
Recognizing and Justifying Text Entailment through
Distributional Navigation on Definition Graphs
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Abstract

Text entailment, the task of determining whether a piece of
text logically follows from another piece of text, has become
an important component for many natural language process-
ing tasks, such as question answering and information re-
trieval. For entailments requiring world knowledge, most sys-
tems still work as a “black box”, providing a yes/no answer
that doesn’t explain the reasoning behind it. We propose an
interpretable text entailment approach that, given a structured
definition graph, uses a navigation algorithm based on distri-
butional semantic models to find a path in the graph which
links text and hypothesis. If such path is found, it is used
to provide a human-readable justification explaining why the
entailment holds. Experiments show that the proposed ap-
proach present results comparable to some well-established
entailment algorithms, while also meeting Explainable AI re-
quirements, supplying clear explanations which allow the in-
ference model interpretation.

Introduction

Natural Language Processing tasks such as question answer-
ing, text summarization and information retrieval often rely
on text entailment as a means of identifying and interpret-
ing semantic relationships between pieces of text. Text en-
tailment is defined as a directional relationship between a
pair of text expressions, denoted by T – the entailing text,
and H – the entailed hypothesis. We say that T entails H
if, typically, a human reading T would infer that H is most
likely true (Dagan, Glickman, and Magnini 2006). Although
a human could easily explain why they consider an entail-
ment true, most text entailment systems still can’t provide
a comprehensible justification for their decisions, because
this usually depends on knowledge that goes beyond what
is stated in the text and hypothesis. Given the growing im-
portance of Explainable AI (Gunning 2017), systems can no
longer omit the reasons why decisions are reached, making
justifications a fundamental feature for intelligent systems.

Recent text entailment approaches, especially those rely-
ing on more complex semantic interpretation, use knowl-
edge bases and linguistic resources to track down semantic
relationships between text and hypothesis. WordNet (Fell-
baum 1998) is notably the most commonly used resource,
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but systems usually exploit only the links between terms,
such as synonym, hypernym or derivational form relation-
ships (Clark, Fellbaum, and Hobbs 2008; Herrera, Penas,
and Verdejo 2006). The term’s definition (i.e. the gloss),
which contains the largest bulk of relevant information about
it, is left aside.

In this work, we propose an approach for recognizing text
entailments that uses knowledge extracted from natural lan-
guage lexical definitions, structuring them into a semantic
representation model that allows the identification of seman-
tic relationships between terms. We focus on text entail-
ments that require reasoning over world knowledge, and use
a navigation algorithm based on distributional semantics to
scope the exploration of a knowledge graph built from dic-
tionary definitions, looking for paths between the text and
hypothesis, confirming or rejecting the entailment.

The main contribution of our approach is to provide an in-
terpretable reasoning model for text entailment by automat-
ically building commonsense knowledge bases out of natu-
ral language definitions. This model was designed to meet
Explainable AI requirements: besides giving a yes or no an-
swer, the resulting path provides a justification about the en-
tailment decision, that is, a human-readable explanation ex-
posing the reasoning steps that led to the answer is offered to
support it, allowing users to be aware of, evaluate and judge
the inference model employed in the task.

Text Entailment

Stimulated by the RTE (Recognizing Text Entailments)
Challenges1, a large number of text entailment frameworks
have been developed in the last years. Starting in 2005, the
RTE Challenges encouraged the creation of systems capa-
ble of capturing semantic inferences, and, given the low ac-
curacy achieved by the first participants, showed that much
improvement was still required in the area (Ghuge and Bhat-
tacharya 2014).

Over the last editions, the RTE Challenges have moved
from shallow methods, based on lexical features, to more
sophisticated approaches, called deep methods, which rely
on semantic, syntactic and/or logical features. Some RTE-1
participants presented systems based purely on word overlap
and statistical lexical relations (Glickman and Dagan 2005;

1https://goo.gl/R9zVqp
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Pérez and Alfonseca 2005; Newman et al. 2005), while sub-
sequent editions of the challenge introduced approaches us-
ing logical inference, machine learning and linguistic re-
sources such as WordNet, Framenet and Verbnet, among
other techniques, as features in the text entailment recogni-
tion process. As a common starting point, those approaches
translate the text and hypothesis to some kind of (syntactic
or semantic) representation, and then try to determine if the
representation of the hypothesis is subsumed by that of the
text.

Most recent text entailment approaches are machine
learning-based (Kouylekov and Magnini 2005; Wang and
Neumann 2008; Zhang et al. 2017), combining multi-
ple similarity measures (computed over lexical, syntactic
and semantic representations) to train a machine learning
model. Entailment pairs [T, H] are represented as feature
vectors {f1, f2, ..., fm}, which are manually classified as
entailment/non-entailment, feeding a supervised machine
learning model. The features can range from similarity mea-
sures applied to the pair to the sentence’s syntactic or se-
mantic representations, such as their parse trees or semantic
relations graph. After training, the model can then classify
unseen entailment pairs by examining their features (An-
droutsopoulos and Malakasiotis 2010).

Most entailment systems provide as output a yes/no an-
swer and a confidence score, but no justification or evidence
that support the entailment decision. A few exceptions in-
clude the Boeing Language Understanding Engine (BLUE)
(Clark and Harrison 2009), which can show evidence of why
an entailment was achieved, but doesn’t provide a fully in-
terpretable natural language explanation. The textual infer-
ence approach proposed by (Raina, Ng, and Manning 2005)
also provides a kind of justification for entailments, through
a logical theorem prover that outputs a minimum cost proof,
which can, in turn, be translated into a natural language ex-
planation for the inference.

The Third RTE Challenge proposed an optional task
which required a system to make three-way entailment de-
cisions (entails, contradicts, neither) and to justify its re-
sponse. Analyzing the outputs provided by the competing
systems, they point that explanations for why the hypothesis
is entailed widely differ, however, with some rationales of
dubious validity (Voorhees 2008). Human evaluators listed a
number of problems, among which is worth mentioning the
use of vague and abstract phrases such as “there is a relation
between” and “there is a match”, showing that describing the
specific semantic relation is fundamental to build the trust in
the system and in its reasoning methods (rather than simply
detecting that the semantic relation exists).

Distributional Navigation on Definition

Graphs

The approach proposed in this work is based on two main
pillars: the use of a knowledge graph automatically extracted
from natural language definitions as world knowledge base,
and a navigation mechanism based on distributional seman-
tics to explore this graph and find paths between the text and
the hypothesis to explain the semantic relationships holding

between them, which confirm and support the entailment.
The proposed method contributes in two directions: (i) pro-
viding an interpretable text entailment approach which pro-
vides justifications and (ii) defining a method for building
world KBs out of definitions expressed in natural language.
The definition graph construction and the distributional nav-
igation algorithm are described in the next Sections.

Definition Graph

The graph used as knowledge base is composed of lexical
definitions and is built from a linguistic resource following
the representation model proposed by (Silva, Handschuh,
and Freitas 2016). In this model, the definitions are split
into entity-centered semantic roles, which express the part
played by an expression in a definition, showing how it re-
lates to the entity being defined. Table 1 lists the semantic
roles for lexical definitions present in the model, and Figure
1 shows an example of a concept (in this case, a synset from
WordNet) classified according to the model.

Table 1: Semantic roles for dictionary definitions.
Role Description

Supertype the immediate or ancestral en-
tity’s superclass

Differentia quality a quality that distinguishes the
entity from the others under the
same supertype

Differentia event an event (action, state or pro-
cess) in which the entity par-
ticipates and that is mandatory
to distinguish it from the others
under the same supertype

Event location the location of a differentia
event

Event time the time in which a differentia
event happens

Origin location the entity’s location of origin
Quality modifier degree, frequency or manner

modifiers that constrain a differ-
entia quality

Purpose the main goal of the entity’s ex-
istence or occurrence

Associated fact a fact whose occurrence is/was
linked to the entity’s existence
or occurrence

Accessory determiner a determiner expression that
doesn’t constrain the supertype-
differentia scope

Accessory quality a quality that is not essential to
characterize the entity

[Role] particle a particle, such as a phrasal verb
complement, non-contiguous to
the other role components

This model allows a structured semantic representation of
natural language definitions and enables the selection of the
portions of information that are relevant for a given reason-
ing task. To use lexical definitions as world knowledge in
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Figure 1: Example of role labeling for the definition of the “lake poets” synset.

our text entailment approach, we used WordNet definitions,
identifying their semantic roles and then converting the re-
sulting semantic model to an RDF graph.

To identify the semantic roles, we first automatically pre-
annotated a random set of 2,000 WordNet noun and verb def-
initions. The rule-based automatic annotation used the syn-
tactic patterns identified by statistical analysis as described
by (Silva, Handschuh, and Freitas 2016): after generating the
syntactic parse tree for each definition, using a C-Structure
parser (Manning et al. 2014), the relevant phrasal nodes were
identified and the semantic role more often associated to it
was assigned to the definition’s segment represented by this
syntactic structure.

After the automatic annotation, the set of 2,000 definitions
was then manually curated in order to fix misclassifications
and fill in missing roles. The curated data was then used to
train a Recurrent Neural Network (RNN) machine learning
model designed for sequence labeling. We used the RNN
implementation provided by (Mesnil et al. 2015), and split
the data into training (68%), validation (17%) and test (15%)
sets. The trained classifier reached an accuracy of 80.35%.
We then used it to classify all the WordNet’s noun and verb
definitions.

After classifying the definitions, an RDF graph represen-
tation was generated, where each synset (a set of synonym
words) in WordNet is a node, and each segment in its defini-
tion is another node, linked to the synset node and among
them by the properties given by the roles. In this graph,
called WordNetGraph2, the definiendum, i.e., the synset, is
linked to its supertype, which is, in turn, linked to all the
other roles. A role is a resource whenever it is linked to other
roles, and a literal otherwise. Figure 2 shows the (simplified)
RDF representation of the definition depicted in Figure 1.

Figure 2: RDF representation for the definition of the “lake
poets” synset.

As can be seen, the definiendum “lake poets” is linked to
2https://github.com/Lambda-3/WordnetGraph

its supertype “poets”, which is linked to the other roles. The
entity “poet” has its own definition, which is represented as
another subgraph, making the whole graph interconnected
through the words that appear in each definition.

We assume that, when an entailment is true, the core
words present in the text and hypothesis have a strong se-
mantic relationship, and then it is possible to find a path in
the definition graph linking them and justifying the entail-
ment. To find this path, we navigate in the graph using the
algorithm described in the next Section.

Distributional Navigation

Distributional Semantic Models (DSMs) are grounded in the
distributional hypothesis, which states that words that occur
in similar contexts tend to have similar meanings (Turney
and Pantel 2010). DSMs allow the approximation of a word
meaning representing it as a vector summarizing its pattern
of co-occurrence in large text corpora (Marelli et al. 2014).

DSMs can be used to compute the semantic similar-
ity/relatedness measure between words. This computation is
used as a heuristic to navigate in a graph knowledge base in
the approach proposed by (Freitas et al. 2014), where they
define a Distributional Navigation Algorithm (DNA), which
corresponds to a selective reasoning process in the knowl-
edge graph. Given a pair of terms, namely a source and a tar-
get, and a threshold η, the DNA finds all paths from source
to target, with length l, formed by concepts semantically re-
lated to target wrt η (Freitas et al. 2014).

In the text entailment context, the source and target terms
are words from the text and hypothesis, respectively, which
have some kind of semantic relationship between them. A
path in the definition graph linking these terms, then, ex-
plains what this relationship is, confirming the entailment,
or rejecting it in case no path is found.

We implement the DNA as a depth first search algorithm,
exploring first the paths whose next node to be visited has
the highest semantic similarity value wrt the target. Given a
node n in the knowledge graph, starting from the source, the
algorithm retrieves all its neighbors {t1, t2, ..., tn} and com-
putes the similarity relatedness sr(ti, target), keeping only
the nodes for which sr > η in the set of nodes to be vis-
ited next. Each of these nodes generates a new path, and, for
each path, the search goes on until the next node to be vis-
ited is equal to the target, or until the maximum path length
is reached. If no path reaches the target before the maximum
number of paths is reached, the search stops.

The search algorithm is listed below:

Input:
- definition graph G
- source word S
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- target word T
- threshold η
- path length l
- max number of paths m

Output:
A set of paths from S to T

paths = []
stack = []
new path = [S]
stack.push(new path)

while (stack is not empty and paths.size < m)
path = stack.pop()
next node = last node(path)
while (next node �= target and path.length < l)

get all the synsets {s1, s2, ..., sn} in G having next node
nodes = []
best roles = []
for each si in {s1, s2, ..., sn}

get all the role nodes {r1, r2, ..., rn} linked to si
for each ri in {r1, r2, ..., rn}

if sr(ri, T) > η
nodes.add(ri)

best roles = sort(nodes)
nodes = []
ranked head words = []
for each bi in best roles {b1, b2, ..., bn}

get all the head words {h1, h2, ..., hn} in bi
for each head word hi in {h1, h2, ..., hn}

nodes.add(hi)
ranked head words = sort(nodes)
for each wi in ranked head words {w2, w3, ..., wn}

new path = path
new path.add(wi)
stack.push(new path)

next node = w1
path.add(next node)
if (next node = target)

paths.add(path)

As can be noted in the algorithm, the next node to be vis-
ited in a path is defined by the words present in a synset’s
definition, here called head words. The head words are the
most relevant words in a role, and are identified following
a lexico-syntactic rule-based heuristic: it is usually a noun
for non-event-centered roles such as supertype and differ-
entia quality, for example, and the main verb along with its
noun complements or adjective/adverb modifiers in case no
relevant noun is present, for event-centered roles, such as
differentia event, associated fact or purpose, for instance.

According to (Freitas et al. 2014), the worst-case time
complexity of the DNA implemented as a depth-first search
“is O(bl), where b is the branching factor and l is the depth
limit”. They show that the selectivity of DNA ensures that
the number of paths does not grow exponentially even when
the depth limit increases. In our implementation, the algo-

rithm parameters - threshold, maximum number of paths and
maximum path length (depth limit) - were obtained empiri-
cally in order to optimize the search.

Recognizing and Justifying Text Entailments

Once we have a graph knowledge base and a method to
navigate over this graph, we can use these resources to
compose the reasoning mechanism that will allow us to
recognize and explain a text entailment. We are interested
in entailments that require world knowledge, over which
some kind of inference is necessary, rather than simple
syntactic variations between the text and the hypothesis. For
example, consider the following entailment pair from the
Boeing-Princeton-ISI (BPI)3 dataset:

64.2 T: Skilling was wearing a security tag on his ankle
when he stepped into the street to face the press.
64.2 H: Skilling was wearing a security tag.

In this example, the hypothesis is fully contained in
the text, and no knowledge external to the entailment pair
is necessary, therefore no actual semantic reasoning is
required. On the other hand, in the following example, also
from the BPI dataset, a simple syntactic analysis would not
suffice:

39.3 T: Many cellphones have built-in digital cameras.
39.3 H: Many cellphones can take pictures.

In this case, it is necessary to answer a question: “Given
that cellphones have digital cameras, is it true that they can
take pictures?”. What we propose is to look for the answer
to this question looking at the structured definitions in our
knowledge graph to check whether the hypothesis is reached
from the text in some way. If so, the way this link is estab-
lished gives a full answer to the original question.

First, we need to identify the relevant elements from the
text and hypothesis for which is worth to look for a semantic
relationship. If the text is too long and includes more than
one clause, we perform a sentence simplification to break it
into independent simple sentences, and then choose among
them the one that is closest to the hypothesis, using simple
Levenshtein edit distance. The edit distance proved to be
sufficient at this step, as we just want to identify what text
sentence refers to the same topic as the hypothesis, and
so share more elements with it. Consider as example the
following BPI entailment pair:

3.6 T: Hanssen, who sold FBI secrets to the Russians, could
face the death penalty.
3.6 H: Hanssen received money from the Russians.

After the sentence simplification, the text is split into
two sentences: “Hanssen could face the death penalty” and
“Hanssen sold FBI secrets to the Russians”. The second one
is the closest to the hypothesis and is selected to compose
the new entailment pair.

3http://www.cs.utexas.edu/users/pclark/bpi-test-suite/
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Next, we look for the core words in the text and hypoth-
esis. The core words are similar to the head words for defi-
nition’s roles, but in this case we have full sentences rather
than sentence segments, as happens with the roles, so here
we can perform a more accurate syntactic analysis. Also fol-
lowing a rule-based heuristic, we get the main noun in the
subject, the main verb and its noun complements, or the ad-
jective/adverb modifiers in case no relevant noun is found.
Back to the pair 39.3, the core words for the text “Many cell-
phones have built-in digital cameras” are cellphones, have
and digital cameras; and for the hypothesis “Many cell-
phones can take pictures”, cellphones, take and pictures.

We then discard the overlapping words and words with
low inverse document frequency (IDF), which are words that
are too frequent and can be reached from almost any node in
the graph, leading to diverting paths, such as the verbs get,
put, cause or make, to name a few. IDF is calculated using
the set of all definitions in WordNet as the corpus, where
each definition is considered a document. Next, we normal-
ize all the remaining words, obtaining two resulting sets of
core words, CT={t1, t2, ..., tn} for the text and CH={h1, h2,
..., hm} for the hypothesis. Also using distributional seman-
tics, we compute the semantic similarity measures between
all the core words, as a Cartesian product between CT and
CH. The results are sorted and the k pairs with the highest
similarity values are chosen, being k=max(n, m), where n is
the size of CT and m is the size of CH. Since each pair is
composed of a word (or phrase) from the text and another
from the hypothesis, these will be the input for the naviga-
tion algorithm described earlier.

For each pair of words found in the previous step, we
find all the paths between them in the definition graph, the
source being the word from the text, and the target the word
from the hypothesis. Finally, we choose, among all the paths
found, the smallest one, which is the one that offers the
shortest distance between a source and a target and, there-
fore, shows that their meanings are more closely related.

The final path is composed of a sequence of synset nodes
and the role nodes that make up those synset’s definitions
and that are relevant to build a composed relationship be-
tween the source and the target. This sequence of nodes is
then formatted to provide a human-readable justification ex-
plaining the reasoning that led from the text to the hypoth-
esis, giving the necessary evidence that the latter logically
follows from the former.

Figure 3 shows an example of a path in the WordNet-
Graph between the source “digital camera” and the target
“picture”, from the entailment pair 39.3. Starting from the
source node, we get all the nodes linked to it, compute their
semantic similarity measures wrt the target, choose the node
with the highest value as the next one to be visited, and do
this recursively until we reach the target. Other nodes with
high similarity values (higher than the threshold), such as the
differentia quality node “that encodes an image digitally”,
are also explored later, but the path indicated by the thicker
lines in the figure is the shortest, and therefore the best, one.

Despite the low similarity value, the supertype node
“equipment” is included in the path in order to provide the
necessary information for the justification. The justification

takes into account the content of the nodes and the relation-
ships between them, that is, the role names, and a differentia
quality (as well as almost all the other roles) doesn’t make
much sense without the supertype it is linked to. For this
example, the final, human-readable explanation generated
by the algorithm from this sequence of nodes is:

A digital camera is a kind of camera
A camera is an equipment for taking photographs
Photograph is synonym of picture

Evaluation

To evaluate the proposed approach, we run experiments us-
ing the BPI dataset and a sample of the Guardian Head-
lines dataset4. These showed to be the most suitable datasets,
since RTE ones focus more on linguistic phenomena. The
BPI dataset focus more on the knowledge necessary to rec-
ognize the entailments rather than just linguistic require-
ments, being syntactically simpler than RTE datasets, but
more challenging from the semantic viewpoint. It is com-
posed of 250 entailment pairs, being 125 positive and 125
negative entailments. The Guardian Headlines dataset is a
set of 32,000 entailment pairs automatically extracted from
The Guardian newspaper. Its large size is intended for ma-
chine learning purposes, but, as it wasn’t validated, a manual
curation is necessary, which is possible only for a sample of
the data. We randomly selected 10% of the pairs (3,200), and
from this sample we selected 800 pairs, in order to make
it close in size to RTE datasets. We excluded pairs where
there was a pronoun referencing an entity not present in the
sentence (for negative examples) and pairs where the hy-
pothesis contained a question, a named entity not contained
in the text, or had information that was more specific than
that expressed by the text (for positive examples). The re-
sulting dataset5, herein called Guardian Headlines Sample
(GHS), has 400 positive and 400 negative pairs, covering a
wide range of entailment phenomena, while still requiring a
reasonable amount of world knowledge.

Along with the WordNetGraph, we used word2vec
(Mikolov et al. 2013) as the distributional semantic model
to carry out the distributional navigation on the knowledge
graph. We used the Indra6 (Freitas et al. 2016) service to
compute the semantic similarity measures. For simplifying
long text sentences, we used the Sentence Simplification
service (Niklaus et al. 2016) in the information extraction
pipeline Graphene7.

We compare the results with two baselines gener-
ated by the Excitement Open Platform (EOP) (Magnini
et al. 2014), a framework that implements state-of-
the-art text entailment algorithms: tree edit-distance
based and classification based, through the EditDistance
(Kouylekov and Magnini 2005) and MaxEntClassifica-
tion (Base+WN+TP+TPPos+TS EN) (Wang and Neumann
2008) implementations, respectively. The default settings

4https://goo.gl/XrEwG9
5The GHS curated dataset is available at https://goo.gl/4iHdbX
6https://github.com/Lambda-3/Indra
7https://github.com/Lambda-3/Graphene
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Figure 3: Possible paths in WordNetGraph between “digital camera” and “picture”. Full lines represent actual edges in the
graph, while dashed lines represent the navigation algorithm’s internal operations. The best path is indicated by the ticker lines.
Numbers show the semantic relatedness between each node and the target.

were kept and the models were trained following the EOP
documentation instructions8.

The precision, recall and F-measure obtained by the graph
navigation algorithm, as well as the baselines, are presented
in Table 2. Even though our approach is focused on a specific
scenario, the results are comparable to those of the complete
entailment systems.

Table 2: Evaluation results. The upper part shows the base-
lines, and at the bottom are the proposed graph navigation
approach’s results.

BPI GHS
Pr Re F1 Pr Re F1

EditDist 0.44 0.65 0.53 0.96 0.30 0.45
MaxEnt 0.46 0.57 0.51 0.50 1.00 0.66
GraphNav 0.65 0.54 0.59 0.56 0.50 0.53

The proposed approach presents slightly better results for
the BPI dataset, since it favors the world knowledge explo-
ration. The GHS is a challenging dataset since it contains
longer and more complex sentences, and frequently shows
substantial vocabulary variation between text (the first line
of a story) and hypothesis (the story’s headline), given that
journalists tend to avoid repetition of words. The EditDis-
tance algorithm shows high precision on this dataset, possi-

8https://goo.gl/aFyoCh

bly because it has no “tricky” negative examples from the
syntactic point of view, as BPI does, but presents low recall.
The MaxEntClassification algorithm surprisingly classifies
all but two pairs in GHS as entailment, reaching the max-
imum recall but, since the dataset is balanced, only half of
the precision. Although our results are only comparable, our
main contribution, in addition to the fine-grained semantic
matching, are the justifications generated by the navigation
algorithm which make the results interpretable. In the next
Section, we do a qualitative analysis of the justifications.

Justifications

The justifications generated for the positive entailments
were manually evaluated by two independent human eval-
uators in order to assess their correctness and consistency.
Three types of justification were noticed: correct and
complete, correct but incomplete and incorrect.

Correct and complete: the reasoning is clear and the im-
portant information that explains the entailment is present
in the justification. Some examples from the BPI dataset:

57.1 T: Many soldiers were killed in the ambush.
57.1 H: The soldiers were attacked by surprise.
57.1 A: YES
Entailment: Yes
Justification:
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An ambush is an act of concealing yourself and lying in
wait to attack by surprise

65.2 T: Sony apologized Tuesday for inconvenience caused
by a global recall of laptop batteries.
65.2 H: The batteries were defective.
65.2 A: YES
Entailment: Yes
Justification:
A recall is a request by the manufacturer of a defective
product to return the product

From the GHS dataset:

21660 T: Cadbury Schweppes plc today said ahead of its
annual general meeting that it was on course to hit sales
targets and its US businesses were flourishing.
21660 H: Cadbury set to meet sales targets
21660 A: YES
Entailment: Yes
Justification:
To hit is a way of to encounter
To encounter is synonym of to meet

29121 T: A former security guard at Michael Jackson’s
Neverland ranch testified yesterday that he had seen the pop
star perform oral sex on a young boy in the early 1990s.
29121 H: Court hears Jackson oral sex claim
29121 A: YES
Entailment: Yes
Justification:
To testify is to give testimony in a court of law
Court of law is synonym of court

Correct but incomplete: although the information con-
tained in the justification is correct, it explains the reasoning
only partially, not covering all semantic relations between
text and hypothesis. Example:

29.3 T: Foodstuffs are being blocked from entry into Iraq.
29.3 H: Food cannot get into Iraq.
29.3 A: YES
Entailment: Yes
Justification:
A foodstuff is a substance that can be used or prepared for
use as food

Incorrect: the justification is too vague or doesn’t establish
the correct link between text and hypothesis. Example:

13468 T: The BBC today beat stiff competition from ITV to
secure coverage of the Grand National until the end of the
decade.
13468 H: BBC wins race for Grand National
13468 A: YES
Entailment: Yes
Justification:

A competition is an occasion on which a winner is selected
from among two or more contestants
A winner is a contestant who wins the contest

Incorrect justifications are generated due to a wrong
choice of source/target word pairs. As pointed before, the
main goal of our approach is to recognize and explain text
entailments where world knowledge plays a central role and
the hypothesis is not a syntactic variation of the text, but
rather a statement that holds a semantic relationship with it.
Pairs where all the words in the hypothesis are also present
in the text are particularly challenging, since, in this case, it
is hard to find a suitable pair of words to be sent as input to
the distributional navigation algorithm, requiring a comple-
mentary strategy to tackle those scenarios.

When the sentences remain complex even after the sim-
plification, as sometimes is the case in the GHS dataset, se-
lecting the core words can also be challenging, leading to
decisive source/target pairs being missed. Fine tuning the
core words identification to address more elaborate sentence
structures could help to fix this kind of loss.

Finally, misclassification or the absence of relevant infor-
mation in the definition graph also leads to incorrect entail-
ment decisions. Misclassifications account mainly for syn-
tactic errors in the justifications, while the lack of informa-
tion prevents the navigation algorithm from finding a path
when a relationship between the source and target indeed ex-
ists, rejecting a true entailment and reducing the accuracy. A
possible solution is to enrich the knowledge graph with def-
initions from other linguistic resources, such as Wiktionary.

Conclusion

We presented an approach for recognizing and justifying text
entailments that require reasoning over world knowledge.
Using lexical definitions as a knowledge base, we built a
knowledge graph and implemented a distributional naviga-
tion algorithm to explore it. Words from the text and hy-
pothesis having a strong semantic relationship are chosen as
source and target pairs, and all the paths between them in the
knowledge graph are retrieved. The shortest path is chosen
and interpreted to generate a human-readable justification
explaining the reasoning behind the entailment decision. If
no path is found, then the entailment is rejected.

The major contribution of our approach is to provide a
way to interpret and understand the underlying inference
model, making the information used clear and expressing
all the reasoning steps in a human-like manner, taking the
entailment decision out of the numerical score black box.
Another contribution worth mentioning is the transportabil-
ity to other domains, since many fields have natural language
glossaries but no structured thesauri. As future work, we in-
tend to enhance the navigation algorithm to address a wider
range of scenarios, improving its accuracy, and to enrich the
knowledge graph with definitions from different linguistic
resources to generate even higher quality justifications.
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