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Abstract

Pronouns are frequently omitted in pro-drop languages,
such as Chinese, generally leading to significant chal-
lenges with respect to the production of complete trans-
lations. To date, very little attention has been paid to the
dropped pronoun (DP) problem within neural machine
translation (NMT). In this work, we propose a novel
reconstruction-based approach to alleviating DP trans-
lation problems for NMT models. Firstly, DPs within
all source sentences are automatically annotated with
parallel information extracted from the bilingual train-
ing corpus. Next, the annotated source sentence is re-
constructed from hidden representations in the NMT
model. With auxiliary training objectives, in terms of
reconstruction scores, the parameters associated with
the NMT model are guided to produce enhanced hidden
representations that are encouraged as much as possi-
ble to embed annotated DP information. Experimental
results on both Chinese–English and Japanese–English
dialogue translation tasks show that the proposed ap-
proach significantly and consistently improves transla-
tion performance over a strong NMT baseline, which is
directly built on the training data annotated with DPs.

Introduction

In pro-drop languages, such as Chinese and Japanese, pro-
nouns can be omitted from sentences when it is possible to
infer the referent from the context. When translating sen-
tences from a pro-drop language to a non-pro-drop language
(e.g., Chinese to English), machine translation systems gen-
erally fail to translate invisible dropped pronouns (DPs).
This problem is especially severe in informal genres such as
dialogues and conversation, where pronouns are more fre-
quently omitted to make utterances more compact (Yang,
Liu, and Xue 2015). For example, our analysis of a large
Chinese–English dialogue corpus showed that around 26%
of pronouns were dropped from the Chinese side of the
corpus. This high proportion within informal genres shows
the importance of addressing the challenge of translation of
dropped pronouns.

Researchers have investigated methods of alleviating the
DP problem for conventional Statistical Machine Transla-
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Input (它它它)根本没那么严重

Ref It is not that bad
SMT Wasn ’t that bad
NMT It ’s not that bad

Input 这块面包很美味 !你你你烤的 (它它它)吗 ?
Ref The bread is very tasty ! Did you bake it ?

SMT This bread , delicious ! Did you bake ?
NMT The bread is delicious ! Are you baked ?

Table 1: Examples of translating DPs where words in brack-
ets are dropped pronouns that are invisible in decoding.
NMT model’s successes on translating simple dummy pro-
noun (upper panel), while fails on a more complicated one
(bottom panel); SMT model fails in both cases.

tion (SMT) models showing promising results (Le Nagard
and Koehn 2010; Xiang, Luo, and Zhou 2013; Wang et
al. 2016a). Modeling DP translation for the more advanced
Neural Machine Translation (NMT) models, however, has
received substantially less attention, resulting in low perfor-
mance in this respect even for state-of-the-art approaches.
NMT models, due to their ability to capture semantic infor-
mation with distributed representations, currently only man-
age to successfully translate some simple DPs, but still fail
when translating anything more complex. Table 1 includes
typical examples of when our strong baseline NMT system
fails to accurately translate dropped pronouns. In this pa-
per, we narrow the gap between correct DP translation for
NMT models to improve translation quality for pro-drop lan-
guages with advanced models.

More specifically, we propose a novel reconstruction-
based approach to alleviate DP problems for NMT. Firstly,
we explicitly and automatically label DPs for each source
sentence in the training corpus using alignment informa-
tion from the parallel corpus (Wang et al. 2016a). Accord-
ingly, each training instance is represented as a triple (x,
y, x̂), where x and y are source and target sentences, and
x̂ is the labelled source sentence. Next, we apply a stan-
dard encoder-decoder NMT model to translate x, and ob-
tain two sequences of hidden states from both encoder and
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decoder. This is followed by introduction of an additional
reconstructor (Tu et al. 2017b) to reconstruct back to the
labelled source sentence x̂ with hidden states from either
encoder or decoder, or both components. The central idea
behind is to guide the corresponding hidden states to embed
the recalled source-side DP information and subsequently to
help the NMT model generate the missing pronouns with
these enhanced hidden representations. To this end, the re-
constructor produces a reconstruction loss, which measures
how well the DP can be recalled and serves as an auxiliary
training objective. Additionally, the likelihood score pro-
duced by the standard encoder-decoder measures the qual-
ity of general translation and the reconstruction score mea-
sures the quality of DP translation, and linear interpolation
of these scores is employed as an overall score for a given
translation.

Experiments on a large-scale Chinese–English corpus
show that the proposed approach significantly improves
translation performance by addressing the DP translation
problem. Furthermore, when reconstruction is applied only
in training, it improves parameter training by producing bet-
ter hidden representations that embed the DP information.
Results show improvement over a strong NMT baseline sys-
tem of +1.35 BLEU points without any increase in decod-
ing speed. When additionally applying reconstruction dur-
ing testing, we obtain a further +1.06 BLEU point improve-
ment with only a slight decrease in decoding speed of ap-
proximately 18%. Experiments for Japanese–English trans-
lation task show a significant improvement of 1.29 BLEU
points, demonstrating the potential universality of the pro-
posed approach across language pairs.

Contributions Our main contributions can be summa-
rized as follows:

1. We show that although NMT models advance SMT mod-
els on translating pro-drop languages, there is still large
room for improvement;

2. We introduce a reconstruction-based approach to improve
dropped pronoun translation;

3. We release a large-scale bilingual dialogue corpus, which
consists of 2.2M Chinese–English sentence pairs.1

Background

Pro-Drop Language Translation

A pro-drop language is a language in which certain classes
of pronouns are omitted to make the sentence compact
yet comprehensible when the identity of the pronouns can
be inferred from the context. Since pronouns contain rich
anaphora knowledge in discourse and the sentences in di-
alogue are generally short, DPs not only result in missing
translations of pronouns, but also harm the sentence struc-
ture and even the semantics of output. Take the second case
in Table 1 as an example, when the object pronoun “它” is
dropped, the sentence is translated into “Are you baked?”,

1Our released corpus is available at https://github.com/
longyuewangdcu/tvsub.

Genres Sents ZH-Pro EN-Pro DP

Dialogue 2.15M 1.66M 2.26M 26.55%
Newswire 3.29M 2.27M 2.45M 7.35%

Table 2: Extent of DP in different genres. The Dialogue cor-
pus consists of subtitles extracted from movie subtitle web-
sites; The Newswire corpus is CWMT2013 news data.

while the correct translation should be “Did you bake it?”.
Such omissions may not be problematic for humans since
they can easily recall missing pronouns from the context.
They do, however, cause challenges for machine translation
from a source pro-drop language to a target non-pro-drop
language, since translation of such dropped pronouns gener-
ally fails.

As shown in Table 2, we analyzed two large Chinese–
English corpora and found that around 26.55% of English
pronouns can be dropped in the dialogue domain, while only
7.35% of pronouns were dropped in the newswire domain.
DPs in formal text genres (e.g., newswire) are not as com-
mon as those in informal genres (e.g., dialogue), and the
most frequently dropped pronouns in Chinese newswire is
the third person singular它 (“it”) (Baran, Yang, and Xue
2012), which may not be crucial to translation performance.
As the dropped pronoun phenomenon is more prevalent in
informal genres, we test our method with respect to the dia-
logue domain.

Encoder-Decoder Based NMT

Neural machine translation (Sutskever, Vinyals, and Le
2014; Bahdanau, Cho, and Bengio 2015) has greatly ad-
vanced state-of-the-art within machine translation. Encoder-
decoder architecture is now widely employed, where the en-
coder summarizes the source sentence x = x1, x2, . . . , xJ

into a sequence of hidden states {h1,h2, . . . ,hJ}. Based on
the encoder-side hidden states, the decoder generates the tar-
get sentence y = y1, y2, . . . , yI word by word with another
sequence of decoder-side hidden states {s1, s2, . . . , sI}:

P (y|x) =
I∏

i=1

P (yi|y<i,x) =
I∏

i=1

g(yi−1, si, ci) (1)

where g(·) is a softmax layer. The decoder hidden state si at
step i is computed as

si = f(yi−1, si−1, ci) (2)

where f(·) is an activation function. ci is a weighted
sum of encoder hidden states ct =

∑J
j=1 αt,jhj , where

αt,j is the alignment probability calculated by an attention
model (Bahdanau, Cho, and Bengio 2015; Luong, Pham,
and Manning 2015). The parameters of the NMT model are
trained to maximize the likelihood of a set of training exam-
ples {[xn,yn]}Nn=1:

L(θ) = argmax
θ

N∑
n=1

logP (yn|xn; θ) (3)
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System Baseline Oracle �
SMT 30.16 35.26 +5.10
NMT 31.80 36.73 +4.93

Table 3: Translation performance improvement (“�”) with
manually labelled DPs (“Oracle”).

Ideally, the hidden states (either encoder-side or decoder-
side) should embed the missing DP information by learning
the alignments between bilingual pronouns from the train-
ing corpus. In practice, however, complex DPs are still not
translated correctly, as shown in Table 1. Table 3 shows em-
pirical results to validate this assumption. We make the fol-
lowing two observations: (1) the NMT model indeed out-
perform SMT model when translating pro-drop languages;
and (2) the performance of the NMT model can be further
improved by improving translation of DPs. In this work, we
propose to improve DP translation by guiding hidden states
to embed the missing DP information.

Approach
In the following, we discuss methods of extending NMT
models with a reconstructor to improve DP translation,
which is inspired by “reconstruction” – a standard concept in
auto-encoder (Bourlard and Kamp 1988; Vincent et al. 2010;
Socher et al. 2011), and successfully applied to NMT mod-
els (Tu et al. 2017b) recently.

Architecture

Reconstructor The basic idea of our approach is to recon-
struct the labelled source sentence from the latent represen-
tations of the NMT model and use the reconstruction score
to measure how well the DPs can be recalled from latent
representations. With the reconstruction score as an auxil-
iary training objective, we aim to encourage the latent repre-
sentations to embed DP information, and thus recall the DP
translation with enhanced representations.

The reconstructor reads a sequence of hidden states and
the labelled source sentence, and outputs a reconstruction
score. It employs an attention model (Bahdanau, Cho, and
Bengio 2015; Luong, Pham, and Manning 2015) to recon-
struct the labelled source sentence x̂ = {x̂1, x̂2, . . . , x̂J ′}
word by word, which is conditioned on the input latent
representations v = {v1,v2, . . . ,vT }. The reconstruction
score is computed by

R(x̂|v) =
J′∏
j=1

R(x̂j |x̂<j ,v) =
J′∏
j=1

gr(x̂j−1, ŝj , ĉj) (4)

where ŝj is the hidden state in the reconstructor, and com-
puted by

ŝj = fr(x̂j−1, ŝj−1, ĉj) (5)
Here gr(·) and fr(·) are respective softmax and activation
functions for the reconstructor. The context vector ĉj is com-
puted as a weighted sum of hidden states v

ĉj =
T∑

t=1

α̂j,t · vt (6)

     ?

      ?

encoder reconstructor

Did you bake it ?

decoder

      ?

reconstructor

x

y

x̂

x̂

Figure 1: Architecture of reconstructor-augmented NMT.
The two independent reconstructors reconstruct the labelled
source sentence from hidden states in the encoder and de-
coder, respectively.

where the weight α̂j,t is calculated by an additional attention
model. The parameters related to the attention model, gr(·),
and fr(·) are independent of the standard NMT model. The
labeled source words x̂ share the same word embeddings
with the NMT encoder.

Reconstructor-Augmented NMT We augment the stan-
dard encoder-decoder based NMT model with the intro-
duced reconstructor, as shown in Figure 1. The standard
encoder-decoder reads the source sentence x and outputs its
translation y along with the likelihood score. We introduce
two independent reconstructors with their own parameters,
each of which reconstructs the labelled source sentence x̂
from the encoder and decoder hidden states, respectively.

Note that we can append only one reconstructor to either
the encoder or decoder:

• (encoder-reconstructor)-decoder: When adding a re-
constructor to the encoder side only, we replace the stan-
dard encoder with an enhanced auto-encoder. In the case
of auto-encoding, the encoder hidden states are not only
used to summarize the original source sentence but also
to embed the recalled DP information from the labelled
source sentence.

• encoder-(decoder-reconstructor): This is analogous to
the framework proposed by Tu et al. (2017b), except that
we reconstruct back to the labelled source sentence rather
than the original one. It encourages the decoder hidden
states to embed complete information from the source
side, including the recalled DPs.

As seen, reconstructors applied on different sides of the cor-
pus may capture different patterns of DP information, and
using them together can encourage both the encoder and
decoder to learn recalled DP information. Our approach is
very much inspired by recent successes within question-
answering, where a single information source is fed to mul-
tiple memory layers so that new evidence is captured in each
layer and combined into subsequent layers (Sukhbaatar et al.
2015; Miller et al. 2016).
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Data |S| |W | |P | |V | |L|
Zh En Zh En Zh En Zh En

Train 2.15M 12.1M 16.6M 1.66M 2.26M 151K 90.8K 5.63 7.71
Tune 1.09K 6.67K 9.25K 0.76K 1.03K 1.74K 1.35K 6.14 8.52
Test 1.15K 6.71K 9.49K 0.77K 0.96K 1.79K 1.39K 5.82 8.23

Table 4: Number of sentences (|S|), words (|W |), pronouns (|P |), vocabulary (|V |), and averaged sentence length (|L|) com-
prising the training, tuning and test corpora. K stands for thousands and M for millions.

Training and Testing

Training We train both the encoder-decoder and the intro-
duced reconstructors together in a single end-to-end process.
The two-reconstructor model (Figure 1) are described below
(the other two individual models correspond to each part).
The training objective can be revised as

J(θ, γ, ψ) = argmax
θ,γ,ψ

N∑
n=1

{
logP (yn|xn; θ)︸ ︷︷ ︸

likelihood

+ logRenc(x̂
n|hn; θ, γ)︸ ︷︷ ︸

enc-rec

+ logRdec(x̂
n|sn; θ, ψ)︸ ︷︷ ︸

dec-rec

}
(7)

where θ is the parameter matrix in encoder-decoder, and
γ and ψ are model parameters related to the encoder-side
reconstructor (“enc-dec”) and decoder-side reconstructor
(“dec-rec”) respectivley; h and s are encoder and decoder
hidden states. The auxiliary reconstruction objectives (e.g.,
Renc(·) and Rdec(·)) guide the related part of the parame-
ter matrix θ to learn better latent representations, which are
used to reconstruct the labelled source sentence.

Testing In testing, reconstruction can serve as a reranking
technique to select a better translation from the k-best can-
didates generated by the decoder. Each translation candidate
is assigned a likelihood score from the standard encoder-
decoder, as well as reconstruction score(s) from the newly
added reconstructor(s). Since the target sentence is invisible
in testing, we employ a monolingual labelling model built on
the training corpus to label DPs in the input sentence (Wang
et al. 2016a).

When using reconstruction in testing, it requires external
resources (i.e., monolingual DP label tool) and more com-
putations (i.e., calculation of reconstruction scores). To re-
duce the dependency and cost, we can also employ a stan-
dard encoder-decoder model with better trained parameters
so that the parameters can produce enhanced latent repre-
sentations that embed DP information. Such information is
invisible in the original input sentence but can be learned
from the training data with similar context.

Experiments

Data

Experiments evaluate the method for translation of Chinese–
English subtitles. More than two million sentence pairs

were extracted from the subtitles of television episodes.2
We pre-processed the extracted data using our in-house
scripts (Wang et al. 2016b), including sentence bound-
ary detection and bilingual sentence alignment etc. Finally,
we obtained a high-quality corpus which keeps the dis-
course information. Table 4 lists the statistics of the corpus.
Within the subtitle corpus, sentences are generally short and
the Chinese side, as expected, contains many examples of
dropped pronouns. We randomly select two complete tele-
vision episodes as the tuning set, and another two episodes
as the test set. We used case-insensitive 4-gram NIST BLEU
metrics (Papineni et al. 2002) for evaluation, and sign-test
(Collins, Koehn, and Kucerova 2005) to test for statistical
significance.

DP Annotation

We follow Wang et al. (2016a) to automatically label DPs
for training and test data. In the training phase, where the
target sentence is available, we label DPs for the source
sentence using alignment information. These labeled source
sentences can be used to build a monolingual DP generator
using NN, which is used to label test sentences since the tar-
get sentence is not available during the testing phase. The
F1 scores of the two approaches on our data are 92.99% and
65.21%, respectively. After automatic labelling, the number
of pronouns on the Chinese side in training, tuning and test
data are 2.09M, 0.98K, 0.96K respectively, which is roughly
consistent with pronoun frequency on the English side.

The usage of the labeled source sentences is two-fold:
1. Baseline (+DPs): a stronger baseline system trained on

the new parallel corpus (labelled source sentence, target
sentence), which is evaluated on the new test sentences
labelled by the monolingual DP generator.

2. Our models: the proposed models reconstruct hidden
states back to the labelled source sentences.

For the source sentences that have no DPs, we use the orig-
inal ones as labelled source sentences, otherwise we use the
DP-labeled sentences.

Model

The baseline is our re-implemented attention-based NMT
system, which incorporates dropout (Hinton et al. 2012) on
the output layer and improves the attention model by feeding
the most recently generated word. For training the baseline

2The data were crawled from the subtitle website http://www.
zimuzu.tv.
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Model #Params
Speed BLEU

Training Decoding Test �
Baseline 86.7M 1.60K 2.61 31.80 – / –
Baseline (+DPs) 86.7M 1.59K 2.63 32.67† +0.87 / –
+ enc-rec +39.7M 0.71K 2.63 33.67†‡ +1.87 / +1.00
+ dec-rec +34.1M 0.84K 2.18 33.48†‡ +1.68 / +0.81
+ enc-rec + dec-rec +73.8M 0.57K 2.16 35.08†‡ +3.28 / +2.41

Multi-Source (Zoph and Knight 2016) +20.7M 1.17K 1.27 32.81† +1.01 / +0.14
Multi-Layer (Wu et al. 2016) +75.1M 0.61K 2.42 33.36† +1.56 / +0.69
Baseline (+DPs) + Enlarged Hidden Layer +86.6M 0.68K 2.51 32.00† +0.20 / -0.67

Table 5: Evaluation of translation performance for Chinese–English. “Baseline” is trained and evaluated on the original data,
while “Baseline (+DPs)” is trained on the data labelled with DPs. “enc-rec” indicates encoder-side reconstructor and “dec-
rec” denotes decoder-side reconstructor. Training speed is measured in words/second and decoding speed is measured in sen-
tences/second with beam size being 10. The two numbers in the “�” column denote performance improvements over “Baseline”
and “Baseline (+DPs)”, respectively. “†” and “‡” indicate statistically significant difference (p < 0.01) from “Baseline” and
“Baseline (+DPs)”, respectively. All listed models except “Baseline” exploit the labelled source sentences.

models, we limited the source and target vocabularies to the
most frequent 30K words in Chinese and English, covering
approximately 97.2% and 99.3% of the words in the two lan-
guages, respectively. Each model was trained on sentences
of length up to a maximum of 20 words with early stop-
ping. Mini-batches were shuffled during processing with a
mini-batch size of 80. The word-embedding dimension was
620 and the hidden layer size was 1,000. We trained for 20
epochs using Adadelta (Zeiler 2012), and selected the model
that yielded best performances on the tuning set.

The proposed model was implemented on top of the base-
line model with the same settings where applicable. The hid-
den layer size in the reconstructor was 1,000. Following Tu
et al. (2017b), we initialized the parameters of our models
(i.e., encoder and decoder, except those related to recon-
structors) with the baseline model. We further trained all the
parameters of our model for another 15 epochs.

Results and Discussion

Table 5 shows translation performances for Chinese–
English. Clearly the proposed models significantly improve
the translation quality in all cases, although there are still
considerable differences among different variants.

Baselines The two baseline NMT models, one being
trained and evaluated on the original bilingual data without
any explicitly labelled DPs (i.e., “Baseline”), while the other
was trained and evaluated on the labelled data (i.e., “Base-
line (+DPs)”). As can be seen from the BLEU scores, the
latter significantly outperforms the former, indicating that
explicitly recalling translation of DPs helps produce bet-
ter translations. Benefiting from the explicitly labelled DPs,
the stronger baseline system is able to improve performance
over the standard baseline system built on the original data
where the pronouns are missing.

Parameters In terms of additional parameters introduced
by the reconstruction models, both reconstructors introduce
a large number of parameters. Beginning with the baseline
model’s 86.7M parameters, the encoder-side reconstructor
adds 39.7M new parameters, while the decoder-side recon-
structor adds a further 34.1M new parameters. Furthermore,
adding reconstructors to both sides leads to additional 73.8M
parameters. More parameters may capture more informa-
tion, at the cost of posing difficulties to training.

Speed Although gains are made in terms of translation
quality by introducing reconstruction, we need to consider
the potential trade-off with respect to a possible increase
in training and decoding times, due to the large number of
newly introduced parameters resulting from the incorpora-
tion of reconstructors into the NMT model. When running
on a single GPU device Tesla K80, the training speed of
the baseline model is 1.60K target words per second, and
this reduces to 0.57K words per second when reconstructors
are added to both sides. In terms of decoding time trade-
off, our most complex model only decreases decoding speed
by 18%. We attribute this to the fact that no beam search is
required for calculating reconstruction scores, which avoids
the very costly data swap between GPU and CPU memories.

Translation Quality Clearly the proposed approach sig-
nificantly improves the translation quality in all cases, al-
though there are still considerable differences among the
proposed variants. Introducing encoder-side and decoder-
side reconstructors individually improves translation perfor-
mance over “Baseline (+DPs)” by +1.0 and +0.8 BLEU
points respectively. Combining them together achieves the
best performance overall, which is +2.4 BLEU points better
than the strong baseline model. This confirms our assump-
tion that reconstructors applied to the source and target sides
indeed capture different patterns for translating DPs.
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Comparison to Other Work For the purpose of compar-
ison, we reimplemented the multi-source model of Zoph
and Knight (2016), which introduces an alternate encoder
(shared parameters) and attention model (independent pa-
rameters) that take labelled sentences as an additional input
source. This multi-source model significantly outperforms
our “Baseline” model without labelled DP information, but
only marginally outperform the “Baseline (+DPs)” that uses
labelled DPs. One possible reason is that the two sources
(i.e., original input and labelled input sentences) are too sim-
ilar to one another, making it difficult to distinguish them
from labelled DPs.

Some may argue that the BLEU improvements are mainly
due to the model parameter increase (e.g., +73.8M) or
deeper layers (e.g., two reconstruction layers). To answer
this concern, we compared the following two models:

• Multi-Layer (Wu et al. 2016): a system with three-layer
encoder and three-layer decoder. The additional layers in-
troduce 75.1M parameters, which is in the same scale with
the proposed model (i.e., 73.8M).

• Baseline (+DPs) + Enlarged Hidden Layer: a system with
the same setting as “Baseline (+DPs)” except that layer
size is 2100 instead of 1000. This variant introduces
86.6M parameters, which is even more than the most
complicated variant of proposed models.

We found that the multi-layer model significantly outper-
forms its single-layer counterpart “Baseline (+DPs)”, while
significantly underperforms our best model (i.e., 33.46 vs.
35.08). The “Baseline (+DPs)” system with enlarged hid-
den layer, however, does not achieve any improvement. This
indicates that explicitly modeling DP translation is the key
factor to the performance improvement.

Model Test �
Baseline (+DPs) 20.55 –
+ enc-rec + dec-rec 21.84 + 1.29

Table 6: Evaluation of translation performance for
Japanese–English.

Japanese–English Translation Task To validate the ro-
bustness of our approach on other pro-drop languages, we
conducted experiments on Opensubtitle20163 data for the
Japanese–English translation. We used the same settings as
used in Chinese–English experiments, except that the vo-
cabulary size is 20,001. As shown in Table 6, our model
also significantly improves translation performance on the
Japanese–English task, demonstrating the efficiency and po-
tential universality of the proposed approach.

Analysis

We conducted extensive analyses for Chinese–English trans-
lation to better understand our model in terms of contribu-
tion of reconstruction from training and testing, effect of re-

3http://opus.nlpl.eu/OpenSubtitles2016.php

constructed input, effect of DP labelling accuracy, and build-
ing the ability to handling long sentences.

Model Test �
Baseline 31.80 – / –
Baseline (+DPs) 32.67 +0.87 / –

+ enc-rec 33.67 +1.87 / +1.00
+ dec-rec 33.15 +1.35 / +0.48
+ enc-rec + dec-rec 34.02 +2.22 / +1.35

Table 7: Translation results when reconstruction is used in
training only while not used in testing.

Contribution Analysis As mentioned previously, the ef-
fect of reconstruction is two-fold: (1) it improves the train-
ing of baseline parameters, which leads to better hidden
representations that embed labelled DP information learned
from the training data; and (2) it serves as a reranking met-
ric in testing to measure the quality of DP translation.4 Ta-
ble 7 lists translation results when the reconstruction model
is used in training only. Results show all variants to out-
perform the baseline models and applying reconstructors to
both sides achieves the best performance overall. This is en-
couraging, since no extra resources nor computation are in-
troduced to online decoding, making the approach highly
practical, for example for translation in industry applica-
tions.

Model Test �
Baseline 31.80 – / –
Baseline (+DPs) 32.67 +0.87 / –

+ enc-rec 33.21 +1.41 / +0.54
+ dec-rec 33.08 +1.28 / +0.41
+ enc-rec + dec-rec 33.25 +1.45 / +0.58

Table 8: Translation results when hidden states are recon-
structed into the original source sentence instead of the
source sentence labelled with DPs.

Effect of Reconstruction Some researchers may argue
that the proposed method acts much like dual learning (He
et al. 2016a) and reconstruction (Tu et al. 2017b) especially
when sentences have no DPs, which can benefit to the over-
all translation, not just only with respect to DPs. To inves-
tigate to what degree the improvements are indeed made by
explicitly modeling DP translation, we examine the perfor-
mance of variants which reconstruct hidden states back to
the original input sentence instead of the source sentence
labelled with DPs, as shown in Table 8. Note that the vari-
ant “+ dec-rec” in this setting is exactly the model proposed
by Tu et al. (2017b). As seen, although the variants signifi-
cantly outperforms “Baseline” model without using any DP

4As in testing encoder-side reconstructor reconstructs back to
the same labelled source sentence with the same encoder hidden
states, all translation candidates would share the same encoder-side
reconstruction score. Therefore, in such cases, reconstruction can-
not be used as a reranking metric.
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information, the absolute improvements are still worse than
our proposed model that explicitly exploits DP information
(i.e., 1.45 vs. 3.28). This validates our hypothesis that ex-
plicitly modeling DP translation contributes most to the im-
provement.

Model Automatic Manual �
Baseline (+DPs) 32.67 36.73 +4.06

+ enc-rec 33.67 37.58 +3.91
+ dec-rec 33.48 37.23 +3.75
+ enc-rec + dec-rec 35.08 38.38 +3.30

Table 9: Translation performance gap (“�”) between man-
ually (“Manual”) and automatically (“Automatic”) labelling
DPs for input sentences in testing.

Effect of DP Labelling Accuracy For each sentence in
testing, the DPs are labelled automatically by a DP gener-
ator model, the accuracy of which is 65.21% measured in
F1 score. The labelling errors may propagate to the NMT
models, and have the potential to negatively affect transla-
tion performance. We investigate this using manual labelling
and automatic labelling, as shown in Table 9. The analysis
firstly shows that there still exists a significant gap in per-
formance, and this could be improved by improving the ac-
curacy of DP generator. Secondly, our models show a rela-
tively smaller distance in performance from the oracle per-
formance (“Manual”), indicating that the proposed approach
is more robust to labelling errors.

Figure 2: Performance of the generated translations with re-
spect to the lengths of the source sentences.

Length Analysis Following (Bahdanau, Cho, and Bengio
2015; Tu et al. 2016; 2017a), we group sentences of simi-
lar lengths together and compute the BLEU score for each
group, as shown in Figure 2. The proposed models outper-
form the baseline for most span lengths, although there are
still some notable differences. The improvement achieved
by the source-side reconstructor is mainly for translation

of short sentences (e.g., < 5), while that of the target-
side reconstructor is mainly for translation of long sentences
(e.g., > 15). The reason is that (1) reconstruction can make
encoder-side hidden states contain complete source informa-
tion including DP information and subsequently good per-
formance on short sentences, while at the same time, they
cannot guarantee that all the information will be transferred
to the decoder side (i.e., relatively bad performance on long
sentences); (2) similar to findings of (Tu et al. 2017b), the
decoder-side reconstructor can make translation more ade-
quate, which significantly alleviates inadequate translation
problems for longer sentences. Combining them together
can take advantage of both models, and thus the improve-
ments are more substantial for all span lengths.

Model Error Sub. Obj. Dum. All

BASE Total 112 41 45 198

+ ENC
Fixed 51 22 28 101
New 25 8 4 37

+ DEC
Fixed 57 21 17 95
New 19 10 6 36

+ ENC + DEC
Fixed 50 34 33 117
New 11 14 7 32

Table 10: Translation error statistics on different types of
pronouns: subject (“Sub.”), object (“Obj.”) and dummy
(“Dum.”) pronouns. “BASE” denotes “Baseline (+DPs)”, “+
ENC” denotes “+ enc-rec”, “+ DEC” denotes “+ dec-rec” and
“+ ENC + DEC” denotes “+ enc-rec + dec-rec”.

Error Analysis We investigate to what extent DP-related
errors are fixed by the proposed models. We randomly select
500 sentences from the test set and count errors produced
by the strong baseline model (“Total”), what proportion of
these are fixed (“Fixed”) or newly introduced (“New”) by
our approach, as shown in Table 10. All the proposed models
can fix different kinds of DP problems, and the “+ ENC +
DEC” variant achieves the best performance, which is con-
sistent with the translation results reported above. The “+
ENC + DEC” model fixed 59.1% of the DP-related errors,
while only introducing 16.2% of new errors. This confirms
that our improvement in terms of automatic metric scores
indeed comes from alleviating DP translation errors.

Among all types of pronouns, translation errors on object
and dummy pronouns,5 which can be usually inferred with
intra-sentence context, are easy to be alleviated. In contrast,
errors related to the subject of a given sentence are more dif-
ficult, since labelling dropped pronouns in such cases gener-
ally requires cross-sentence context. Table 11 shows three
typical examples of successfully fixed, failed to fix, and
newly introduced subjective-case pronouns.

5A dummy pronoun (i.e., “it”) is a pronoun used for syntax
without explicit meaning. It is used in Germanic languages such
as English but not in Pro-drop languages such as Chinese.
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Fixed Error

Input 等我搬进来 (我我我)可以买一台泡泡机吗 ?
Ref. When I move in, can I get a bubble machine?

NMT When I move in to buy a bubble machine.
Our When I move in, can I buy a bubble machine?

Non-Fixed Error

Input (他他他)是个训练营 ?
Ref. It is a camp?

NMT He was a camp?
Our He’s a camp?

Newly Introduced Error

Input (我我我)要把这戒指还给你

Ref. I need to give this ring back to you.
NMT I’m gonna give you the ring back.
Our To give it back to you.

Table 11: Example translations where subjective-case pro-
nouns in brackets are dropped in original input but labeled
by DP generator. We italicize some mis-translated errors and
highlight the correct ones in bold.

Related Work

DP Translation for SMT Previous research has inves-
tigated DP translation for SMT. For example, Chung and
Gildea (2010) examined the effects of empty category (in-
cluding DPs) on MT with various methods. This work
showed improvements in terms of translation performance
despite the automatic prediction of empty category not being
highly accurate. Taira, Sudoh, and Nagata (2012) analyzed
the Japanese-to-English translation by inserting DPs into in-
put sentences using simple rule-based methods, achieving
marginal improvements. More recently, Wang et al. (2016a)
proposed labelling DPs using parallel information of train-
ing data, and obtained promising results in SMT. Wang
et al. (2017b) also extend the SMT-based DP translation
method on Japanese–English translation task. Inspired by
these previous successes, this paper is an early attempt to
learn to tackle DP translation for NMT models.

Representation Learning with Reconstruction Recon-
struction is a standard concept in auto-encoder, that guides
towards learning representations that captures the underly-
ing explanatory factors for the observed input (Bourlard and
Kamp 1988; Vincent et al. 2010). An auto-encoder model
consists of an encoding function to compute a representa-
tion from an input, and a decoding function to reconstruct
the input from the representation. The parameters involved
in the two functions are trained to maximize the reconstruc-
tion score, which measures the similarity between the origi-
nal input and reconstructed input. Inspired by the concept of
reconstruction, Tu et al. (2017b) proposed guiding decoder
hidden states to embed complete source information by re-
constructing the hidden states back to the original source

sentence. Our approach differs at: (1) we introduced not only
decoder-side reconstructor but also encoder-side reconstruc-
tor to learn enhanced hidden states of both encoder and de-
coder; and (2) we guide the hidden states to embed complete
source information as well as the labelled DP information.

Multiple Sources for NMT Recently, it was shown that
NMT can be improved by feeding auxiliary information
sources beyond the original input sentence. The additional
sources can be in various forms, such as parallel sentences in
other languages (Dong et al. 2015; Zoph and Knight 2016),
cross-sentence contexts (Wang et al. 2017a; Jean et al. 2017;
Tu et al. 2018), generation recommendations from other
translation models (He et al. 2016b; Wang et al. 2017c;
Gu et al. 2017; Wang et al. 2017d), syntax information (Li
et al. 2017; Zhou et al. 2017). Along the same direction, we
provide complementary information in terms of source sen-
tences labelled with DPs.

Conclusion and Future Work

This paper is an early attempt to model DP translation for
NMT systems. Hidden states are guided in both the encoder
and decoder to embed the DP information by reconstructing
them back to the source sentence labelled with DPs. The ef-
fect of reconstruction model is two-fold: (1) it improves pa-
rameter training for producing better latent representations;
and (2) it measures the quality of DP translation, which
is combined with likelihood to better measure the overall
quality of translations. Quantity and quality analyses show
that the proposed approach significantly improves transla-
tion performance across language pairs, and can be further
improved by developing better DP labelling models.

In future work we plan to validate the effectiveness of our
approach on other text genres with different prevalence of
DPs. For example, in formal text genres (e.g., newswire),
DPs are not as common as in the informal text genres, and
the most frequently dropped pronouns in Chinese newswire
is the third person singular “它” (“it”) (Baran, Yang, and Xue
2012), which may not be crucial to translation performance.
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