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Abstract

In contrast to most existing studies that typically character-
ize the developmental sex differences using analysis of vari-
ance or equivalently multiple linear regression, we present
a parameter-free centralized multi-task learning method to
identify sex specific and common resting state functional
connectivity (RSFC) patterns underlying the brain develop-
ment based on resting state functional MRI (rs-fMRI) data.
Specifically, we design a novel multi-task learning model to
characterize sex specific and common RSFC patterns in an
age prediction framework by regarding the age prediction
for males and females as separate tasks. Moreover, the im-
portance of each task and the balance of these two patterns,
respectively, are automatically learned in order to make the
multi-task learning robust as well as free of tunable param-
eters, i.e., parameter-free for short. Our experimental results
on synthetic datasets verified the effectiveness of our method
with respect to prediction performance, and experimental re-
sults on rs-fMRI scans of 1041 subjects (651 males) of the
Philadelphia Neurodevelopmental Cohort (PNC) showed that
our method could improve the age prediction on average by
5.82% with statistical significance than the best alternative
methods under comparison, in addition to characterizing the
developmental sex differences in RSFC patterns.

Introduction

Adolescence is the developmental period during which func-
tional brain maturation interacts with sexual divergence in
social, behavior, and biological changes (Kochhann et al.
2017). Particularly, sex differences are prominent in behav-
ior and have been studying for a long time (Hardee et al.
2017; Qian et al. 2015a). For instance, females are supe-
rior at social cognition and recognition memory than males,
while males perform better in visuospatial and motor tasks
than females (Gur and Gur 2016).

It is of great importance to understand the neural origins
of the developmental sex differences in behavior as both
sex differences and brain structure/function are shaped dur-
ing adolescence to support the brain development and neu-
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ropsychiatric disorders typically begin in adolescence and
are linked to aberrations in neurodevelopment (Di Martino et
al. 2014). Recently, neuroimaging measures, including both
structural and functional neuroimaging measures, have been
adopted as surrogate neural variables for exploring neural
origins of the developmental sex differences (Ingalhalikar et
al. 2014; Alarcón et al. 2015). Particularly, magnetic reso-
nance imaging (MRI) is a widely used technique for sex dif-
ferences analysis (Gur and Gur 2016). Several studies on sex
differences via analyzing gray matter (GM) and white matter
(WM) of the brain MRI data have reported that females have
smaller brain volume and cerebral spinal fluid (CSF) volume
than males, and CSF volume changes faster in males than in
females (Blakemore, Burnett, and Dahl 2010).

Resting state functional MRI (rs-fMRI) provides task-
independent and relatively reproducible biomarkers of func-
tional coherence of activity in different brain regions (Fox
and Raichle 2007). Using resting state functional connectiv-
ity (RSFC) analytic techniques, we are able to investigate the
brain functional organization of both typical brain develop-
ment and neuropsychiatric disorders (Fox and Raichle 2007;
Di Martino et al. 2014) and we can also characterize the
brain state at an individual subject level based on the
RSFC measures using pattern recognition techniques (Fan
and Davatzikos 2017). Recent studies have demonstrated
that RSFC measures are more accurate than cognitive pro-
files for both sex classification and sex differences char-
acterization, and males exhibit weaker nucleus accumbens
functional connectivity than females in adolescent brains
(Müller-Oehring et al. 2017).

Since brain development differs between males and fe-
males across adolescence (Ingalhalikar et al. 2014; Alarcón
et al. 2015), the interaction of age and sex on RSFC has been
investigated using analysis of variance (ANOVA) or equiv-
alently multiple linear regression for exploring neural ori-
gins of sex differences in the developing brain (Alarcón et
al. 2015). However, such analytic tools are typically adopted
in a univariate statistical analysis, not equipped to character-
ize multivariable relationships, such as the interaction of age
and sex on the functional brain network which is typically
characterized by a set of edgewise RSFC measures (Alarcón
et al. 2015).

In order to robustly characterize the interaction of sex
and age on the RSFC measures in a multivariate analy-
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sis setting, we present a parameter-free centralized multi-
task learning method to identify sex specific and common
RSFC patterns underlying the brain development based on
rs-fMRI data in an age prediction framework. Specifically,
our method explicitly identifies two sets of RSFC measures,
namely male specific and female specific RSFC measures,
which contribute differently to the age prediction by mod-
eling the age prediction for males and females as separate
tasks in a multi-task learning framework. At the same time,
the male specific and female specific RSFC measures are
regularized to be sparse and centralized to have a shared,
sex common pattern by optimizing a square root objective
function that models difference between measured and pre-
dicted ages with an �2,1-norm regularization (Hu et al. 2017;
Zhu et al. 2017b; 2016b; Peng and Fan 2016). The impor-
tance of each task and the balance of these two patterns,
respectively, are automatically learned to make the multi-
task learning free of tunable parameters, i.e., parameter-
free for short. As a result, the parameter-free, centralized,
sparse multi-task learning makes our method fast and robust
to noisy measures/outliers. Akin to the ANOVA method,
the sex specific RSFC patterns characterize sex differences
while the sex common RSFC patterns characterize the inter-
action effect of sex and age on the developing RSFC mea-
sures. Furthermore, our method may make these two pat-
terns collaboratively help each other to improve the predic-
tion performance of each task and discover more interesting
patterns which cannot be found in a model built on data from
only one sex group.

We have validated our method based on synthetic and real
datasets. Our experimental results on synthetic datasets ver-
ified the effectiveness of our method with respect to the age
prediction performance. We also investigated the develop-
mental sex differences in RSFC measures based on rs-fMRI
data of 1041 subjects (651 males) of the Philadelphia Neu-
rodevelopmental Cohort (PNC) dataset (Li, Satterthwaite,
and Fan 2017). Our experimental results showed that our
method could improve the age prediction on average by
5.82% with statistical significance than the best alternative
methods under comparison, including state-of-the-art multi-
task learning methods, sex specific age prediction models,
and an age prediction model with sex as a feature, in addi-
tion to characterizing the developmental sex differences in
RSFC patterns.

Methods

In this paper, we denote matrices as boldface uppercase let-
ters, vectors as boldface lowercase letters, and scalars as nor-
mal italic letters. For a matrix X = [xij ], its i-th row and j-th
column are denoted as xi and xj , respectively. We also de-
note the Frobenius norm and the �1-norm of a matrix X as
‖X‖F =

√∑
j ‖xj‖22 and ‖X‖1 =

∑
ij |xij |, respectively.

We denote the transpose operator, the trace operator, and the
inverse of a matrix X as XT , tr(X), and X−1, respectively.

Sparse feature selection

Given an RSFC feature matrix X ∈ R
n×d and its associated

age vector y ∈ R
n, where n and d, respectively, are the num-

ber of subjects and the dimensionality of RSFC features, we
assume that there is a linear relationship between the RSFC
features X and the age vector y. We then use the least square
loss function to measure their similarity or relationship via
following formulation:

min
w

‖y −Xw‖22, (1)

where the coefficient vector w ∈ R
d maps X to y for

achieving the minimal prediction residual ‖y −Xw‖22, and
Xw is the prediction of y.

The least square regression in Eq. (1) has a closed form
solution, i.e., (XTX)−1XTy. However, the inverse opera-
tor is often ill-posed when dealing with high-dimensional
data (Zhu et al. 2017a; Peng and Fan 2017a), e.g., the large
number of d (d > n) in the present study. In this case, a reg-
ularization is always recommended (Peng and Fan 2017b;
Qian et al. 2015b; Chang et al. 2014; Zhu et al. 2017c). On
the other hand, not all the features (i.e., functional connec-
tivity measures between different nodes of the brain) are pre-
dictive for the brain development, i.e., the age prediction. To
address above issues, we employ a sparse regularization to
solve the ill-posed issue and select important features. We
thus have following formulation:

min
w

‖y −Xw‖22 + λ‖w‖1, (2)

where λ ≥ 0 is a nonnegative tuning parameter, and a large
value of λ encourages sparsity of the model.

After solving Eq. (2), the features with zero coefficients in
w are regarded as unimportant features while the remaining
features with nonzero coefficients are regarded as important
features (Yang et al. 2015; Zhang et al. 2017). In this way,
we may use Eq. (2) to conduct feature selection in the in-
dividual groups (i.e., the female group and the male group,
respectively). We can also concatenate the data points in dif-
ferent groups to form a large dataset to build an age predic-
tion model for each group.

Parameter-free centralized multi-task learning

According to existing studies of the developmental sex dif-
ference in RSFC patterns (Alarcón et al. 2015) and our ex-
perimental results summarized in Table 4, we observe that
males and females develop differently with respect to their
RSFC patterns, but share common developmental patterns.
Therefore, we propose to simultaneously identify sex spe-
cific RSFC patterns and sex common patterns in a uniformed
framework, with the expectation that these sex groups col-
laboratively help each other to improve the prediction per-
formance and discover more interesting patterns, which can-
not be found in a model built with only one sex group.

To do this, we regard the prediction of each group (i.e., the
female group and the male group, respectively) as one task.
We then denote the RSFC feature matrices as X1 ∈ R

n1×d

and X2 ∈ R
n2×d (where n1 and n2, respectively, are the

number of the subjects of these two tasks), and their corre-
sponding age vectors as y1 ∈ R

n1 and y2 ∈ R
n2 , respec-

tively. It is noteworthy that our method can deal with cases
where both the number of the subjects and the dimensions of
the features are different in these two tasks. We further use
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the least square loss function to achieve the minimal pre-
diction error of all the tasks and to select the informative
features with following multi-task learning formulation:

min
wt

k∑
t=1

‖yt −Xtwt‖22 + γ‖W‖1, (3)

where W = [w1, ...,wt] ∈ R
d×k and γ is a nonnegative

tuning parameter to control the sparsity ratio of W.
In this study, to achieve the goal that two different tasks

collaboratively help each other, we use a centralized regu-
larization to penalize the variance of the coefficient vectors
(i.e., wt, t = 1, ..., k) by optimizing following objective
function:

min
wt,w̄

k∑
t=1

√‖yt −Xtwt‖22 + ‖wt − w̄‖2,1
+ γ‖W‖1,

(4)

To solve the optimization problem of Eq. (4), i.e., opti-
mizing the variables wt (t = 1, ..., k) and w̄, we compute
the derivatives of the square root in Eq. (4) and obtain the
following formulation⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min
wt,w̄

k∑
t=1

αt(‖yt −Xtwt‖22 + ‖wt − w̄‖2,1)

+ γ‖W‖1, (5a)

αk =
1

2
√‖yt −Xtwt‖22 + ‖wt − w̄‖2,1

. (5b)

Algorithm 1: The optimization algorithm for Eq.
(4).

Input: γ, Xt, and yt (t = 1, ..., k);
Output: αt, w̄, and wt (t = 1, ..., k);

1 Initialize αt as αt =
1
k (t = 1, ..., k);

2 repeat
3 Optimize Eq. (5a);
4 Update αt via Eq. (5b);
5 until Eq. (4) converges;

Given αk in Eq. (5b), we can optimize Eq. (5a) via se-
quentially taking the derivative with respect to the variables
wt (t = 1, ..., k), and w̄. However, the value of αk is de-
pendent on the optimization of these variables, which are
also dependent on the value of αk. In this study, we propose
to solve the original objective function in Eq. (4) via alter-
natively updating Eq. (5b) and Eq. (5a), until Algorithm 1
converges.

In Algorithm 1, the optimization of Eq. (5b) is straightfor-
ward, and we therefore focus on the optimization of Eq. (5a)
via alternatively solving following two formulations itera-
tively until the objective function value of Eq. (5a) is stable⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min
wt,w̄

k∑
t=1

αt(‖yt −Xtwt‖22 + βt‖wt − w̄‖22)

+ γ‖W‖1, (6a)

βk =
1

2
√‖wt − w̄‖2

(6b)

We arrange Eq. (6a) to obtain the following formulation:

min
wt,w̄

k∑
t=1

‖ŷt − X̂twt‖22 + γ‖W‖1 (7)

where ŷt = [
√
αky

T
t ,

√
αkβkw̄

T ]T ∈ R
(n+d)×1, X̂t =

[
√
αkX

T
t ,

√
αkβkI]

T ∈ R
(n+d)×d, and I ∈ R

d×d is an
identity matrix. Eq. (7) is a standard objective function of
sparse multi-task learning, which can be solved by the tool-
box MALSAR (Zhou, Chen, and Ye 2011).

The optimization of our objective function Eq. (4) may
obtain a local optimal solution. However, both the predic-
tion and the convergence of our method were insensitive
to the initialization because our method achieved good pre-
diction performance and fast convergence by only initializ-
ing wt with the least square results, i.e., (XT

t Xt + 0.001 ∗
I)−1XT

t yt, and setting w̄ to the average of all wt, αt =
1
k ,

and βt =
1
k , t = 1, ..., k.

Our objective function in Eq. (4) brings several advan-
tages. Firstly, once Eq. (6a) achieves convergence, the val-
ues of αk in Eq. (5b) and βt in Eq. (6b), respectively, can
be regarded as weights of the tasks and the centralized regu-
larization. It is noteworthy that both αk and βt are automat-
ically obtained without tuning parameters, i.e., parameter-
free. Moreover, if the t-task is important, then the predic-
tion error of both the loss function and the centralized reg-
ularization are small. This indicates that our parameter-free
method is meaningful. Secondly, w̄ is the mean vector of wt

(t = 1, ..., k), while αtβt is the weight to reduce the variance
of wt in the term αtβt‖wt − w̄‖22 in Eq. (6b), i.e., making
all the tasks similar. Specifically, αtβt is used to measure
the diversity and the flexibility of Xt. If Xt is more similar
to other tasks, the value of αtβt should be bigger to push
wt closer to w̄. In this case, Xt has less flexibility (i.e., sex
specific patterns) and more stability (i.e., sex common pat-
terns). Moreover, the parameter-free optimization automati-
cally balances contributions of sex specific patterns and sex
common patterns to the age prediction.

Convergence Analysis

The convergence of Algorithm 1 and Eq. (6a) is provided as
following. Particularly, the convergence of Eq. (6a) has been
proved in (Zhou, Chen, and Ye 2011). Algorithm 1 is a spe-
cial case of the Iteratively Re-weighted Least Square (IRLS)
framework (Daubechies et al. 2010; Zhu et al. 2017a), and
its convergence and effectiveness have been theoretically
verified. To do this, we have following lemma (Hu et al.
2017; Zhu et al. 2017b).
Lemma 1. For any positive real numbers u and v, following
inequality always holds:

√
u− u

2
√
v
≤ √

v − v

2
√
v
. (8)

Theorem 1. The objective function value in Eq. (4) mono-
tonically decreases until Algorithm 1 converges.

Proof. We denote ŵt, ˆ̄w, and α̂t as the updated wt, w̄, and
αt in each iteration, and then present the convergence anal-
ysis of Algorithm 1 via following three steps.
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• Obtain ŵt (t = 1, ..., k) while fixing w̄, and αt.
We change Eq. (4) with respect to wt (t = 1, ..., k) to:

ŵt = min
wt

√‖yt −Xtwt‖22 + ‖wt − w̄‖2,1
+ γ‖[w1, ...,wt, ...,wk]‖1

(9)

According to Eq. (5b), Eq. (6a), and (Zhou, Chen, and Ye
2011), for each i (i = 1, ..., d), we have

‖yt−(Xt).,i(ŵt)i‖22+‖(ŵt)i−(w̄)i‖2,1
2
√
‖yt−(Xt).,i(wt)i‖22+‖(wt)i−(w̄)i‖2,1

+ γ ((ŵt)i)
2

2‖(W).,i‖

≤ ‖yt−(Xt).,i(wt)i‖22+‖(wt)i−(w̄)i‖2,1
2
√
‖yt−(Xt).,i(wt)i‖22+‖(wt)i−(w̄)i‖2,1

+ γ ((wt)i)
2

2‖(W).,i‖
(10)

where (Xt).,i is the i-column of the matrix Xt and (ŵt)i
is the i-th element of the vector ŵt. According to Lemma
1, we have

√
yt − (Xt).,i(ŵt)i‖22 + ‖(ŵt)i − (w̄)i‖2,1 + γ(ŵt)i

−(
‖yt−(Xt).,i(ŵt)i‖22+‖(ŵt)i−(w̄)i‖2,1

2
√

‖yt−(Xt).,i(wt)i‖22+‖(wt)i−(w̄)i‖2,1
+ γ ((ŵt)i)

2

2‖(W).,i‖ )

≤√‖yt − (Xt).,i(wt)i‖22 + ‖(wt)i − (w̄)i‖2,1 + γ(wt)i

−(
‖yt−(Xt).,i(wt)i‖22+‖(wt)i−(w̄)i‖2,1

2
√

‖yt−(Xt).,i(wt)i‖22+‖(wt)i−(w̄)i‖2,1
+ γ ((wt)i)

2

2‖(W).,i‖ )

(11)

By combining Eq. (10) with Eq. (11), we obtain

√
yt − (Xt).,i(ŵt)i‖22 + ‖(ŵt)i − (w̄)i‖2,1 + γ(ŵt)i

≤√‖yt − (Xt).,i(wt)i‖22 + ‖(wt)i − (w̄)i‖2,1 + γ(wt)i
(12)

After summing all the i, we obtain√‖yt −Xtŵt‖22 + ‖ŵt − w̄‖2,1 + γ‖ŵt‖1
≤√‖yt −Xtwt‖22 + ‖wt − w̄‖2,1 + γ‖ŵt‖1

(13)

After summing all the tasks, we have

k∑
t=1

√‖yt −Xtŵt‖22 + ‖ŵt − w̄‖2,1 + γ‖Ŵ‖1
≤
k∑

t=1

√‖yt −Xtwt‖22 + ‖wt − w̄‖2,1 + γ‖W‖1
(14)

• Obtain ˆ̄w while fixing ŵt (t = 1, ..., k), and αt.
We change Eq. (4) with respect to w̄ to:

ˆ̄w = min
w̄

√
k∑

t=1
‖yt −Xtŵt‖22 + ‖ŵt − w̄‖2,1

+ γ‖Ŵ‖1
(15)

According to Eq. (5b) and Eq. (15), we have
k∑

t=1
(‖yt−Xtŵt‖22+‖ŵt− ˆ̄w‖2,1)

2

√
k∑

t=1
(‖yt−Xtŵt‖22+‖ŵt−w̄‖2,1)

+ γ‖Ŵ‖1

≤
k∑

t=1
(‖yt−Xtŵt‖22+‖ŵt−w̄‖2,1)

2

√
k∑

t=1
(‖yt−Xtŵt‖22+‖ŵt−w̄‖2,1)

+ γ‖Ŵ‖1

(16)

According to Lemma 1, we have√
k∑

t=1
‖yt −Xtŵt‖22 + ‖ŵt − ˆ̄w‖2,1−

k∑
t=1

‖yt−Xtŵt‖22+‖ŵt− ˆ̄w‖2,1

2

√
k∑

t=1
(‖yt−Xtŵt‖22+‖ŵt−w̄‖2,1)

+ γ‖Ŵ‖1

≤√
k∑

t=1
‖yt −Xtŵt‖22 + ‖ŵt − w̄‖2,1−

k∑
t=1

‖yt−Xtŵt‖22+‖ŵt−w̄‖2,1

2

√
k∑

t=1
(‖yt−Xtŵt‖22+‖ŵt−w̄‖2,1)

+ γ‖Ŵ‖1

(17)

By combining Eq. (16) with Eq. (17), we obtain
k∑

t=1

√
‖yt −Xtŵt‖22 + ‖ŵt − ˆ̄w‖2,1 + γ‖Ŵ‖1

≤
k∑

t=1

√‖yt −Xtŵt‖22 + ‖ŵt − w̄‖2,1 + γ‖Ŵ‖1
(18)

By combining Eq. (14) with Eq. (18), we have
k∑

t=1

√
‖yt −Xtŵt‖22 + ‖ŵt − ˆ̄w‖+ γ‖Ŵ‖1

≤
k∑

t=1

√‖yt −Xtwt‖22 + ‖wt − w̄‖2,1 + γ‖W‖1
(19)

• Obtain α̂t while fixing ˆ̄w and ŵt (t = 1, ..., k).
According to Eq. (5b), α̂t has a closed form solution, and
thus Eq. (19) will be held.

Finally, the iterative optimization in Algorithm 1 will
monotonically decrease the objective function value of Eq.
(4) in each iteration until Algorithm 1 converges to a local
optimization solution of Eq. (4).

Results

Experimental Settings

To evaluate our method, we compared it with following
methods based on data from distinct groups, e.g., males and
females, in a regression prediction setting.

Firstly, we conducted least square linear regression (Re-
gression for short) (Friedman, Hastie, and Tibshirani 2001)
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and Lasso (Tibshirani 1996) to build group specific predic-
tion models upon the data points from each group separately.

Secondly, we built a single prediction model on pooled
data points from all groups, regardless their group differ-
ences using either least square linear regression (ConRegres-
sion for short) or Lasso (ConLasso for short). And then, we
estimated the performance of the prediction model for each
group separately.

Thirdly, we used the group information as an extra feature
to build a single prediction model using Lasso, referred to as
MixLasso for short. We also estimated the performance of
the prediction model for each group separately.

Lastly, by regarding the prediction for each group as
a different task, we carried out multi-task learning with
the standard multi-task learning method (MKL for short)
(Zhu et al. 2016a; Argyriou, Evgeniou, and Pontil 2007;
Zhu, Suk, and Shen 2014). Different from our method, the
MKL method does not consider the weight of different tasks
or the centralized regularization.

All the methods were evaluated using 10-fold cross-
validation. We repeated the whole process 20 times to avoid
possible bias during data partitioning for cross-validation.
The final results were average of all 20 experiments. For the
model selection, the parameters of the regression method
and the Lasso were tuned based on cross-validation, and
we carried out a grid searching on the parameter λ ∈
{10−3, ..., 103} for MKL and our method.

In all experiments, the prediction performance was mea-
sured using Correlation Coefficient (CC) between the pre-
dicted and real values.

Data

Synthetic data We generated four synthetic datasets by
setting different values for the number of groups (k), the
number of features (d), and the number of samples (n).
Specifically, each element of Xt was sampled independent
and identically distributed (i.i.d) from Gaussian distribution
N(0, 1) and then each feature was normalized to have a
unit scale. Each element of the true wt was sampled i.i.d
from the uniform distribution in the interval [−5, 5]. We ran-
domly set zeros to 20% rows of W and randomly replaced
60% elements of the remaining nonzero elements with ze-
ros. Finally, noise δt sampled i.i.d from Gaussian distribu-
tion N(0, 10) was added to the features. The response was
computed as yt = Xtwt + δt.

PNC The Philadelphia Neurodevelopmental Cohort
(PNC) is a collaboration between the Center for Applied
Genomics at Childrens Hospital of Philadelphia (CHOP)
and the Brain Behavior Laboratory at the University of
Pennsylvania (Penn) (Satterthwaite et al. 2014). We fol-
lowed (Li, Satterthwaite, and Fan 2017) to conduct data
preprocessing. All data in this study were acquired on
the same scanner (Siemens Tim Trio 3 Tesla, Erlangen,
Germany; 32-channel head coil) using the same imaging
sequences. One T1 scan was acquired prior to the rsfMRI
scan with 124 time-points for each subject and the T1
images were processed using Freesurfer. Each rsfMRI scan
was first registered to its corresponding T1 image, and then

was projected to the fsaverage surface space via FreeSurfer
after preprocessed using an optimized confound regression
procedure (Li, Satterthwaite, and Fan 2017). Finally, we
obtained preprocessed rsfMRI scans of 1401 subjects aged
8-22 years (651 males). We examined sex differences in
1540 edgewise RSFC measures within a brain network with
56 nodes described in (Li, Satterthwaite, and Fan 2017).

Table 1: CC results of Data 1 (k = 30, n = 1000, d = 400) and
Data 2 (k = 50, n = 1000, d = 2000).

Methods Data 1 Data 2
ConRegression 0.735 ± 0.025 0.676 ± 0.022

ConLasso 0.745 ± 0.027 0.698 ± 0.025
MixLasso 0.749 ± 0.031 0.704 ± 0.023

MKL 0.766 ± 0.032 0.711 ± 0.015
Proposed 0.799 ± 0.012 0.763 ± 0.015

Table 2: CC results of Data 3 (k = 2, n = 1000, d = 400)
Methods Task 1 Task2

Regression 0.877 ± 0.173 0.851 ± 0.176
Lasso 0.889 ± 0.182 0.865 ± 0.195

ConRegression 0.878 ± 0.152 0.862 ± 0.232
ConLasso 0.890 ± 0.123 0.872 ± 0.214
MixLasso 0.909 ± 0.203 0.885 ± 0.167

MKL 0.923 ± 0.111 0.884 ± 0.202
Proposed 0.945 ± 0.112 0.921 ± 0.208

Table 3: CC results of Data 4 (k = 2, n = 1000, d = 2000)
Methods Task 1 Task2

Regression 0.758 ± 0.054 0.801 ± 0.027
Lasso 0.767 ± 0.015 0.804 ± 0.031

ConRegression 0.785 ± 0.084 0.801 ± 0.047
ConLasso 0.788 ± 0.044 0.804 ± 0.028
MixLasso 0.796 ± 0.036 0.811 ± 0.035

MKL 0.805 ± 0.045 0.812 ± 0.045
Proposed 0.837 ± 0.024 0.842 ± 0.018

Table 4: CC results of PNC data
Methods Males Females

Regression 0.562 ± 0.017 0.397 ± 0.022
Lasso 0.566 ± 0.014 0.400 ± 0.025

ConRegression 0.566 ± 0.014 0.421 ± 0.024
ConLasso 0.567 ± 0.013 0.438 ± 0.021
MixLasso 0.571 ± 0.013 0.414 ± 0.017

MKL 0.581 ± 0.016 0.452 ± 0.028
Proposed 0.599 ± 0.012 0.495 ± 0.027

Result analysis: Synthetic datasets

We summarize the CC results of all the methods on four
different datasets in Tables 1-3 to illustrate the effectiveness
of our proposed method for datasets with different numbers
of groups, different number of features, as well as different
numbers of samples.
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From Tables 1 and 2, we observe that our proposed
method outperformed all alternative methods under compar-
ison on different kinds of datasets such as d ≤ n in Table 1
and d ≥ n in Table 2. For example, our method improved on
average by 11.3% and 7.9, respectively, compared with the
worst comparison method (i.e., ConRegression) and the best
comparison methods (i.e., MKL) on two synthetic datasets.
These results indicate that our assumption (i.e., making use
of sex specific and common patterns) is reasonable and our
proposed method is robust.

Table 3 demonstrates that our method also outperformed
all alternative methods under comparison on 2 two-task
datasets with the same number of groups as the PNC data.
Firstly, feature selection methods (such as Lasso, ConLass,
MixLasso, MKL, and our proposed method) outperformed
regression methods using all the features (such as Regres-
sion and Con-Regression), indicating that the feature se-
lection methods were robust to noisy features in the syn-
thetic datasets. Secondly, different groups had different re-
gression performance, highlighting differences among dif-
ferent groups. Thirdly, concatenation methods (i.e., ConRe-
gression and ConLasso) did not always outperform the cor-
responding single-task regression methods since heteroge-
neous data may degrade the prediction performance. These
observations indicate that the prediction performance could
be improved only if all prediction tasks are modeled ef-
fectively, as demonstrated by the results of MKL and our
method in Tables 2-3.

Result analysis: PNC data

Sex differences detected by the single prediction model
We summarize the prediction results of Regression and
Lasso in Table 4, highlighting the developmental sex differ-
ences in RSFC measures. Moreover, the age prediction for
males outperformed the age prediction for females in terms
of the values of coefficient correlation.

In our experiments, we ran our algorithm 200 times (via
repeating 10-fold cross validation 20 times) and in each run
we kept the features with nonzero coefficients for Lasso.
We calculated the frequency of each feature appearing in
all these 200 experiments and identify top selected fea-
tures, i.e., top 50, for each group. We visualize the com-
mon patterns among two groups and sex specific RSFC
patterns, comprising the selected RSFC features in Figure
1. As shown in Figure 1, Default, Visual, and Frontopari-
etal networks were sex common networks, while the pre-
diction of age for females selected Visual networks with
a higher frequency and the prediction of age for males
selected Frontoparietal more frequently. Moreover, Lim-
bic was the least frequently selected network for both the
males and females. All the above results are largely con-
sistent with findings in existing studies (Yeo et al. 2011;
Satterthwaite et al. 2013).

Sex differences detected by the prediction models in
the multi-task learning framework According to Ta-
ble 4, our method achieved the best prediction perfor-
mance, followed by MKL, MixLasso, ConLasso, ConRe-
gression, Lasso, and Regression. For example, our method

improved on average by 12.35% and 5.82%, respectively,
over Lasso and MKL. We also carried out non-parametric
paired-sample tests (at 95% significance level) between the
results of our method and the results of each alternative
method under comparison, and the results indicated that our
proposed method outperformed other methods with statisti-
cal significance. These results indicate that multi-task learn-
ing (such as MKL and our method) may make better use of
sex specific and common patterns for predicting age. More-
over, our method outperformed MKL since our method takes
into consideration the importance of the groups and the bal-
ance of sex specific and common patterns.

Our method in Eq. (4) simultaneously generated two pre-
diction models (i.e., w1 and w2, one for each group). More-
over, these two coefficient vectors were sparse. Accordingly,
we calculated the frequency of the selected features, and
then visualize the corresponding brain networks in Figure 2.
From Figure 2, we observe that our method identified RSFC
patterns similar to the results in single group. For example,
our method also selected RSFC measures among Default,
Visual, and Frontoparietal networks as the most important
features for the age prediction. In contrast to the previous
results, the RSFC measures identified by our method were
selected with a higher frequency, indicating that our method
had higher reliability than the single group method.

In summary, our method achieved the best prediction per-
formance as well as identified RSFC patterns underlying the
developmental sex difference with improved reliability.

Discussion and conclusions

Parameter sensitivity We have shown the variations of
CC of our method at different settings of the parameter γ
in Figure 3. We observe that the best performance of our
method improved on average by 10 compared with the worst
case at different datasets, and our method achieved its best
results when the sparsity ratio was about 30% ∼ 60%. These
observations indicate that our method is sensitive to the pa-
rameter setting. In our method, we use a square root loss
function and an �2,1-norm regularization to reduce two more
parameters to make our algorithm fast. Our method circum-
vents the parameter tuning problem.

Convergence analysis In Section Optimization, we have
theoretically proved the convergence of the proposed algo-
rithm for solving Eq. (4). Figure 4 experimentally demon-
strates the convergence of the proposed Algorithm 1, show-
ing the objective function values of Eq. (4) on the iteration
steps until Algorithm 1 converges. These experimental re-
sults indicate that the proposed Algorithm 1 can effectively
tackle Eq. (4) with a fast convergence within tens of iteration
steps.

In conclusion, we proposed a novel parameter-free cen-
tralized multi-task learning method to automatically learn
the importance of different tasks and the balance of the dis-
tinct and common information associated with the tasks. The
experimental results based on both synthetic and real rsfMRI
data have demonstrated that our method outperformed the
alternative methods under comparison in term of the pre-
diction performance. Furthermore, our method could also
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(a) Common networks (b) Males > Females (c) Females > Males

Figure 1: Visualization of common networks and individual specific networks of two single groups selected by Lasso.

(a) Common networks (b) Males > Females (c) Females > Males

Figure 2: Visualization of common networks and individual specific networks of two-task group selected by our method.
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Figure 3: The convergence of our proposed Algorithm 1, where the abbreviation “OFV” means “objective function value”.

identify informative RSFC patterns that are predictive for
the brain development.
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