graph (RGG) on n ver-
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tices has parameters n, an integer t > 1 and a real number
β ∈ [−1, 1]. It is defined by assigning a vector Zi ∈ R

t to
vertex i, 1 ≤ i, n, where Zi, 1 ≤ i ≤ n are independent
and identical random vectors uniformly distributed in the Eu-
clidean sphere St−1 ≡ {x ∈ R

t : ‖x‖�2 = 1}. There will be
an edge between vertices i and j if and only if 〈Zi, Zj〉 ≥ β.

Note that, the definition can be further generalized by
considering Zis to have a sample space other than St−1, and
by using a different notion of distance than inner product (i.e.,
the Euclidean distance). We simply stated one of the many
equivalent definitions (Bubeck et al. 2016).

Random geometric graphs are often proposed as an alter-
native to Erdös-Renyi random graphs. They are quite well
studied theoretically (though not nearly as much as the Erdös-
Renyi graphs), and very precise results exist regarding their
connectivity, clique numbers and other structural properties
(Gupta and Kumar 1998; Penrose 1991; Devroye et al. 2011;
Avin and Ercal 2007; Goel, Rai, and Krishnamachari 2005).
For a survey of early results on geometric graphs and the
analogy to results in Erdös-Renyi graphs, we refer the reader
to (Penrose 2003). A very interesting question of distinguish-
ing an Erdös-Renyi graph from a geometric random graph
has also recently been studied (Bubeck et al. 2016). This will
provide a way to test between the models which better fits a
scenario, a potentially great practical use.

As mentioned earlier, the “transitivity” feature led to ran-
dom geometric graphs being used extensively to model
wireless networks (for example, see (Haenggi et al. 2009;
Bettstetter 2002)). Surprisingly, however, to the best of our
knowledge, random geometric graphs are never used to model
community detection problems. In this paper we take the first
step towards this direction. Our main contributions can be
classified as follows.

• We define a random generative model to study canonical
problems of community detection, called the geometric
block model (GBM). This model takes into account a mea-
sure of proximity between nodes and this proximity measure
characterizes the likelihood of two nodes being connected
when they are in same or different communities. The geo-
metric block model inherits the connectivity properties of
the random geometric graphs, in particular the likelihood of
“transitivity” in triplet of nodes (or more).

• We experimentally validate the GBM on various real-world
datasets. We show that many practical community structures
exhibit properties of the GBM. We also compare these fea-
tures with the corresponding notions in SBM to show how
GBM better models data in many practical situations.

• We propose a simple motif-based efficient algorithm for
community detection on the GBM. We rigorously show that
this algorithm is optimal up to a constant fraction (to be
properly defined later) even in the regime of sparse graphs
(average degree ∼ log n).

• The motif-counting algorithms are extensively tested on
both synthetic and real-world datasets. They exhibit very
good performance in three real datasets, compared to the
spectral-clustering algorithm (see Section 5). Since simple
motif-counting is known to be far from optimum in stochas-
tic block model (see Section 4), these experiments give
further validation to GBM as a real-world model.

Given any simple random graph model, it is possible to
generalize it to a random block model of communities much
in line with the SBM. We however stress that the geometric
block model is perhaps the simplest possible model of real-
world communities that also captures the transitive/geometric
features of communities. Moreover, the GBM explains be-
haviors of many real world networks as we will exemplify
subsequently.

2 The Geometric Block Model and its

Validation

Let V ≡ V1 � V2 � · · · � Vk be the set of vertices that is a
disjoint union of k clusters, denoted by V1, . . . , Vk. Given
an integer t ≥ 2, for each vertex u ∈ V , define a random
vector Zu ∈ R

t that is uniformly distributed in St−1 ⊂ R
t,

the t− 1-dimensional sphere.

Definition (Geometric Block Model
(V, t, βi,j , 1 ≤ i < j ≤ k)). Given V, t and a set of
real numbers βi,j ∈ [−1, 1], 1 ≤ i ≤ j ≤ k, the geometric
block model is a random graph with vertices V and an
edge exists between v ∈ Vi and u ∈ Vj if and only if
〈Zu, Zv〉 ≥ βi,j .

The case of t = 2: In this paper we particularly analyze
our algorithm for t = 2. In this special case, the above def-
inition is equivalent to choosing random variable θu uni-
formly distributed in [0, 2π], for all u ∈ V . Then there will
be an edge between two vertices u ∈ Vi, v ∈ Vj if and only
if cos θu cos θv + sin θu sin θv = cos(θu − θv) ≥ βi,j or
min{|θu − θv|, 2π − |θu − θv|} ≤ arccosβi,j . This in turn,
is equivalent to choosing a random variable Xu uniformly
distributed in [0, 1] for all u ∈ V , and there exists an edge
between two vertices u ∈ Vi, v ∈ Vj if and only if

min{|Xu −Xv|, 1− |Xu −Xv|} ≤ ri,j ,

where ri,j ∈ [0, 1
2 ], 0 ≤ i, j ≤ k, are a set of real numbers.

For the rest of this paper, we concentrate on the case when
ri,i = rs for all i ∈ {1, . . . , k}, which we call the “intra-
cluster distance” and ri,j = rd for all i, j ∈ {1, . . . , k}, i =
j, which we call the “inter-cluster distance,” mainly for the
clarity of exposition. To allow for edge density to be higher
inside the clusters than across the clusters, assume rs ≥ rd.

The main problem that we seek to address is following.
Given the adjacency matrix of a geometric block model
with k clusters, and t, rd, rs, rs ≥ rd, find the partition
V1, V2, . . . , Vk.

We next give two examples of real datasets that motivate
the GBM. In particular, we experiment with two different
types of real world datasets in order to verify our hypothesis
about geometric block model and the role of distance in the
formation of edges. The first one is a dataset with academic
collaboration, and the second one is a product purchase meta-
data from Amazon.

2.1 Motivation of GBM: Academic Collaboration

We consider the collaboration network of academicians
in Computer Science in 2016 (data obtained from
csrankings.org). According to area of expertise of the
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Area 1 Area 2 same different
MOD AI 10 2
ARCH MOD 6 1
ROB ARCH 3 0
MOD ROB 4 0
ML MOD 7 1

Area same different
MOD 19 35
ARCH 13 15
ROB 24 16
AI 39 32
ML 14 42

Table 1: On the left we count the number of inter-cluster edges when authors shared same affiliation and different affiliations. On
the right, we count the same for intra-cluster edges.

authors, we consider five different communities: Data Man-
agement (MOD), Machine Learning and Data Mining (ML),
Artificial Intelligence (AI), Robotics (ROB), Architecture
(ARCH). If two authors share the same affiliation, or shared
affiliation in the past, we assume that they are geographically
close. We would like to hypothesize that, two authors in the
same communities might collaborate even when they are
geographically far. However, two authors in different com-
munities are more likely to collaborate only if they share
the same affiliation (or are geographically close). Table 1
describes the number of edges across the communities. It
is evident that the authors from same community are likely
to collaborate irrespective of the affiliations and the authors
of different communities collaborate much frequently when
they share affiliations or are close geographically. This clearly
indicates that the inter cluster edges are likely to form if the
distance between the nodes is quite small, motivating the fact
rd < rs in the GBM.

2.2 Motivation of GBM: Amazon Metadata

The next dataset that we use in our experiments is the Amazon
product metadata on SNAP (https://snap.stanford.edu/data/
amazon-meta.html), that has 548552 products and each prod-
uct is one of the following types {Books, Music CD’s, DVD’s,
Videos}. Moreover, each product has a list of attributes, for
example, a book may have attributes like 〈“General”, “Ser-
mon”, “Preaching”〉. We consider the co-purchase network
over these products. We make two observations here: (1)
edges get formed (that is items are co-purchased) more fre-
quently if they are similar, where we measure similarity by
the number of common attributes between products, and (2)
two products that share an edge have more common neigh-
bors (no of items that are bought along with both those prod-
ucts) than two products with no edge in between.

Figures 1 and 2 show respectively average similarity of
products that were bought together, and not bought together.
From the distribution, it is quite evident that edges in a co-
purchase network gets formed according to distance, a salient
feature of random geometric graphs, and the GBM.

We next take equal number of product pairs inside Book
(also inside DVD, and across Book and DVD) that have
an edge in-between and do not have an edge respectively.
Figure 3 shows that the number of common neighbors when
two products share an edge is much higher than when they do
not–in fact, almost all product pairs that do not have an edge
in between also do not share any common neighbor. This
again strongly suggests towards GBM due to its transitivity
property. On the other hand, this also suggests that SBM is

Figure 1: Histogram: similarity of products bought together
(mean ≈ 6)

Figure 2: Histogram: similarity of products not bought to-
gether (mean≈ 2)

not a good model for this network, as in SBM, two nodes
having common neighbors is independent of whether they
share an edge or not.

Difference between SBM and GBM. It is important to
stress that the network structures generated by the SBM and
the GBM are quite different, and it is significantly difficult
to analyze any algorithm or lower bound on GBM compared
to SBM. This difficulty stems from the highly correlated
edge generation in GBM (while edges are independent in
SBM). For this reason, analyses of the sphere-comparison al-
gorithm and spectral methods for clustering on GBM cannot
be derived as straight-forward adaptations. Whereas, even for
simple algorithms, a property that can be immediately seen
for SBM, will still require a proof for GBM.
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Figure 3: Histogram of common neighbors of edges and non-edges in the co-purchase network, from left to right: Book-DVD,
Book-Book, DVD-DVD

3 The Motif-Counting Algorithm

Suppose, we are given a graph G = (V,E) with k dis-
joint clusters, V1, V2, ..., Vk ⊆ V generated according to
GBM(V, t, rs, rd, k). Our clustering algorithm is based on
counting motifs, where a motif is simply defined as a config-
uration of triplets in the graph. Let us explain this principle
by one particular motif, a triangle. For any two vertices u and
v in V , where (u, v) is an edge, we count the total number
of common neighbors of u and v. We show that this count is
different when u and v belong to the same cluster, compared
to when they belong to different clusters. We assume G is
connected, because otherwise it is impossible to recover the
clusters. For every pair of vertices in the graph that share
an edge, we decide whether they are in the same cluster or
not by this count of triangles. In reality, we do not have to
check every such pair, instead we can stop when we form a
spanning tree. At this point, we can transitively deduce the
partition of nodes into clusters.

The main new idea of this algorithm is to use this triangle-
count (or motif-count in general), since they carry signifi-
cantly more information regarding the connectivity of the
graph than an edge count. However, we can go to statistics
of higher order (such as the two-hop common neighbors) at
the expense of increased complexity. Surprisingly, the simple
greedy algorithm that rely on triplets can separate clusters
when rd and rs are Ω( logn

n ), which is also a minimal require-
ment for connectivity of random geometric graphs (Penrose
2003). Therefore this algorithm is optimal up to a constant
factor. It is interesting to note that this motif-counting algo-
rithm is not optimal for SBM (as we observe), in particular,
it will not detect the clusters in the sparse threshold region of
logn
n , however, it does so for GBM.
The pseudocode of the algorithm is described in Algorithm

1. The algorithm looks at individual pairs of vertices to decide
whether they belong to the same cluster or not. We go over
pair of vertices and label them same/different, till we have
enough labels to partition the graphs into clusters.

At any stage, the algorithm picks up an unassigned node
v and queries it with a node each from the already formed
clusters. To decide whether a point belongs to a cluster, it
calls a subroutine called process. The process function
tries to infer if the node v belongs to the cluster Vi by first
identifying a vertex u ∈ Vi that has an edge with v, and then
by counting the number of common neighbors of u and v to
make a decision. This procedure is continued till all nodes in

V are processed.

Algorithm 1: Graph recovery from GBM
Require: GBM G = (V,E), rs, rd, k
Ensure: V = V1 � . . . � Vk

1: V1, . . . , Vk ← ∅
2: for v ∈ V do

3: for i ∈ {1, 2, . . . , k − 1} do

4: if process(Vi, v, rs, rd) then

5: Vi ← Vi ∪ {v}
6: added← true
7: end if

8: end for

9: if ¬ added then

10: Vk ← Vk ∪ {v}
11: end if

12: end for

Algorithm 2: process
Require: C,v, rs, rd
Ensure: true/false

1: Choose u ∈ C | (u, v) ∈ E

2: count ← |{z : (z, u) ∈ E, (z, v) ∈ E}|
3: if | count

n − ES(rd, rs)| < | count
n − ED(rd, rs)| then

4: return true
5: end if

6: return false

The process function counts the number of common neigh-
bors of two nodes and then compares the difference of the
count with two functions of rd and rs, called ED and ES .
Formulae for ED and ES are different when rs < 2rd to
rs ≥ 2rd. We have compiled this in Table 2. In this table we
have assumed that there are only two clusters of equal size.
The functions change when the cluster sizes are different. Our
analysis described in later sections can be used to calculate
new function values. In the table, u ∼ v means u and v are
in the same cluster.
Similarly, the process function can be run on other set of
motifs (other patterns of triplets) by fixing two nodes. On
considering a larger set of motifs, the process function
can take a majority vote over the decisions received from
different motifs. This is helpful to resolve the clusters even
when the gap between rs and rd is small (by a constant factor
than compared to just triangle motif).
Note that, our algorithm counts motifs only for edges, and
does not count motifs for more than n−1 edges, as that many
edges are sufficient to construct a spanning tree of the graph.

2218



Motif Distribution of count (rs > 2rd) Distribution of count (rs ≤ 2rd)
u ∼ v u � v u ∼ v u � v

z | (z, u) ∈
E, (z, v) ∈ E

Bin(n2 − 2, 3rs
2 ) +

Bin(n2 ,
2r2d
rs

);

ES = 3rs
4 +

r2d
rs

Bin(n − 2, 2rd);
ED = 2rd

Bin(n2 − 2, 3rs
2 ) +

Bin(n2 , 2rd − rs
2 );

ES = rs
2 + rd

Bin(n − 2, 2rs − r2s
2rd

)

ED = 2rs − r2s
2rd

z | (z, u) ∈
E, (z, v) /∈ E

Bin(n2 − 2, rs
2 ) +

Bin(n2 ,
2rd(rs−rd

rs
);

ES = rs
2 + rd(rs−rd)

rs

Bin(n − 2, rs − rd);
ED = rs − rd

Bin(n−2, rs
2 ); ES =

rs
2

Bin(n− 2,
r2s+2r2d−2rsrd

rd
)

ED =
r2s+2r2d−2rsrd

rd

z | (z, u) /∈
E, (z, v) ∈ E

Bin(n2 − 2, rs
2 ) +

Bin(n2 ,
2rd(rs−rd

rs
);

ES = rs
2 + rd(rs−rd)

rs

Bin(n − 2, rs − rd);
ED = rs − rd

Bin(n−2, rs
2 ); ES =

rs
2

Bin(n− 2,
r2s+2r2d−2rsrd

rd
)

ED =
r2s+2r2d−2rsrd

rd

Table 2: ES , ED values for different motifs considering different values of rs and rd, when there are two equal sized clusters.
Here Bin(n, p) denotes a binomial random variable with mean np.

4 Analysis of the Algorithm

The critical observation that we have to make to analyze
the motif-counting algorithm is the fact that given a GBM
graph G(V,E) with two clusters V = V1 � V2, and a pair of
vertices u, v ∈ V : (u, v) ∈ E, the events Eu,v

z , z ∈ V of any
other vertex z being a common neighbor of both u and v are
independent (this is obvious in SBM, but does not lead to the
same result). However, the probabilities of Eu,v

z are different
when u and v are in the same cluster and when they are in dif-
ferent clusters. Therefore the count of the common neighbors
are going to be different, and substantially separated with
high probability (due to being sums of independent random
variables) for two vertices in cases when they are from the
same cluster or from different clusters. This will lead the
function process to correctly characterize two vertices as
being from same or different clusters with high probability.
Let us now show this more formally. We have the following
two lemmas for a GBM graph G(V,E) with two equal-sized
(unknown) clusters V = V1 � V2, and parameters rs, rd.
Lemma 1. For any two vertices u, v ∈ Vi : (u, v) ∈
E, i = 1, 2 belonging to the same cluster, the count of com-
mon neighbors Cu,v ≡ |{z ∈ V : (z, u), (z, v) ∈ E}|
is a random variable distributed according to Bin(n2 −
2, 3rs

2 ) + Bin(n2 ,
2r2d
rs

) when rs > 2rd and according to
Bin(n2 − 2, 3rs

2 ) + Bin(n2 , 2rd − rs
2 ) when rs ≤ 2rd, where

Bin(n, p) is a binomial random variable with mean np.
Lemma 2. For any two vertices u ∈ V1, v ∈ V2 : (u, v) ∈ E
belonging to different clusters, the count of common neigh-
bors Cu,v ≡ |{z ∈ V : (z, u), (z, v) ∈ E}| is a random vari-
able distributed according to Bin(n−2, 2rd) when rs > 2rd

and according to Bin(n− 2, 2rs − r2s
2rd

) when rs ≤ 2rd.

Similar lemmas exists for other motifs as well (see the full
version (Galhotra et al. 2017)). Here let us give the proof of
Lemma 1. The proof of Lemma 2 will follow similarly. These
expressions can also be generalized straightforwardly when
the clusters are of unequal sizes, but we omit those for clarity
of exposition.

Proof of Lemma 1. Let Xw ∈ [0, 1] be the uniform random
variable associated with w ∈ V . Let us also denote by

dL(X,Y ) ≡ min{|X − Y |, 1− |X − Y |}, X, Y ∈ R. With-
out loss of generality, assume u, v ∈ V1. For any vertex
z ∈ V , let Eu,v

z ≡ {(u, z), (v, z) ∈ E} be the event that z is
a common neighbor. For z ∈ V1,

Pr(Eu,v
z ) = Pr((z, u) ∈ E, (z, v) ∈ E | (u, v) ∈ E)

=
1

rs

∫ rs

0

Pr((z, u) ∈ E, (z, v) ∈ E | dL(Xu, Xv) = x)dx

=

∫ rs

0

1

rs
(2rs − x)dx =

3rs
2

.

For z ∈ V2, assuming � = min(rs, 2rd), we have,

Pr(Eu,v
z ) = Pr((z, u) ∈ E, (z, v) ∈ E | (u, v) ∈ E)

=

∫ �

0

1

rs
Pr((z, u), (z, v) ∈ E | dL(Xu, Xv) = x)dx

=

∫ �

0

1

rs
(2rd − x)dx =

{
2r2d
rs

if 2rd < rs
2rd − rs

2 otherwise.

Now since there are n
2 − 2 points in V1 \ {u, v} and n

2 points
in V2, we have the statement of the lemma.

The proof of Lemma 2 is similar and can be seen in the full
version of this paper (Galhotra et al. 2017).
By leveraging the concentration of binomial random vari-
ables, in our algorithm we just check whether the count of
common neighbors is closer to the average value of the ran-
dom variable described in Lemma 1 or in Lemma 2. While
more general statements are possible, we give a theorem
concentrating on the special case when rs, rd ∼ logn

n .

Theorem 1. If rs = a logn
n and rd = b logn

n , rs > rd, Al-
gorithm 1 can recover the clusters V1, V2 accurately with a
probability of 1− 3

n if
⎧⎨
⎩

(3a−2b)(a−2b)
4a

≥ (
√

3a
4
+

√
b2

a
+

√
2b)

√
6,when a ≥ 2b

(a−b)(a−2b)
2b

≥ (
√

3a
4
+

√
b− a

4
+

√
2a− a2

2b
)
√
6, else

.

Proof. Let us consider the case rs > 2rd first. Let Z de-
note the random variable that equals the number of common
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neighbors of two nodes u, v ∈ V : (u, v) ∈ E. Let us also
denote μs = E(Z|u ∼ v) and μd = E(Z|u � v), where
u ∼ v means u and v are in the same cluster. We can easily
find μs and μd from Lemmas 1, 2. We see that,

μs − μd =
(n−O(1))(3rs − 2rd)(rs − 2rd)

4rs

=
(3a− 2b)(a− 2b) log n

4a
−O

( log n
n

)
.

Now, since Z is a sum of independent binary random vari-
ables, using the Chernoff bound, Pr(Z < (1 + δ)E(Z)) ≤
Pr(Z > (1 + δ)E(Z)) ≤ e−δ2E(Z)/3 = 1

n2 , when δ =√
6 logn
E(Z) . Now with probability at least 1− 3

n2 (since there are
three binomial terms involved and they can have deviations
more than

√
9a/2 log n,

√
6b2/a log n, and

√
12b log n with

probability 1
n2 each), the algorithm will be successful to label

correctly as long as, (3a−2b)(a−2b) logn
4a ≥

(√
3a
4 +

√
b2

a +
√
2b
)√

6 log n. The case of rs ≤ 2rd will follow similarly.
Now we need the labeling to be successful for n pairs of
vertices (so that a spanning tree can be formed). Applying
union bound over n distinct pairs guarantees the probability
of recovery as 1− 3/n.

Now instead of relying only on the triangle motif, if we
consider all different motifs (as defined in Table 2), and then
take the aggregate (majority vote) decision, we can improve
the above theorem slightly.

Theorem 2. If rs = a logn
n and rd = b logn

n , the algo-
rithm considering all three motifs (see Table 2) for a pair
of nodes can recover the clusters V1, V2 correctly with

probability 1 − O( 1n ) if (3a−2b)(a−2b)
4a ≥ √

3min
{√

3a
4 +√

b2

a +
√
2b,

√
a/2 +

√
b(a−b)

a +
√
a− b

}
when a ≥

2b, and (a−b)(a−2b)
2b ≥ √

3min
{√

3a
4 +

√
b− a

4 +√
2a− a2

2b ,
√

a/2 +
√

a2+2b2−2ab
2b

}
when a < 2b.

The proof of this theorem is present in the full version of this
paper (Galhotra et al. 2017).
Remark 1. Instead of using Chernoff bound we could have
used better concentration inequality (such as Poisson approx-
imation) in the above analysis, to get tighter condition on the
constants. We again preferred to keep things simple.
Remark 2 (GBM for t = 3 and above). For GBM with
t = 3, to find the number of common neighbors of two
vertices, we need to find out the area of intersection of two
spherical caps on the sphere. It is possible to do that. It can
be seen that, our algorithm will successfully identify the

clusters as long as rs, rd ∼
√

logn
n again when the constant

terms satisfy some conditions. However tight characterization
becomes increasingly difficult. For general t, our algorithm

should be successful when rs, rd ∼
(

logn
n

) 1
t−1

, which is
also the regime of connectivity threshold.

Remark 3 (More than two clusters). When there are more
than two clusters, the same analysis technique is applica-
ble and we can estimate the expected number of common
neighbors. This generalization is straightforward but tedious.
Motif counting algorithm for SBM. While our algorithm
is near optimal for GBM in the regime of rs, rd ∼ logn

n , it is
far from optimal for the SBM in the same regime of average
degree. Indeed, by using simple Chernoff bounds again, we
see that the motif counting algorithm is successful for SBM
with inter-cluster edge probability q and intra-cluster prob-

ability p, when p, q ∼
√

logn
n . The experimental success of

our algorithm in real sparse networks therefore somewhat
enforce the fact that GBM is a better model for those network
structures than SBM.

5 Experimental Results

In addition to validation experiments in Section 2.1 and 2.2,
we also conducted an in-depth experimentation of our pro-
posed model and techniques over a set of synthetic and real
world networks. Additionally, we compared the efficacy and
efficiency of our motif-counting algorithm with the popular
spectral clustering algorithm using normalized cuts1 and the
correlation clustering algorithm (Bansal, Blum, and Chawla
2004).
Real Datasets. We use three real datasets described below.

• Political Blogs. (Adamic and Glance 2005) It contains a
list of political blogs from 2004 US Election classified as
liberal or conservative, and links between the blogs. The
clusters are of roughly the same size with a total of 1200
nodes and 20K edges.

• DBLP. (Yang and Leskovec 2015) The DBLP dataset is a
collaboration network where the ground truth communities
are defined by the research community. The original graph
consists of roughly 0.3 million nodes. We process it to
extract the top two communities of size ∼ 4500 and 7500
respectively. This is given as input to our algorithm.

• LiveJournal. (Leskovec, Adamic, and Huberman 2007)
The LiveJournal dataset is a free online blogging social
network of around 4 million users. Similar to DBLP, we
extract the top two clusters of sizes 930 and 1400 which
consist of around 11.5K edges.

We have not used the academic collaboration (Section 2.1)
dataset here because it is quite sparse and below the connec-
tivity threshold regime of both GBM and SBM.
Synthetic Datasets. We generate synthetic datasets of differ-
ent sizes according to the GBM with t = 2, k = 2 and for a
wide spectrum of values of rs and rd, specifically we focus
on the sparse region where rs = a logn

n and rd = b logn
n with

variable values of a and b.
Experimental Setting. For real networks, it is difficult to
calculate an exact threshold as the exact values of rs and rd
are not known. Hence, we follow a three step approach. Using
a somewhat large threshold T1 we sample a subgraph S such
that u, v will be in S if there is an edge between u and v, and

1http://scikit-learn.org/stable/modules/clustering.html#spectral-
clustering
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Figure 4: Results of the motif-counting algorithm on a synthetic dataset with 5000 nodes.

Dataset Total no. T1 T2 T3 Accuracy Running Time (sec)
of nodes Motif-Counting Spectral clustering Motif-Counting Spectral clustering

Political Blogs 1222 20 2 1 0.788 0.53 1.62 0.29
DBLP 12138 10 1 2 0.675 0.63 3.93 18.077

LiveJournal 2366 20 1 1 0.7768 0.64 0.49 1.54

Table 3: Performance on real world networks

they have at least T1 common neighbors. We now attempt to
recover the subclusters inside this subgraph by following our
algorithm with a small threshold T2. Finally, for nodes that
are not part of S, say x ∈ V \S, we select each u ∈ S that x
has an edge with and use a threshold of T3 to decide if u and
x should be in the same cluster. The final decision is made by
taking a majority vote. We can employ sophisticated methods
over this algorithm to improve the results further, which is
beyond the scope of this work.
We use the popular f-score metric which is the harmonic mean
of precision (fraction of number of pairs correctly classified
to total number of pairs classified into clusters) and recall
(fraction of number of pairs correctly classified to the total
number of pairs in the same cluster for ground truth), as well
as the node error rate for performance evaluation. A node
is said to be misclassified if it belongs to a cluster where
the majority comes from a different ground truth cluster
(breaking ties arbitrarily). Following this, we use the above
described metrics to compare the performance of different
techniques on various datasets.
Results. We compared our algorithm with the spectral cluster-
ing algorithm where we extracted two eigenvectors in order
to extract two communities. Table 3 shows that our algorithm
gives an accuracy as high as 78%. The spectral clustering
performed worse compared to our algorithm for all real world
datasets. It obtained the worst accuracy of 53% on political
blogs dataset. The correlation clustering algorithm generates
various small sized clusters leading to a very low recall, per-
forming much worse than the motif-counting algorithm for
the whole spectrum of parameter values.
We can observe in Table 3 that our algorithm is much faster
than the spectral clustering algorithm for larger datasets (Live-
Journal and DBLP). This confirms that motif-counting algo-

rithm is more scalable than the spectral clustering algorithm.
The spectral clustering algorithm also works very well on syn-
thetically generated SBM networks even in the sparse regime
(Lei, Rinaldo, and others 2015; Rohe et al. 2011). The su-
perior performance of the simple motif clustering algorithm
over the real networks provide a further validation of GBM
over SBM. Correlation clustering takes 8-10 times longer as
compared to motif-counting algorithm for the various range
of its parameters. We also compared our algorithm with the
Newman algorithm (Girvan and Newman 2002) that per-
forms really well for the LiveJournal dataset (98% accuracy).
But it is extremely slow and performs much worse on other
datasets. This is because the LiveJournal dataset has two well
defined subsets of vertices with very few intercluster edges.
The reason for the worse performance of our algorithm is the
sparseness of the graph. If we create a subgraph by removing
all nodes of degrees 1 and 2, we get 100% accuracy with
our algorithm. Finally, our algorithm is easily parallelizable
to achieve better improvements. This clearly establishes the
efficiency and effectiveness of motif-counting.
We observe similar gains on synthetic datasets. Figures 4a,
4b and 4c report results on the synthetic datasets with 5000
nodes. Figure 4a plots the minimum gap between a and b that
guarantees exact recovery according to Theorem 1 (only trian-
gle motif) and Theorem 2 (all three motifs) vs minimum value
of a for varying b for which experimentally (with only trian-
gle motif, and average of three runs) we were able to recover
the clusters exactly. Empirically, our results demonstrate the
near-optimal performance of motif-counting algorithm, con-
firming the theoretical bound. We also see a clear threshold
behavior on both f-score and node error rate in Figures 4b
and 4c. We have also performed spectral clustering on this
5000-node synthetic dataset (Figures 5a and 5b). Compared
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Figure 5: Results of the spectral clustering on a synthetic
dataset with 5000 nodes.

to the plots of figures 4b and 4c, they show suboptimal per-
formance, indicating the relative ineffectiveness of spectral
clustering in GBM compared to the motif counting algorithm.
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high-dimensional geometry in random graphs. Random Structures
& Algorithms.
Chin, P.; Rao, A.; and Vu, V. 2015. Stochastic block model and

community detection in the sparse graphs: A spectral algorithm with
optimal rate of recovery. arXiv:1501.05021.
Decelle, A.; Krzakala, F.; Moore, C.; and Zdeborová, L. 2011.
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