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Abstract

Automatic generation of 3D visual content is a fundamen-
tal problem that sits at the intersection of visual computing
and artificial intelligence. So far, most existing works have
focused on geometry synthesis. In contrast, advances in au-
tomatic synthesis of color information, which conveys rich
semantic information of 3D geometry, remain rather limited.
In this paper, we propose to learn a generative model that
maps a latent color parameter space to a space of coloriza-
tions across a shape collection. The colorizations are diverse
on each shape and consistent across the shape collection. We
introduce an unsupervised approach for training this gener-
ative model and demonstrate its effectiveness across a wide
range of categories. The key feature of our approach is that it
only requires one colorization per shape in the training data,
and utilizes a neural network to propagate the color informa-
tion of other shapes to train the generative model for each
particular shape. This characteristics makes our approach ap-
plicable to standard internet shape repositories.

Introduction

In this paper, we introduce an unsupervised method that
trains a generative model to synthesize diverse and consis-
tent color information across a shape collection (See Fig-
ure 1). Our work is motivated from recent advances in image
colorization that train end-to-end neural networks for con-
verting gray images into color images. However, our prob-
lem setting is different in several ways. First, we aim to gen-
erate diverse and consistent color content across a shape col-
lection. In contrast, most existing image colorization tech-
niques either can only synthesize a single color image for
each input gray image or require that the training data con-
tain multiple color images for each gray image for synthesiz-
ing diverse colorizations. Moreover, while each gray image
possesses an effective regularization for the underlying color
image, lacking such constraints on 3D geometry makes 3D
colorizations considerably harder. Finally, unlike the breadth
of resources available for 2D convolutional neural networks,
3D deep learning is a relatively under-explored field, and
synthesizing appearance on surface geometry requires de-
veloping appropriate neural networks. The proposed neural
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network takes a shape and a latent color parameter as in-
put and outputs a colorization of the input shape. By vary-
ing the latent parameters (e.g., the rows in Figure 1), we
obtain diverse boundary-preserving colorizations for a sin-
gle shape. Moreover, by varying the input shapes, we obtain
consistent colorizations across a shape collection. We intro-
duce a principled way to train this generative model from
a training dataset that only offers a single colorization per
shape (e.g., typical internet shape collections). The central
idea is to design the generative model so that it takes a latent
parameter and a shape as input to generate a 3D coloriza-
tion, which can then be used to generate a colorization for
a different shape. This network design enables us to train
the generative model at each shape by implicitly propagat-
ing color information of neighboring shapes. We introduce
a simple, yet effective formulation to train this generative
model. The objective function consists of a regularization
term and a data term. The regularization term constrains that
latent color parameters of input shapes follow a prior distri-
bution (e.g., the normal distribution). We formulate this term
as minimizing the Earth-Mover distance (EMD) between the
latent samples to an empirical distribution sampled from the
prior distribution. We find that this strategy works remark-
ably well when the dimensionality of the parameter space is
low (we use 5 for all the shape collections). The data term
penalizes the difference between the synthesized coloriza-
tions and the real colorizations. The objective function can
be easily optimized via alternating minimization, i.e., it al-
ternates between optimizing the latent parameters and the
network parameters. Each step leads to simple optimizations
that can be solved very effectively. We have evaluated the
proposed approach on five diverse categories collected from
ShapeNet (Chang et al. 2015). We train a separate generative
model for each category. The resulting network can synthe-
size diverse and consistent colorizations across each shape
collection. We also compare the proposed approach with al-
ternative approaches, demonstrating the effectiveness of the
proposed network design and the training procedure.

Related Works

2D colorization. Generating colored digital content has
been studied extensively in the 2D image domain. In terms
of human interaction, early works on image colorization
focused on interactive colorization (Levin, Lischinski, and
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Figure 1: We introduce how to learn consistent and diverse colorizations across a shape collection. The first row shows the input
color on each shape. The remaining rows show consistent (per row) and diverse (per column) colorizations obtained by varying
a latent color parameter. Each row shares the same latent color parameter

Weiss 2004; Yatziv and Sapiro 2006; Pouli and Reinhard
2010), while more recent works have focused on auto-
matic colorization (Cheng, Yang, and Sheng 2015). From
a machine learning perspective, some methods are non-
parametric (Welsh, Ashikhmin, and Mueller 2002). Other
methods learn image colorization from large collections of
data (Cheng, Yang, and Sheng 2015; Iizuka, Simo-Serra,
and Ishikawa 2016). A fundamental challenge in coloriza-
tion is that there may exist multiple plausible coloriza-
tions of one input image; this issue is partially addressed
in recent works (Larsson, Maire, and Shakhnarovich 2016;
Zhang, Isola, and Efros 2016; Deshpande et al. 2016) for
the purpose of generating a single colorization. Specifically,
(Larsson, Maire, and Shakhnarovich 2016; Zhang, Isola, and
Efros 2016) trained convolutional neural networks to pre-
dict a color histogram for every pixel. (Deshpande et al.
2016) use a variational auto-encoder to model the condi-
tional dependence between the input grayscale image and
the color image. These methods, however, cannot generate
consistent and boundary-preserving colorizations through
sampling. In a recent work, (Zhang et al. 2017) tackle the
diverse colorization generation problem by using a local-
global-hint network. However, it requires large-scale train-
ing data, which potentially includes multiple colorizations
of the same object. The problem studied in this paper dif-
fers from existing image colorization problems in that we
want to train a network that predicts diverse colorizations
for each individual shape, despite the fact that the train-
ing data only provides a single colorization for each one.
Moreover, since the number of training instances we have
for 3D models is significantly smaller than that in the im-
age domain, we found that popular training methods (e.g.,
conditional GAN), which work well in the image domain,
did not apply well to the 3D domain. Generative modeling.
In a broader picture, our work is related to recent advances

in generative modeling using neural networks. Popular gen-
erative modeling techniques include generative adversarial
networks (GAN) (Goodfellow et al. 2014; Zhao, Mathieu,
and LeCun 2016; Arjovsky, Chintala, and Bottou 2017),
variational autoencoders (VAE) (Kingma and Welling 2013;
Kingma, Salimans, and Welling 2016), and autoregres-
sion (Van Den Oord, Kalchbrenner, and Kavukcuoglu 2016).
(Larsen et al. 2015) combine VAE with GAN to jointly learn
a distance measure. The difference in our approach is that we
drop the encoder by using an explicit latent coding assign-
ment, and we use Earth-Mover distance as the distance mea-
sure. Besides colorization, people have applied generative
models to other domains, such as image synthesis (Goodfel-
low et al. 2014; Arjovsky, Chintala, and Bottou 2017) and
voxel-based 3D model synthesis (Wu et al. 2016). Our prob-
lem is significantly harder since we are learning a higher di-
mensional conditional distribution with small-scale training
data.

3D colorization. The standard technique for associating a
3D model with color and texture is texture mapping (Blinn
and Newell 1976; Lévy 2001). These approaches require
predefined texture patterns, and thus are not suitable for
the task of synthesizing new colorizations of 3D shapes.
Other colorization techniques utilize user constraints. (Leif-
man and Tal 2012) colorize a 3D mesh model by propagating
user input colors throughout the mesh. (Chajdas, Lefebvre,
and Stamminger 2010) develop an algorithm to assist users
in assigning textures to scenes. More recent work focuses on
data-driven colorization. (Jain et al. 2012) provide color sug-
gestions for man-made shapes by utilizing a database of 3D
shapes. Their method builds upon part-based shape repre-
sentations and infers part colors by leveraging shape similar-
ity and color compatibility between adjacent parts. (Chen et
al. 2015) optimize color suggestions for 3D scenes that sat-
isfy user constraints and maximize an aesthetic score. None
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Figure 2: Network Architecture. This figure shows the network architecture used in our method. The network consists of three
components. The first component takes the shape as input and outputs a compressed volume feature. The second component
passes this compressed feature through several deconvolutional layers and incorporates the information from a latent z vector to
generate a voxel-based colorization. The final component applies a mask to derive a colorization that corresponds to that mask.

of these works, however, are able to synthesize colorizations
in a controlled and consistent manner.

Approach

In this section, we describe the technical details of the pro-
posed approach for learning a consistent generative coloriza-
tion model across a shape collection.

Approach Overview

Suppose we have a collection of colored 3D models
{(C1, S1), · · · , (Cn, Sn)}, where Ci and Si denote the color
and geometry information of the i-th shape, respectively.
Our goal is to train a generative neural network that takes
a shape S and a latent vector z ∈ R

d as input and outputs
its colorization C. In this paper, we employ a volumetric
representation of 3D models and parameterize the genera-
tive neural network as Gθ(S

inp, z, Smask). Here θ denotes
the network parameters; Sinp denotes a volumetric represen-
tation of the input shape; z is a latent vector that controls the
output; Smask is a volumetric mask that determines the out-
put shape and the synthesized colorization. As we will see
later, introducing a separate mask shape Smask gives us more
flexibility to train the generative neural network. In partic-
ular, it allows us to propagate color information from simi-
lar shapes to train the generative model for each individual
shape, addressing the issue of having a single color config-
uration per model in the training data. Note that in the in-
ference stage, we always call Gθ(S

inp, z, Sinp) to obtain col-
orization results. To learn the generative model, we propose
to utilize a classification loss function D(·, ·) for comparing
two colorizations. This is conceptually similar to utilizing
a pre-trained perceptual distance metric (Dosovitskiy and
Brox 2016) for image synthesis, except that our focus here
is on color synthesis. Instead of comparing real data and syn-
thetic data in the object space, we propose to compare them
in the original space. This is done by measuring the Earth-
Mover distance between the latent parameters of the input
shapes to an empirical distribution sampled from the prior
distribution. As we will see later, a key advantage of this for-

mulation is that the objective function naturally decomposes
into ancillary optimization problems that are easy to solve
when optimizing the latent parameters. With this setup, we
introduce a two-term objective function for learning the gen-
erative network:

min
θ,Z

Edata(θ,Z) + Eregu(Z) (1)

Here Z = {z1, · · · , zn} collects the latent parameters of the
input shape. The data term Edata(θ,Z) measures the similar-
ity between the input colorizations and the synthesized ones.
The regularization term Eregu(Z) enforces that the empirical
distribution specified by Z is aligned with the prior distribu-
tion of z. In the remainder of this section, we describe these
two objective terms, the network design, and how to opti-
mize (1) in detail.

Network Architecture

Figure 2 illustrates the generative network architecture used
in this paper. The network is adapted from the network
used for 3D shape synthesis (Isola et al. 2016; Wu et al.
2016), with novel designs tailored for our problems. The
input to our network is a binary voxel grid of dimension
64×64×64×1, representing the input shape Si. Si is passed
through five 3D convolution layers with a down-sampling
factor of 2, resulting in an intermediate layer Lm of size
2 × 2 × 2. This intermediate encoding then passes through
3 deconvolution layers. Afterwards the network splits into
two branches that predicts l channel and ab channel respec-
tively. We use a d = 5 dimension vector z to encode the
latent color parameter. z passes through a fully connected
layer to enlarge its dimension and is then multiplied by each
of the hyper-column features of the second-to-last layer.
The product is then passed through the last convolutional
layer. The two branches are concatenated together to form
a 64 × 64 × 64 × 3 dimension color grid and then masked
by shape Sj to get the final color voxel model. We incorpo-
rate skip layers between the corresponding convolution and
deconvolution layers in order to compensate the spatial in-
formation loss during down-sampling. All the convolution
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layers have kernel size 3× 3× 3. We also use batch normal-
ization (Ioffe and Szegedy 2015) to stabilize the training.

Data Term

The data term aligns the synthesized colorizations and the
input ones with respect to the underlying color distance met-
ric D(·, ·). In the following we will first describe how to for-
mulate the data term when D(·, ·) is given. We then describe
the formulation of D(·, ·).
Colorization propagation. A naive way to formulate the
data term is to add the difference between the synthesized
colorization and the given colorization of each shape in the
training data:

Êdata(θ,Z) =

n∑

i=1

D(
Ci, Gθ(Si, zi, Si)

)
. (2)

In our implementation, we found that (2) did not work well.
The main reason is that the training data only contains one
colorization per model, which is insufficient for learning to
synthesize multiple colorizations. To address this issue, we
modify the basic formulation described in (2) such that col-
orizations of other shapes contribute to the color synthesis
of each individual shape, with contributions being weighted
by shape distances:

Êdata(D, θ,Z) =
∑

1≤i,j≤n

wijD
(
Cj , Gθ(Si, zj , Sj)

)
, (3)

where

wij = exp
(− d2(Si, Sj)

2σ2

)
, σ = median

1≤i,j≤n
d(Si, Sj),

and the shape distance metric is given by the Hausdorff dis-
tance between two shapes. Note that this simple formulation
is made possible for the network design, where we replace
the mask by different shapes for the purpose of propagating
color information.
Classification loss. Popular choices for D(·, ·) include re-
gression loss (e.g., see (Larsson, Maire, and Shakhnarovich
2016)) and classification loss (e.g., see (Zhang, Isola, and
Efros 2016)). We have tried both options and found that
classification loss generally leads to better results. On the
other hand, the cost we pay when utilizing classification loss
is that the memory cost scales linearly with the number of
classes. To address this issue, instead of clustering LAB val-
ues directly to obtain discrete color classes, we first run K-
means clustering on the L channel to obtain 10 classes. We
then run K-means clustering on the AB channel values to
obtain 10 more classes, totaling to 100 representative clus-
ters in the original LAB space. The loss function is thus the
sum of two loss functions:

D(·, ·) = Dl(·, ·) +Dab(·, ·). (4)

Each term Dt(·, ·), t ∈ {l, ab} counts the misclassified vox-
els. Since the color distribution is highly imbalanced, we use
the color-frequency to re-weight the misclassifications:

Dt(C,C) =
∑

1≤i,j,k≤64

1

γf(cijk) + (1− γ)funi
δ(cijk �= cijk)

Figure 3: Latent parameters. The first row and the first two
subfigures of the second row show the marginal distribu-
tions, plot of the first two dimensions, and the covariance
matrix of the latent parameters Z , respectively. The last two
figures of the second row and the third row show those of Z .

where t ∈ {l, ab}, cijk and cijk denote the predicted class
and the ground-truth of the ijk-th cell of the predicted vol-
umetric coloring C and the ground-truth C. f(cijk) is the
normalized frequency of class cijk (i.e., f(cijk) = 0.1 if the
color distribution is uniform). funi is the uniform distribu-
tion (i.e., funi = 0.1). We set γ = 0.5 in our experiments.

Prior Term

The prior term ensures that the latent variables in Z follow
the normal distribution N (0, Id). Since we employ a rela-
tively low dimensional parameter space (d = 5 in this pa-
per), we introduce a simple but effective formulation, i.e.,
we first take n samples {z1, · · · , zn} from the normal dis-
tribution N (0, Id). We then formulate the prior term as

Eregu(Z) = μ min
p∈Pn

n∑

i=1

‖zi − zp(i)‖2, (5)

where Pn is the space of permutations of order n. In other
words, the prior term minimizes the Earth-Mover distance
between Z and Z = {z1, · · · , zn} under the L2 norm.
μ balances the prior term and the data term. In this pa-
per, we choose μ = 1 for all of our experiments. (5) is
motivated from the VAE-GAN (Larsen et al. 2015), which
aligns distributions in the parameter space, and WGAN (Ar-
jovsky, Chintala, and Bottou 2017), which demonstrates that
the EMD metric is superior to KL-divergence for comparing
distributions. Figure 3 compares the marginal distributions
of Z and the optimized Z on the car category. We can see
that they are comparable with regards to the approximation
power of the underlying normal distribution.

Optimization

Substituting (5) and (3) into (1), we arrive at the following
objective function for learning the generative network for
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Figure 4: Visual comparison in volumetric representation. In this figure, we show the visual comparison between the synthesis
voxels of our method and other methods. For each model, we show the original model, as well as the colorization of each
method.

colorization:

min
θ,Z

∑

1≤i,j≤n

wijD(Cj , Gθ(Si, zj , Sj)) + μ min
p∈Pn

n∑

i=1

‖zi − zp(i)‖2

(6)

Since the network parameters θ, the latent parameters Z ,
and the permutation p are naturally decoupled in (6), we ap-
ply alternating minimization to solve (6), i.e., each step of
the alternating minimization optimizes one group of vari-
ables while fixing the other group of variables. Since (6) is
highly non-convex, we need to initialize the variables prop-
erly. In our implementation, we first initialize the latent pa-
rameters Z and the permutation p. We then alternate be-
tween optimizing (θ, Z) and p. The rest of this section pro-
vides the details.
Latent parameter initialization. A good initialization
should result in input shapes with different appearances be-
ing distant from each other and shapes with similar appear-
ances being close to each other within the latent parameter
space, respectively. In our implementation, we initialize the
latent parameters by solving a quadratic assignment prob-
lem:

min
p∈Pn

∑

1≤i<j≤n

(dij − ‖zp(i) − zp(j)‖)2 (7)

where dij = ‖Ci − Cj‖ is the color difference between
the volumetric representations of Si and Sj . Before solv-
ing (7), we scale dij so that {dij , 1 ≤ i < j ≤ n}
and {‖zi − zj‖, 1 ≤ i < j ≤ n} have the same mean.
Solving (7) exactly is known to be NP-hard. We therefore
adapt the spectral relaxation of MAP inference described
in (Leordeanu and Hebert 2006), which delivers satisfactory
approximate solutions to (7) in our experiments.
Network parameter optimization. It is easy to see that op-
timizing the network parameter amounts to solving the fol-
lowing optimization problem

min
Z

∑

1≤i≤j≤n

wijD
(
Cj , Gθ(Si, zj , Sj)

)
(8)

(8) becomes the standard network regression problem and
we apply stochastic gradient descent for optimization.
Latent parameter optimization. When optimizing the la-
tent parameters Z , (6) reduces to

min
Z

∑

(i,i′)∈G
wijD

(
Cj , Gθ(Si, zj , Sj)

)
+μ

n∑

i=1

‖zi−zp(i)‖2

We employ stochastic gradient descent with the Adam opti-
mizer for optimization (Kingma and Ba 2014).
Permutation optimization. When optimizing the permuta-
tion φ with other variables being fixed, (6) reduces to

min
p∈Pn

n∑

i=1

‖zi − zp(i)‖2 ⇔ max
p∈Pn

n∑

i=1

zT
i zp(i) (9)

In other words, optimizing the permutation is equivalent to
solving an assignment problem. In our implementation, we
use the Hungarian algorithm to solve this, which is suffi-
ciently tractable for all the datasets used in this paper.
Convergence of alternating minimization. In our imple-
mentation, we found that the alternating optimization usu-
ally converges in 500-700 iterations (i.e., the training error
becomes stable).

Experimental Evaluation

In this section, we provide an experimental evaluation of the
proposed colorization method.

Experimental Setup

n ‖σgeo‖ ‖σcolor‖ ttrain
Car 400 2.3e5 3.2e5 15h
Airplane 400 1.3e5 2.3e5 15h
Chair 400 3.4e5 8.9e5 15h
Table 400 3.1e5 7.2e5 15h
Motorbike 213 2.0e5 2.3e5 14h

Table 1: Statistics of the datasets used in this paper. From
left to right: n: number of models; ‖σgeo‖: norm of the geo-
metric variance; ‖σcolor‖: norm of the color variance; ttrain:
training time;

Dataset. We evaluated our approach on 5 representative cat-
egories of ShapeNetCore (Chang et al. 2015) (See Table 1).
The models on ShapeNetCore come from 3D Warehouse 1,
and thus are associated with part information and color in-
formation. For each category, we manually select models
that have rich color information(400 models for each cat-
egory). We reserve 25% of these models as testing data. Ta-
ble 1 provides the data statistics. In particular, we provide

1https://3dwarehouse.sketchup.com/
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Training error Testing error

Figure 5: This figure shows the reconstruction errors of our
method on the training and testing datasets of each category.

two measures, ‖σgeo‖ and ‖σcolor‖, to show the variance of
each category. Here, σgeo is a covariance matrix of the vec-
torized voxel representation of the shape, and σcolor is that
of the corresponding color channel. Their spectral norms
provide an assessment of the variance of the training data.
Baseline Comparison. We consider two alternative ap-
proaches for baseline comparison:
• Conditional WGAN. The first baseline is conditional

GAN (Mirza and Osindero 2014), which has been adapted
in recent state-of-the-art image colorization techniques
(See e.g., (Zhang, Isola, and Efros 2016)). In our exper-
iments, we enhance the original formulation of Condi-
tional GAN with the Wasserstein distance measure (Ar-
jovsky, Chintala, and Bottou 2017), leading to a strong
baseline. This baseline is used to demonstrate the ability
of our method for synthesizing diverse colorizations for
each shape.

• Without propagation. The second baseline is the modi-
fied training objective function (2), where we do not prop-
agate the color information across different shapes. This
network is used to show that propagating color informa-
tion across adjacent shapes is crucial for training a gener-
ative model that can synthesize diverse colorizations.

Evaluation protocols. We conduct both qualitative and
quantitative evaluations. Qualitatively, we output 6 coloriza-
tion results for each method and compare the results visually
in Figure 4. Quantitatively, we compare the reconstruction
errors of each method on both training and testing datasets.
For the reconstruction error of the training set, we simply
compute the distance between the ground-truth color grid
and generated color grid using corresponding latent param-
eters. For the reconstruction error of the testing set, We find
the optimal latent parameter for each input model and com-
pute the discrepancy. Specifically, for each model Sj in the
test set and each trained neural network Gθ(Sj , z, Sj), we
measure the reconstruction error with respect to the optimal
latent parameter z�:

z� = min
z

D(Cj , Gθ(Sj , z, Sj)). (10)

The test set reconstruction error provides an assessment of
the generalization behavior of a generative network.

Analysis of Results

Figure 1 and the supplemental material illustrate represen-
tative results of the proposed technique. Each result is in-
terpreted as a table, where the rows index through different

Training error Testing error

Figure 6: Loss function comparison. We compare the pro-
posed classification loss with alternative loss functions. The
proposed loss function leads to the closest reproduction re-
sult compared to utilizing other loss functions.

Figure 7: Color variance We illustrate the importance of
color propagation by comparing the color variance of gen-
erated models. Using proposed propagation leads to much
more diverse color generation.

shapes and the columns index through different latent pa-
rameters. They are obtained by aggregating the color infor-
mation within each object part and rendered using povray.
Voxel-level results can be seen in Figure 4. Overall, the col-
orizations are fairly comparable to those in the training data.
The synthesized colorizations are also diverse — they are
generally different from the original colorization associated
with each shape. It is worth to note that, as can be seen
from Figure 4, our method can produce consistent bound-
aries when varying the latent coding z whereas other meth-
ods fail. This feature is critical in the sense that we want the
latent coding to interpret semantic colors. Moreover, the col-
orizations are fairly consistent among shapes in each shape
collection. We can obtain similar colorization by applying
the same latent coding z to all models. This justifies the de-
sign purpose of the proposed approach, i.e., generating con-
sistent colorizations across a shape collection.

To compare the colorizations across different categories,
we also plotted the reconstruction errors of the participating
categories (See Figure 5) on both the training and testing
sets. The colorizations exhibit similar reconstruction errors
across different groups, which suggest that the proposed ap-
proach is fairly robust across different categories.

Further Analysis of the Proposed Approach

Baseline comparison. We have compared the proposed ap-
proach with two baseline approaches, namely, conditional
WGAN and the variant of our method that does not propa-
gate the color information across adjacent shapes. As shown
in Figure 4, our approach is far better than conditional
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WGAN and the ‘without propagation’ variant. Specifically,
our approach is the only approach among the three that
can generate diverse and consistent colorizations. The col-
orizations also nicely capture the semantic features of the
underlying objects, including wheels, windows, and front
and back lights. In contrast, neither conditional WGAN nor
‘without-propagation’ can generate diverse and realistic re-
sults. Moreover, the visual quality of their results are signif-
icantly worse than ours, containing salient high-frequency
noise. This is a sign of overfitting, which is incurred by lim-
ited training data from 3D shapes both in terms of database
size and the fact that there is only one colorization per shape.
We demonstrate the effectiveness of color propagation from
similar shapes in Figure 7. We can clearly see that color
propagation enables the generative model to produce diverse
colorization.

We also investigated the effectiveness of information
passed through the encoder network. We tried to remove the
encoder part, and masked the output color grid of decoder
with Si to get colorization Ci. This approach turned out to
be very hard to train, and we were not able to get reasonable
results using this approach. Our explanation is that different
types of objects within the same category compete against
each other. For example, car has multiple types(e.g. Sedan,
SUV, Truck), and the output should be dependent on such
information.

We conducted two user studies that respectively exam-
ine the coloriziation quality and diversity. For each test, we
asked each of the 20 participants 5 questions. To test the col-
orization quality, each question contained a set of three im-
ages that include results from our approach, our approach
without propagation, and conditonal WGAN. Participants
were required to rank the three images according to their
visual quality. For the diversity test, each question contained
9 colorization results (3 for each method ) of 3 models. Par-
ticipants were required to rank different methods according
to the diversity of generated colorizations. The survey shows
that 79% of the time our generated images were ranked as
the most visually-appealing colorization, whereas ‘without
propagation’ and conditional WGAN were 15% and 6%, re-
spectively. The diversity test shows that our method was the
best among 73% of the instances, while ‘without propagatio’
and‘conditional WGAN’ were 12% and 15%, respectively.
Loss function. We next compare the classification loss em-
ployed in this paper with two alternative loss functions:

• Single-10: We use a single classification loss to train the
neural network. The original continuous colors were dis-
cretized into 10 classes using K-means clustering.

• Regression loss: We minimize ‖C −Gθ(S, z, S)‖2F .

Figure 6 compares the proposed classification loss used
in this paper, the two loss functions described above, and
conditonal WGAN. We can see that employing separate loss
functions on L and AB channels leads to more fine-grained
results than Single-10. This is not surprising since the pro-
posed approach utilizes a greater number of latent color
classes. Moreover, both classification loss functions are su-
perior to the regression loss in terms of testing error. This
behavior is consistent with the results on image coloriza-

tion, where the classification loss performs better than the
regression loss (c.f. (Zhang, Isola, and Efros 2016)). In ad-
dition, all three methods are significantly better than condi-
tional WGAN, which indicates the advantage of our training
framework when the size of the training data is small.

fferent layers. we can see that the learned neurons capture
the semantics of the underlying model, e.g., part structures,
and correlations among the parts (the back and front of the
cars tend to have simiar colors, and the wheels have the sim-
ilar colors, too).

Conclusions and Future Work

In this paper, we have introduced a novel approach for col-
orization synthesis on 3D models. Instead of generating
a single colorization configuration per 3D model, our ap-
proach learns a generative model that maps a prior distri-
bution of a latent colorization parameter space to the space
of colorization configurations on each model. This enables
us to generate a diverse set of colorizations that are consis-
tent across a shape collection. We showed a principled ap-
proach for learning such a generative model from datasets
in which each shape only possesses a single colorization
configuration. The usefulness of this generative model is
demonstrated both experimentally on benchmark datasets as
well as in the application of colorization interpolation.

The presented approach can be generalized in many ways.
Two natural extensions include material synthesis for 3D
scenes as well as texture synthesis on 3D geometry. More-
over, although the learning framework proposed in this pa-
per can be applied in both cases, the voxel representation
employed in this paper would be inadequate. The techni-
cal challenge is thus to design suitable geometric represen-
tations for these two tasks. Finally, it would be interesting
to learn generative models by transferring colorization and
texture information from images. This could potentially ad-
dress both the quality and scalability issues of existing 3D
datasets. One potential formulation is to learn the generative
model so that the distribution of projected images match that
of the input images. However, the major challenge in this
case still lies in designing suitable data representations for
3D geometry.
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