
Sequential Copying Networks

Qingyu Zhou,†∗ Nan Yang,‡ Furu Wei,‡ Ming Zhou‡
†Harbin Institute of Technology, Harbin, China

‡Microsoft Research, Beijing, China
qyzhgm@gmail.com, {nanya, fuwei, mingzhou}@microsoft.com

Abstract

Copying mechanism shows effectiveness in sequence-to-
sequence based neural network models for text generation
tasks, such as abstractive sentence summarization and ques-
tion generation. However, existing works on modeling copy-
ing or pointing mechanism only considers single word copy-
ing from the source sentences. In this paper, we propose a
novel copying framework, named Sequential Copying Net-
works (SeqCopyNet), which not only learns to copy single
words, but also copies sequences from the input sentence.
It leverages the pointer networks to explicitly select a sub-
span from the source side to target side, and integrates this
sequential copying mechanism to the generation process in
the encoder-decoder paradigm. Experiments on abstractive
sentence summarization and question generation tasks show
that the proposed SeqCopyNet can copy meaningful spans
and outperforms the baseline models.

Introduction

Recently, attention-based sequence-to-sequence (seq2seq)
framework (Sutskever, Vinyals, and Le 2014; Bahdanau,
Cho, and Bengio 2015) has achieved remarkable progress
in text generation tasks, such as abstractive text summariza-
tion (Rush, Chopra, and Weston 2015), question generation
(Zhou et al. 2017a) and conversation response generation
(Vinyals and Le 2015). In this framework, an encoder is em-
ployed to read the input sequence and produce a list of vec-
tors, which are then fed into a decoder to generate the output
sequence by making word predictions one by one through
the softmax operation over a fixed size target vocabulary.

It has been observed that seq2seq suffers from the un-
known or rare words problem (Luong et al. 2015). Gulcehre
et al. (2016) and Gu et al. (2016) makes the key observation
that in tasks like summarization and response generation,
rare words in the output sequence usually can be found in
the input sequence. Based on this observation, they propose
a copying mechanism to directly copy words to the output
sequence from input, which alleviates the rare word prob-
lem. In their work, every output words can be either gener-
ated by predicting words in the target vocabulary or copied
from the input sequence.

∗Contribution during internship at Microsoft Research.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We further observe that the copied words usually form
a continuous chunk of the output, exhibiting a “sequen-
tial copying” phenomenon. For example, in the Gigaword
dataset of abstractive sentence summarization task, about
57.7% words are copied from the input as indicated in Fig-
ure 1. Moreover, the copied words in multi-word span ac-
count for 28.1%, which is also very common. For example,
in Figure 2, there are two copied bi-grams in the output sum-
mary. Similar phenomenon has also been observed in ques-
tion generation task.

However, previous methods fall into one paradigm, which
we call “single word copy”. At each decoding time step, the
models still follow the “word by word” style to make sep-
arate decisions of whether to copy. Therefore, this “single
word copy” paradigm may introduce errors due to these sep-
arate decisions. For example, the words in a phrase should be
copied consecutively from the input sentence, but these sep-
arate decisions cannot guarantee to achieve this. This may
cause that some unrelated words appears unexpectedly in
the middle of the phrase, or the phrase is not copied com-
pletely with some words missed. Therefore, we argue that
tasks such as abstractive sentence summarization and ques-
tion generation can benefit from sequential copying consid-
ering the intrinsic nature of these tasks and datasets.

Figure 1: Percentage of generated and copied words in sen-
tence summarization training data.

In this paper, we propose a novel copying framework,
Sequential Copying Networks (SeqCopyNet), to extend the
vanilla seq2seq framework. SeqCopyNet is intended to learn
not only the “single word copy” behavior, but also the “se-

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

4987

Figure 2: An example of sequential copying in abstractive
sentence summarization task.

quence copy” operation as mentioned above. We design a
span extractor for the decoder so it can make “sequence
copy” actions during decoding. Specifically, SeqCopyNet
consists of three main components, an RNN based sentence
encoder, an attention-equipped decoder, and the newly de-
signed copying module. We follow previous works to use the
bidirectional RNN as the sentence encoder, and the decoder
also employs an RNN with attention mechanism (Bahdanau,
Cho, and Bengio 2015). To achieve the sequential copying
mechanism, the copying module is integrated with the de-
coder to make decisions during decoding.

The sequential copying module in SeqCopyNet contains
three main components, namely, the copy switch gate net-
work, the pointer network and the copy state transducer.
The copy switch gate network is used to make decisions of
whether to copy according to the current decoding states.
Its output is not a binary value, but a scalar range in [0, 1],
which is the probability of choosing to copy. The pointer
network is then used to extract a span from the input sen-
tence. We maintains a copying state in the copying module
so that the pointer network can make predictions based on
it. In detail, the pointer network predicts the start and end
positions of the span. The start position is predicted using
the start copying state. Then the copy state transducer will
update the copying state so that the pointer network can pre-
dict the end position. This transduction process is made by
an RNN so that it can remember related information such as
the start position, and guide the pointer to the corresponding
end copying position.

We conduct experiments on abstractive sentence summa-
rization and question generation tasks to verify the effec-
tiveness of SeqCopyNet. On both tasks, SeqCopyNet out-
performs the baseline models and the case study show that it
can copy meaningful spans.

Sequential Copying Networks

As shown in Figure 3, our SeqCopyNet consists of three
main components, namely the encoder, the copying module
and the decoder. Like in vanilla seq2seq frameworks, the en-
coder leverages two Gated Recurrent Unit (GRU) (Cho et al.
2014) to read the input words, and the decoder is modeled
with GRU with attention mechanism. The copying module
consists of a copy switch gate network, a pointer network
and a recurrent copy state transducer. At each decoding time
step, the copying module will make a decision of whether
to copy or generate. If it decides to copy, the pointer net-
work and the copy state transducer will cooperate to copy a
sub-span from the input sentence by predicting the start and

end positions of it. After the copying action, if the copied se-
quence contains more than one word, the decoder will apply
“Copy Run” to update its states accordingly.

Encoder

The role of the sentence encoder is to read the input sen-
tence and construct the basic sentence representation. Here
we employ a bidirectional GRU (BiGRU) as the recurrent
unit, where GRU is defined as:

zi = σ(Wz[xi, hi−1])

ri = σ(Wr[xi, hi−1])

h̃i = tanh(Wh[xi, ri � hi−1])

hi = (1− zi)� hi−1 + zi � h̃i

(1)
(2)

(3)

(4)

where Wz , Wr and Wh are weight matrices.
The BiGRU consists of a forward GRU and a backward

GRU. The forward GRU reads the input sentence word em-
beddings from left to right and gets a sequence of hidden
states, (�h1,�h2, . . . ,�hn). The backward GRU reads the input
sentence embeddings reversely, from right to left, and results
in another sequence of hidden states, (�h1, �h2, . . . , �hn):

�hi = GRU(xi,�hi−1)

�hi = GRU(xi, �hi+1)

(5)

(6)

The initial states of the BiGRU are set to zero vectors,
i.e., �h1 = 0 and �hn = 0. After reading the sentence, the
forward and backward hidden states are concatenated, i.e.,
hi = [�hi; �hi], to get the basic sentence representation.

Sequential Copying Mechanism

To model the sequential copying mechanism, SeqCopyNet
needs three key abilities: a) at decoding time step t, the
model needs to decide whether to copy or not; b) if the
model decides to copy, it will need to select a sub-span from
the input; c) the decoder should switch between the generate
mode and copy mode smoothly. To enable our SeqCopyNet
of the first two functions, we design the copying module as
a three-part component, i.e., the copy switch gate network,
the pointer network and the copy state transducer. The last
ability is enabled by Copy Run method, which is described
in the next section. The copy switch gate network decides
whether to copy during decoding. If the model goes to gen-
erate mode, then it will generate next words as same as the
vanilla attention-base seq2seq model. If the model choose to
copy, the pointer network will predict a sub-span.

At each time-step t, the decoder GRU holds its previous
hidden state st−1, the previous output word yt−1 and the
previous context vector ct−1. With these previous states, the
decoder GRU updates its states as given by formula 7 . To
initialize the GRU hidden state, we use a linear layer with
the last backward encoder hidden state �h1 as input:

st = GRU(yt−1, ct−1, st−1)

s0 = tanh(Wd
�h1 + b)

(7)

(8)

4988

Figure 3: The overview diagram of SeqCopyNet. For simplicity, we omit some units and connections. The copying process of
the sequence “security regime” is magnified as indicated in the copying module part.

With the new decoder hidden state st, the context vec-
tor ct for current time step t is computed through the con-
catenate attention mechanism (Luong, Pham, and Manning
2015), which matches the current decoder state st with each
encoder hidden state hi to get an importance score. The im-
portance scores are then normalized to get the current con-
text vector by weighted sum:

et,i = v�a tanh(Wast +Uahi)

αt,i =
exp(et,i)∑n
i=1 exp(et,i)

ct =
n∑

i=1

αt,ihi

(9)

(10)

(11)

where Wa and Ua are learnable parameters.
We then construct a new state vector and name it as de-

coder memory vector mt, which is the concatenation of the
embedding of previous output word yt−1, the decoder GRU
hidden vector st and the current context vector ct:

mt =

[
yt−1

st
ct

]
(12)

In SeqCopyNet, the decoder memory vector mt plays an
important role. In the copying module, the copy switch gate
network makes decisions based on mt. Specifically, the copy
switch gate network (G) is a Multilayer Perceptron (MLP)
with two hidden layers:

G(x) = σ (W2(tanh(W1x+ b1)) + b2) (13)

where W1, W2, b1 and b2 are learnable parameters. The ac-
tivation function of the first hidden layer is hyperbolic tan-
gent (tanh). To produce a probability of whether to copy, we
use the sigmoid function (σ(·) in Equation 13) as the activa-
tion function of the last hidden layer. The copy probability

pc and generate probability pg are defined as:

pc = G(mt)

pg = 1− pc

(14)
(15)

Generate Mode If the copy switch gate network decides
to generate, SeqCopyNet will generate the next word using
the decoder memory vector mt. The decoder first generates
a readout state rt and then pass it through a maxout hidden
layer (Goodfellow et al. 2013) to predict the next word with
a softmax layer over the decoder vocabulary.

rt = Wrwy−1 +Urct +Vrst

r′t = [max{rt,2j−1, rt,2j}]�j=1,...,d

p(yt|y<t) = softmax(Wor
′
t)

(16)

(17)

(18)

where Wr, Ur, Vr and Wo are weight matrices. Readout
state rt is a 2d-dimensional vector, and the maxout layer
(Equation 17) picks the max value for every two numbers in
rt and produces a d-dimensional maxout vector r′t. We then
apply a linear transformation on r′t to get a target vocabulary
size vector and predict the next word yt with the softmax
operation.

Copy Mode If the copy switch gate network decides to
copy, then SeqCopyNet uses its pointer network to predict
a sub-span in the input sentence. In detail, the pointer net-
work makes two predictions, i.e., the start position predic-
tion and the end position prediction. The pointer network
makes these predictions based on the decoder state. Before
deciding the start position, the copying module first generate
a start query vector qs using the decoder memory vector mt:

qs = tanh(Wsmt + b) (19)

Using the start query vector qs, the pointer network pre-

4989

dicts the start position copys of the sub-span:

es,i = v�p tanh(Wpqs +Uphi)

αs,i =
exp(es,i)∑n
i=1 exp(es,i)

copys = argmaxi αs,i

pcopy s = αs,copys

cs =

n∑
i=1

αs,ihi

(20)

(21)

(22)
(23)

(24)

where cs is the copying context state vector, pcopy s is the
probability of copys being the start copying position.

After predicting the start position, the copy state trans-
ducer will generate the end position query vector qe. It is
modeled with a single layer MLP and a GRU. In detail, the
MLP first produces an initial GRU hidden state cst. Then the
GRU generates an end position query based on this hidden
state cst and the copying context state cs:

cst = tanh(Wemt + b)

qe = GRU(cst, cs)

ee,i = v�p tanh(Wpqe +Uphi)

αe,i =
exp(ee,i)∑n
i=1 exp(ee,i)

copye = argmaxi αe,i

pcopy e = αe,copye

(25)
(26)

(27)

(28)

(29)
(30)

where copye is the end position and pcopy e is the probability
of copye being the end copying position given the condition
that copys is the start position.

After predicting the start and end positions, we can calcu-
late the probability of copying this sub-span:

p(copy mode, yt = (xcopys
, . . . , xcopye

)|y<t)

= pc ∗ pcopy s ∗ pcopy e
(31)

Copy Run for Multi-word Span

Since SeqCopyNet may choose to copy a long sequence
(copy mode) or generate a word from target vocabulary
(generate mode), the decoder should adapt itself to smoothly
switching between these two modes. Suppose the decoder
just copies a five-word span and the next word is generated,
if we just skip these five copied words, the decoder RNN
cannot remember the previous words when generating the
next word. This may lead to ill decoder RNN hidden states
and poor performance of the sentence fluency and quality.
To solve this problem, we make the decoder GRU keep its
state updated when it copies a long sequence. Inspired by
Tang et al. (2016), we propose a method, named Copy Run,
to solve this problem in both training and testing phases.

During training, Copy Run solves this problem by keep-
ing the decoder running over all output words. By doing this,
the decoder can learn from a complete sequence so the lack
of decoder states update problem can be avoided.

During testing, Copy Run maintains the decoder GRU
states by running over the copied words. According to our

model architecture, SeqCopyNet decoder consumes the last
generated word yt−1 and GRU state st−1 at time step t.
Therefore, the Copy Run only needs to be applied if the de-
coder copies a sequence whose length is larger than 1. For
a copied sequence with length l ≥ 2, the Copy Run updates
the decoder states for l − 1 times.

For example in Figure 3, at time step 4, the decoder de-
cides to copy a two-word (l = 2) sequence (x12, x13). Using
Copy Run, the decoder will feed the first l−1 words into the
GRU and generate a pseudo state s5. Specifically, after the
copying of (x12, x13), the copy run will execute the decoder
as mentioned in Equation 7, 9, 10 and 11 to update the GRU
state st and the context vector ct, to prepare for the next
time step. For the rare words in copied sequence, the copy
run will instead feed the embedding of 〈unk〉 to update the
decoder GRU states.

Objective Function

Given a training dataset with n input-output pairs D =
{(x(1), y(1)), . . . , (x(n), y(n))}, where the k-th pair is
(x(k), y(k)) =

(
(x

(k)
1 , . . . , x

(k)
Tx

), (y
(k)
1 , . . . , y

(k)
Ty

)
)

and Tx

and Ty are the lengths of x(k) and y(k) respectively. For the
k-th training instance (x(k), y(k)), the set Ck contains the
copied spans in y(k). Our training objective is to minimize
the negative log likelihood loss L with respect to the learn-
able model parameter θ:

L = − 1

n

n∑
i=1

(

Ty∑
t=1

log pgp(yt) +
∑

span∈Ck

log pcpstartpend)

(32)

Beam Search

Beam search is a common practical searching strategy to
improve results for many tasks such as machine translation
and dependency parsing. We report both greedy search and
beam search result in the experiments. During beam search,
we normalize the score of a beam path with its length. For
vanilla seq2seq models, this length equals to the number of
generated words. For SeqCopyNet, the length is defined as
the summation of generated words and copied sequences.
Taking the output in Figure 2 as an example, the output
sentence is “ chile to revise [security regime] at [embassies
overseas]”, the length normalization term is 6, which means
4 generated words and 2 copied sequences. We empirically
set beam size to 8 in our experiments.

Experiments

We conduct experiments on the abstractive sentence sum-
marization and question generation tasks to demonstrate the
effectiveness of SeqCopyNet.

Abstractive Sentence Summarization

Sentence summarization aims to shorten a given sentence
and produce a brief summary of it, and the models can be
roughly categorized into extractive and abstractive methods.
Extractive methods select words from given inputs to form

4990

final summary sentence, while abstractive methods generate
output summary after reading the input. These two meth-
ods have their merits, the extractive methods use exactly
the same words so the summary sentence is accurate, the
abstractive methods can perform paraphrasing so the out-
put can be more diverse. After analyzing the dataset, we
found that copying a sequence from input sentence happens
in 57.5% sentence-summary pairs (as shown in Figure 1).
Therefore, we conduct experiments on this task.

Dataset We conduct abstractive sentence summarization
experiment on English Gigaword dataset, as mentioned in
Rush, Chopra, and Weston (2015). The parallel corpus is
produced by pairing the first sentence and the headline in the
news article with some heuristic rules. We modify the script
released by Rush, Chopra, and Weston (2015) to pre-process
and extract the training and development datasets. We obtain
the test set used by Rush, Chopra, and Weston (2015).

However, like previous works mentioned (Chopra, Auli,
and Rush 2016; Zhou et al. 2017b), there are many invalid
lines in it and the scores reported on it cannot fully demon-
strate the performance of the models. So we acquired the
test set sampled by Zhou et al. (2017b). But we find that
this test set is processed similar to Rush, Chopra, and We-
ston (2015), that the rare words and numbers have already
been replaced by 〈unk〉 and # symbol. On test set like this,
the copying methods can barely work since the unknown
words and numbers in the references are already replaced,
which is as shown in the experimental results. Therefore,
we further sample and release1 a new test set, in which
the sentence-summary pairs are remained untouched. Dur-
ing training, we set the maximum copying length to 5.

Baseline We compare SeqCopyNet with the following
baselines on abstractive sentence summarization task:

ABS Rush, Chopra, and Weston (2015) use an attentive
CNN encoder and NNLM decoder for this task.

ABS+ Based on ABS model, Rush, Chopra, and We-
ston (2015) further tune ABS using DUC 2003 dataset.

RAS-Elman As an extension of ABS, Chopra, Auli, and
Rush (2016) use a convolutional attention-based encoder
and RNN decoder, which outperforms the ABS model.

Feats2s Nallapati et al. (2016) use a full RNN sequence-to-
sequence encoder-decoder model and add some features
to enhance the encoder, such as POS tag, NER, and so on.

Luong-NMT Neural machine translation model of Lu-
ong, Pham, and Manning (2015) with two-layer encoder-
decoder implemented in Chopra, Auli, and Rush (2016).

s2s+att We also implement a sequence-to-sequence model
with attention as our baseline and denote it as “s2s+att”.

NMT + UNK PS (single copy) We implement the UNK
pointer softmax (PS) proposed by Gulcehre et al. (2016).

SEASS Selective encoding model for abstractive sentence
summarization proposed by Zhou et al. (2017b).
1We release the preprocessing script and this test set at

http://res.qyzhou.me

Evaluation Metric We employ ROUGE (Lin 2004) as our
evaluation metric. ROUGE measures the quality of summary
by computing overlapping lexical units, such as unigram,
bigram, trigram, and longest common subsequence (LCS).
It becomes the standard evaluation metric for DUC shared
tasks and popular for summarization evaluation. Following
previous work, we use ROUGE-1 (unigram), ROUGE-2 (bi-
gram) and ROUGE-L (LCS) as the evaluation metrics in the
reported experimental results.

Model Parameters and Training The input and output
vocabularies are collected from the training data with omit-
ting the words appearing less than 20 times, which have
67,171 and 36,444 word types respectively. We set the word
embedding size to 300 and all GRU hidden state sizes to
512. We use dropout (Srivastava et al. 2014) with probabil-
ity p = 0.4. We initialize model parameters randomly us-
ing a Gaussian distribution with Xavier scheme (Glorot and
Bengio 2010). We use Adam (Kingma and Ba 2015) as our
optimizing algorithm. For the hyperparameters of Adam op-
timizer, we set the learning rate α = 0.001, two momen-
tum parameters β1 = 0.9 and β2 = 0.999 respectively, and
ε = 10−8. During training, we test the model performance
(ROUGE-2 F1) on development set for every 2,000 batches.
We use the learning rate decay method, which is to halve the
Adam learning rate α if the ROUGE-2 F1 score drops for six
consecutive tests on development set. We also apply gradient
clipping (Pascanu, Mikolov, and Bengio 2013) with range
[−5, 5] during training. To both speed up the training and
converge quickly, we use mini-batch size 64 by grid search.
During test, we do post-processing by replacing the 〈unk〉
with the token that has the highest attention score.

Models RG-1 RG-2 RG-L

ABS (beam)‡ 29.55 11.32 26.42
ABS+ (beam)‡ 29.76 11.88 26.96
Feats2s (beam)‡ 32.67 15.59 30.64
RAS-Elman (greedy)‡ 33.10 14.45 30.25
RAS-Elman (beam)‡ 33.78 15.97 31.15
Luong-NMT (beam)‡ 33.10 14.45 30.71
s2s+att (greedy) 34.95 16.51 32.54
s2s+att (beam) 35.77 17.34 33.24
NMT + UNK PS (greedy) 34.97 16.51 32.53
NMT + UNK PS (beam) 35.67 17.44 33.19

SeqCopyNet (greedy) 35.33 16.66 32.90
SeqCopyNet (beam) 35.93 17.51 33.35

Table 1: Full length ROUGE F1 evaluation results on the
English Gigaword test set used by Rush, Chopra, and We-
ston (2015). RG in the Table denotes ROUGE. Results with
‡ mark are taken from the corresponding papers.

Results We use the official ROUGE script (version 1.5.5)
2 to evaluate the summarization quality in our experiments.

2http://www.berouge.com/

4991

Test set in Zhou et al. (2017b) Our internal test set

Models RG-1 RG-2 RG-L RG-1 RG-2 RG-L

ABS‡ 37.41- 15.87- 34.70- - - -
s2s+att (greedy) 46.21 24.02 43.30 45.46 22.83 42.66
s2s+att (beam) 47.08 25.11 43.81 46.54 24.18 43.55
NMT + UNK PS (greedy) 45.64 23.38 42.67 45.21 23.01 42.38
NMT + UNK PS (beam) 47.05 24.82 43.87 46.52 24.41 43.58
SEASS (greedy)‡ 45.27 22.88 42.20 - - -
SEASS (beam)‡ 46.86 24.58 43.53 - - -

SeqCopyNet (greedy) 46.51 24.14 43.20 46.08 23.99 43.26
SeqCopyNet (beam) 47.27 25.07 44.00 47.13 24.93 44.06

Table 2: Full length ROUGE F1 evaluation on English Gigaword test set of Zhou et al. (2017b) and our internal test set. Results
with ‡ mark are taken from the corresponding papers. The ABS baseline fails to run with the latest stable Torch framework, so
we omit its performance on our internal test set.

For English Gigaword test sets the outputs have different
lengths so we evaluate the system with F1 metric 3.

Table 1 and 2 give the performance in terms of ROUGE-
F1 of the SeqCopyNet and the baseline models on three test
sets, i.e., Rush, Chopra, and Weston (2015) test set, Zhou et
al. (2017b) test set and our internal test set. As indicated in
these tables, SeqCopyNet performs better than all the base-
line models. As previously mentioned, the performance of
copying methods performs comparably to the s2s+att base-
line on test sets of Rush, Chopra, and Weston (2015) and
Zhou et al. (2017b), since the rare words and numbers have
already been replaced in the references.

Therefore, on the untouched test set, which is more likely
in the real application scenarios, the copying methods per-
forms better than the vanilla seq2seq baseline. SeqCopy-
Net achieves 47.13 ROUGE-1, 24.93 ROUGE-2 and 44.06
ROUGE-L F1 scores on this test set and performs better than
the “single word copy” model.

Case Study Table 3 gives three summarization examples
generated by SeqCopyNet. These examples show that Seq-
CopyNet can choose the correct span and generate meaning-
ful summaries. We also observe that the copying of named
entities are very common as shown in the examples. We
can see that SeqCopyNet can copy a sequence more com-
pletely while the “single copy” model occasionally misses
some words such as the first and second examples.

Question Generation

Automatic question generation from natural language text
aims to generate questions taking text as input, which has
the potential value of education purpose (Heilman 2011). As
the reverse task of question answering, question generation
also has the potential for providing a large scale corpus of
question-answer pairs (Zhou et al. 2017a). In this task, we
also found that sequential copying is frequent so it may ben-
efit from this.

3The ROUGE evaluation option is the same as Rush, Chopra,
and Weston (2015), -m -n 2 -w 1.2

Model Following Zhou et al. (2017a), we change the en-
coder to a feature-rich encoder and combine it with the Seq-
CopyNet. The feature-rich encoder reads the sentence words
and handcrafted features to produce a sequence of word-
and-feature vectors. In detail, Zhou et al. (2017a) use four
features, namely answer position, word case, POS tag and
NER tag. We follow this work and change the encoder in
SeqCopyNet accordingly.

Dataset and Evaluation Metric We use the Stanford
Question Answering Dataset (SQuAD) (Rajpurkar et al.
2016) as our training data. SQuAD is composed of more
than 100K questions posed by crowd workers on 536
Wikipedia articles. Following (Zhou et al. 2017a), we ac-
quired their training, development and test sets, which con-
tain 86,635, 8,965 and 8,964 triples respectively. We also use
the same Stanford CoreNLP v3.7.0 (Manning et al. 2014)
to annotate POS and NER tags in sentences with its de-
fault configuration and pre-trained models. We evaluate the
model using BLEU-4 score (Papineni et al. 2002). Accord-
ing to the results in Zhou et al. (2017b) there is correlation
between BLEU score and human evaluation, therefore we
only report the model performance with BLEU metric.

Baseline We compare SeqCopyNet with the following
baselines on question generation task:
PCFG-Trans The rule-based system modified on the code

released by Heilman (2011). We modified the code so that
it can generate question based on a given word span.

s2s+att The seq2seq with attention mechanism without rich
features as the baseline method.

NQG The s2s+att baseline with the feature-rich encoder.
NQG+ (single copy) Based on NQG, pointing mechanism

(Gulcehre et al. 2016) is used to deal with rare words
problem.

Results We report BLEU-4 scores on both development
and test sets in Table 4. Note that the s2s+att baseline per-
forms poorly since it does know the answer position infor-
mation. SeqCopyNet outperforms the baseline models with

4992

Input: david ortiz homered and scored three times , including the go-ahead run in the eighth inning , as the boston
red sox beat the toronto blue jays 10-9 in the american league on tuesday .

Reference: david ortiz helps red sox beat blue jays 10-9
SingleCopy: ortiz homers as red sox beat blue jays

SeqCopyNet: [red sox] beat [blue jays 10-9]

Input: guyana ’s president cheddi jagan , a long-time marxist turned free - marketeer , died here early thursday , an
embassy spokeswoman said . he was 78 .

Reference: guyana ’s president cheddi jagan marxist turned marketeer dies at 78
SingleCopy: guyana ’s president jagan dies at 78

SeqCopyNet: [guyana ’s president cheddi jagan] dies at 78

Input: china topped myanmar ’s marine product exporting countries annually in the past decade among over 40 ’s ,
the local voice weekly quoted the marine products producers and exporters association as reporting sunday .

Reference: china tops myanmars marine product exporting countries in past
SingleCopy: china tops myanmar ’s marine product export

SeqCopyNet: china tops myanmar ’s marine [product exporting countries annually]

Table 3: Examples of generated summaries. The highlighted italic words in brackets are copied as a sequence by SeqCopyNet.

Model Dev set Test set

PCFG-Trans‡ 9.28 9.31
s2s+att‡ 3.01 3.06
NQG‡ 10.06 10.13
NQG+‡ (single copy) 12.30 12.18

SeqCopyNet 13.13 13.02

Table 4: BLEU-4 evaluation results. Models with ‡ mark are
taken from the corresponding papers.

13.02 BLEU-4 score on test set and achieves the state-of-
the-art result on this dataset.

Related Work

Sequence-to-Sequence Learning

Sutskever, Vinyals, and Le (2014) propose sequence-
to-sequence framework with Long Short-Term Memory
(LSTM). It uses LSTM to encode the input words to a single
hidden vector. Another LSTM is used to decode this sen-
tence meaning vector to produce the target sentence. Bah-
danau, Cho, and Bengio (2015) extend it by introducing at-
tention mechanism to align source and target words. The en-
coder produces a list hidden vectors instead of single vec-
tor so the decoder can dynamically attended to different
encoded vectors. This brings huge improvements in many
seq2seq learning tasks, such as NMT (Bahdanau, Cho, and
Bengio 2015; Luong, Pham, and Manning 2015), syntactic
parsing (Vinyals et al. 2015) and abstractive text summariza-
tion (Rush, Chopra, and Weston 2015).

Pointing / Copying Mechanism

Gu et al. (2016) and Gulcehre et al. (2016) propose simi-
lar copying / pointing mechanisms. Gu et al. (2016) propose
to score the source words and target vocabulary words to-
gether. This method builds an extended vocabulary which
is the union of target vocabulary, source words and {unk}.

Then they apply a softmax over this extended vocabulary to
decide the next output from this extended vocabulary. Gul-
cehre et al. (2016) use a pointer softmax to handle the 〈unk〉
or rare words problem in seq2seq learning. During decod-
ing, they use a copying gate to predict the copying proba-
bility and use the attention mechanism to choose the copied
word. They tried UNK pointer and entity pointer, and show
that UNK pointer is better than entity pointer for abstractive
sentence summarization task.

Vinyals, Fortunato, and Jaitly (2015) propose Pointer Net-
work to model the pointing behavior. The pointer network
is modeled with RNN and the pointing score is calculated
with attention mechanism. Wang and Jiang (2016) propose
match-LSTM and leverage pointer networks for Stanford
Question Answering competition (Rajpurkar et al. 2016).
The match-LSTM first matches the words in the query and
passage, and then the pointer network predicts the start and
end positions of a answer span.

Incorporating Phrase Information in NMT

Phrase-based machine translation performs very well among
the SMT systems (Chiang 2005; Koehn 2009). Recently,
much work has been done to incorporate phrase informa-
tion in NMT to further boost translation quality. Tang et
al. (2016), Wang et al. (2017), and Dahlmann et al. (2017)
propose similar approaches which use NMT decoder to se-
lect phrases generated by SMT system.

Conclusion

In this paper, we propose Sequential Copying Networks (Se-
qCopyNet) to model the sequential copying phenomenon
in sequence-to-sequence generation. It leverages the pointer
networks as the prediction component to dynamically ex-
tract spans from input sentence during the decoding pro-
cess. Experiments on abstractive sentence summarization
and question generation tasks show that SeqCopyNet has
ability of copying a sub-span from input sentence. In the fu-
ture, we will apply SeqCopyNet to other tasks such as multi-
turn dialog response generation.

4993

References

Bahdanau, D.; Cho, K.; and Bengio, Y. 2015. Neural ma-
chine translation by jointly learning to align and translate. In
Proceedings of 3rd ICLR.
Chiang, D. 2005. A hierarchical phrase-based model for
statistical machine translation. In Proceedings of ACL, ACL
’05, 263–270. Stroudsburg, PA, USA: Association for Com-
putational Linguistics.
Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learning
phrase representations using rnn encoder–decoder for statis-
tical machine translation. In Proceedings of EMNLP, 1724–
1734. Doha, Qatar: Association for Computational Linguis-
tics.
Chopra, S.; Auli, M.; and Rush, A. M. 2016. Abstractive
sentence summarization with attentive recurrent neural net-
works. In Proceedings of NAACL, 93–98. San Diego, Cali-
fornia: Association for Computational Linguistics.
Dahlmann, L.; Matusov, E.; Petrushkov, P.; and Khadivi, S.
2017. Neural machine translation leveraging phrase-based
models in a hybrid search. arXiv preprint arXiv:1708.03271.
Glorot, X., and Bengio, Y. 2010. Understanding the diffi-
culty of training deep feedforward neural networks. In Ais-
tats, volume 9, 249–256.
Goodfellow, I. J.; Warde-Farley, D.; Mirza, M.; Courville,
A. C.; and Bengio, Y. 2013. Maxout networks. ICML (3)
28:1319–1327.
Gu, J.; Lu, Z.; Li, H.; and Li, V. O. 2016. Incorporat-
ing copying mechanism in sequence-to-sequence learning.
In Proceedings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Pa-
pers), 1631–1640. Berlin, Germany: Association for Com-
putational Linguistics.
Gulcehre, C.; Ahn, S.; Nallapati, R.; Zhou, B.; and Bengio,
Y. 2016. Pointing the unknown words. In Proceedings of the
54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 140–149. Berlin, Ger-
many: Association for Computational Linguistics.
Heilman, M. 2011. Automatic factual question generation
from text. Ph.D. Dissertation, Carnegie Mellon University.
Kingma, D., and Ba, J. 2015. Adam: A method for stochastic
optimization. In Proceedings of 3rd ICLR.
Koehn, P. 2009. Statistical machine translation. Cambridge
University Press.
Lin, C.-Y. 2004. Rouge: A package for automatic evalu-
ation of summaries. In Text summarization branches out:
Proceedings of the ACL-04 workshop, volume 8.
Luong, T.; Sutskever, I.; Le, Q.; Vinyals, O.; and Zaremba,
W. 2015. Addressing the rare word problem in neural ma-
chine translation. In Proceedings of ACL, 11–19.
Luong, T.; Pham, H.; and Manning, C. D. 2015. Effective
approaches to attention-based neural machine translation. In
Proceedings of EMNLP, 1412–1421. Lisbon, Portugal: As-
sociation for Computational Linguistics.

Manning, C. D.; Surdeanu, M.; Bauer, J.; Finkel, J.; Bethard,
S. J.; and McClosky, D. 2014. The Stanford CoreNLP nat-
ural language processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations, 55–60.
Nallapati, R.; Zhou, B.; glar Gulçehre, Ç.; and Xiang, B.
2016. Abstractive text summarization using sequence-to-
sequence rnns and beyond. In Proceedings of CoNLL.
Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002.
Bleu: a method for automatic evaluation of machine transla-
tion. In Proceedings of ACL, 311–318.
Pascanu, R.; Mikolov, T.; and Bengio, Y. 2013. On the
difficulty of training recurrent neural networks. ICML (3)
28:1310–1318.
Rajpurkar, P.; Zhang, J.; Lopyrev, K.; and Liang, P. 2016.
Squad: 100,000+ questions for machine comprehension of
text. In Proceedings of EMNLP, 2383–2392. Austin, Texas:
Association for Computational Linguistics.
Rush, A. M.; Chopra, S.; and Weston, J. 2015. A neural
attention model for abstractive sentence summarization. In
Proceedings of EMNLP, 379–389. Lisbon, Portugal: Asso-
ciation for Computational Linguistics.
Srivastava, N.; Hinton, G. E.; Krizhevsky, A.; Sutskever, I.;
and Salakhutdinov, R. 2014. Dropout: a simple way to pre-
vent neural networks from overfitting. Journal of Machine
Learning Research 15(1):1929–1958.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence
to sequence learning with neural networks. In Advances in
neural information processing systems, 3104–3112.
Tang, Y.; Meng, F.; Lu, Z.; Li, H.; and Yu, P. L. 2016. Neu-
ral machine translation with external phrase memory. arXiv
preprint arXiv:1606.01792.
Vinyals, O., and Le, Q. 2015. A neural conversational
model. arXiv preprint arXiv:1506.05869.
Vinyals, O.; Kaiser, Ł.; Koo, T.; Petrov, S.; Sutskever, I.; and
Hinton, G. 2015. Grammar as a foreign language. In NIPS,
2773–2781.
Vinyals, O.; Fortunato, M.; and Jaitly, N. 2015. Pointer
networks. In Cortes, C.; Lawrence, N. D.; Lee, D. D.;
Sugiyama, M.; and Garnett, R., eds., Advances in Neural In-
formation Processing Systems 28. Curran Associates, Inc.
2692–2700.
Wang, S., and Jiang, J. 2016. Machine comprehension using
match-lstm and answer pointer. In Proceedings of ICLR.
Wang, X.; Tu, Z.; Xiong, D.; and Zhang, M. 2017. Trans-
lating phrases in neural machine translation. arXiv preprint
arXiv:1708.01980.
Zhou, Q.; Yang, N.; Wei, F.; Tan, C.; Bao, H.; and Zhou, M.
2017a. Neural question generation from text: A preliminary
study. arXiv preprint arXiv:1704.01792.
Zhou, Q.; Yang, N.; Wei, F.; and Zhou, M. 2017b. Selective
encoding for abstractive sentence summarization. In Pro-
ceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 1095–
1104. Vancouver, Canada: Association for Computational
Linguistics.

4994

