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Abstract

Context-based word embedding learning approaches can
model rich semantic and syntactic information. However, it
is problematic for sentiment analysis because the words with
similar contexts but opposite sentiment polarities, such as
good and bad, are mapped into close word vectors in the em-
bedding space. Recently, some sentiment embedding learn-
ing methods have been proposed, but most of them are de-
signed to work well on sentence-level texts. Directly applying
those models to document-level texts often leads to unsatis-
fied results. To address this issue, we present a sentiment-
specific word embedding learning architecture that utilizes
local context information as well as global sentiment repre-
sentation. The architecture is applicable for both sentence-
level and document-level texts. We take global sentiment rep-
resentation as a simple average of word embeddings in the
text, and use a corruption strategy as a sentiment-dependent
regularization. Extensive experiments conducted on several
benchmark datasets demonstrate that the proposed architec-
ture outperforms the state-of-the-art methods for sentiment
classification.

Introduction

Continuous word representation, commonly called word
embedding, attempt to represent each word as a continuous,
low-dimensional and real-valued vector. Since they can cap-
ture various dimensions of semantic and syntactic informa-
tion and group words with similar grammatical usages and
semantic meanings, they have less susceptible to data spar-
sity. Therefore, word embeddings are widely used for many
natural language processing tasks, such as sentiment analy-
sis (Wang et al. 2015), machine translation (Ding et al. 2017)
and question answering (Hao et al. 2017).

Existing word embedding learning approaches mostly
represent each word by predicting the target word through
its context (Collobert and Weston 2008; Mikolov et al. 2013)
and map words of similar semantic roles into nearby points
in the embedding space. For example, ‘good’ and ‘bad’ on
the left of the Figure 1 are mapped into close vectors in the
embedding space. However, it is confusing for sentiment
analysis, because these two words actually have opposite
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Figure 1: Illustrative normal word embedding (left) and
sentiment-specific word embedding (right) in embedding
space.

sentiment polarities. Therefore, it is desired to propose mod-
els that can not only capture the contexts of words but also
model sentiment information of texts, like word embeddings
on right of the Figure 1.

To achieve this goal, Tang et al. proposed two models
based on the C&W(Collobert and Weston 2008) model that
learn sentiment-specific word embedding by sentiment po-
larity labels for twitter sentiment classification. They also
extended their work with several customized loss functions
(Tang et al. 2016b). These models predict or rank senti-
ment polarity based on word embeddings in a fixed win-
dow of words across a sentence. In addition, based on the
Skip-Gram (Mikolov et al. 2013), Zhang et al.(2015) inte-
grated the sentiment information by using the semantic word
embeddings in the context to predict the sentiment polarity
through a softmax layer, and Yang et al.(2017) proposed a
model that predicted the target word and its label simulta-
neously. Both of them took sentiment information as a part
of the local context. Due to the limitation of the design of
these training methods, they could only be used in specific
task and is less efficient for document-level text. Therefore,
the integration of sentiment polarity into semantic word em-
beddings is still a major challenge for sentiment analysis.

In this paper, we will introduce a sentiment-specific word
embedding learning architecture that incorporates local con-
text with global sentiment representation. In general, the lo-
cal context can be regarded as a representation of the target
word, while the global sentiment representation is the av-
eraged vector of the words in the text through a corruption
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strategy. The strategy is a biased randomly sampling pro-
cess. Thus, the local and the global representations could
be regarded as semantic and sentiment information respec-
tively. In order to learn sentiment-specific word embedding,
the global sentiment representation could integrate into the
local context by modeling jointly.

Based on the proposed architecture, we develop two neu-
ral network models to learn the sentiment-specific word em-
beddings, which are the extension to the Continuous Bag-
of-Words (CBoW) model. The prediction model (SWPre-
dict) takes sentiment prediction as a multi-class classifi-
cation task, and it can be viewed as language modeling.
The ranking model (SWRank) takes sentiment prediction
as a ranking problem, and it penalizes relative distances
among triplet global sentiment representations. Experiments
demonstrate the effectiveness of our models, and empiri-
cal comparisons on sentence-level and document-level sen-
timent analysis tasks show that our architecture outperforms
state-of-the-art methods.

The main contributions of this work are as follows:

• We propose a general architecture to learn sentiment-
specific word embeddings, and use a global sentiment
representation to model the interaction of words and
sentiment polarity. The architecture is effective for both
sentence-level and document-level texts.

• We develop two neural networks to learn sentiment-
specific word embeddings. The prediction model takes the
sentiment prediction as a classification task, and the rank-
ing model takes sentiment prediction as a ranking prob-
lem among the triplets.

• To improve the efficiency of the model, we use a corrup-
tion strategy that favors informative words which have
strong discrimination capability. It can be regarded as a
sentiment-dependent regularization for global sentiment
representation.

Background

Modeling Contexts of Words

Many methods can encode contexts of words into embed-
dings from a large collection of unlabeled data. Here we fo-
cus on the most relevant methods to our model. Bengio et al.
proposed a neural language model and estimated the param-
eters of the network and these embeddings jointly. For this
model is quite expensive to train, Mikolov et al.(2013) pro-
posed the Word2vec, which contains CBoW and Skip-Gram
models, to learn high-quality word embeddings.

CBoW is an effective framework for modeling contexts
of words, which aims to predict the target word given its
context in a sentence. It contains an input layer, a projection
layer parameterized by the matrix U and an output layer pa-
rameterized by V. The probability of the target word wt with
its local context Ct can be calculated as:

P (wt|Ct) =
exp(VT

wtUCt)∑
w′∈V exp(VT

w′UCt)
(1)

Document Representation

Document representation is a fundamental problem for
many natural language processing tasks. Many efforts have
been done to generate concise document representation.
Paragraph Vectors (Dai, Olah, and Le 2015) is an unsuper-
vised method that explicitly learns a document representa-
tion with word embeddings. In the Paragraph Vectors model,
a projection matrix D is introduced. Each column of matrix
D is a document representation x. The model inserts x to the
standard language model which aims at capturing the global
semantic information of the document. With the document
representation x, the probability of the target word wt given
its local context Ct is calculated as:

P (wt|Ct, x) =
exp(VT

wt(UCt + x))∑
w′∈V exp(VT

w′(UCt + x))
(2)

However, the complexity of Paragraph Vectors grows with
the size of vocabulary and training corpus, and it needs ex-
pensive inference to obtain the representations of unseen
documents. To alleviate these problems, Chen (2017) pro-
posed a model, called Doc2VecC, which simply represents
a document as an average of word embeddings that are ran-
domly sampled from the document. The randomly sampling
process is a kind of drop-out corruption that can speed up
the training. What’s more, the corruption strategy is proved
to be as a data-dependent regularization.

Given a document D contains word embeddings
{w1, . . . ,wT }, its global representation is denoted as x and
each word embedding is denoted as x. The corruption strat-
egy randomly overwrites each word embedding of the orig-
inal document x with probability q, and it sets the uncor-
rupted word embeddings to 1

1−q times the value of its origi-
nals. Formally,

x̃d =

{
0, with probability q
xd

1−q , otherwise (3)

Thus, the corrupted document representation is denoted as
x = 1

T

∑T
1 x̃d, where T is the length of the document. Fi-

nally, the calculation of the probability of the target word wt

is the same as Eq.2.

Approach

Architecture

An intuitive solution to model the interaction of sentiment
information and word embeddings is to predict the sentiment
distribution of the global representation while modeling the
contexts of words. The benefit of introducing global repre-
sentation is that it can learn sentiment-specific word em-
beddings from variable-length texts. In this paper, we pro-
pose an architecture that is an extension of the CBoW model
(Mikolov et al. 2013). Based on the architecture, we develop
two neural networks to learn sentiment-specific word em-
beddings, including a prediction model and a ranking model.
The architecture consists of two components:
• The semantic component is to learn semantic and syntac-

tic information of words in an unsupervised way as shown
in the background section.
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Figure 2: The architecture of the prediction model. It takes
sentiment prediction as a multi-class classification problem.

• The sentiment component is to model global sentiment
representation of text in a supervised manner, which intro-
duces a corruption strategy as sentiment-dependent regu-
larization that will describe below.

Corruption as Sentiment-dependent
Regularization

We observe that the frequencies of many sentiment words
are lower than the commonly used words in most cases.
Consequently, we employ a biased drop-out corruption,
which can regarded as sentiment-dependent regularization
(Chen 2017) for global text representation.

Specifically, we randomly overwrite each word embed-
ding of the original text x with probability p. The probability
p is calculated as a corruption by the frequency of word wi.

p = 1− (

√
α

freq(wi)
+

α

freq(wi)
) (4)

where α is a threshold, we use 1e − 4 in this paper, and
freq(wi) is the frequency of word wi. We set the uncor-
rupted word embeddings to 1

1−q times the value of its orig-
inals as (Chen 2017). Thus, the global text representation is
calculated as:

x̃d =

{
0, with probability p > 0
1

1−q · xd, otherwise (5)

and x̃ =
∑T

1 x̃d. Therefore, the probability of the target
word wt, given its local context Ct as well as the text repre-
sentation x̃, is calculated as:

P (wt|Ct, x̃) =
exp(VT

wt(UCt + 1
T Ux̃))∑

w′∈V exp(VT
w′(UCt + 1

T Ux̃))
(6)

where T is the length of the text. Given the training corpus
D = {D1, . . . , Dn}, the parameters U and V are learned to
minimize the loss:

JS = −
n∑

i=1

Ti∑
t=1

f(wt
i ,C

t
i, x̃

t
i) (7)
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Figure 3: The architecture of the ranking model. It takes sen-
timent prediction as a ranking problem among triplets.

Prediction Model

The basic idea of the prediction model is to take sentiment
prediction as a multi-class classification problem. It predicts
positive or negative categorical probabilities of the global
sentiment representation.

As illustrated in Figure 2, it consists of two components,
and each component contains an input layer, a projection
layer, and an output layer. The inputs of the semantic com-
ponent are word tokens, while the inputs of the sentiment
component are the sampled word tokens by the corruption
strategy. In the semantic component, the probability of the
target word is calculated as Eq.6. While in the sentiment
component, the projection layer feeds the corrupted global
text representation calculated as Eq.5 to a linear layer, and
converts the vector length to category number, which is 2
in this paper. Then, the output layer generates conditional
probabilities over positive and negative categories.

Given the gold sentiment polarity of the input texts in the
corpus D, we use fg(t) = [1, 0] as the positive polarity, and
fg(t) = [0, 1] as the negative polarity. The cross entropy
error between gold sentiment distribution and predicted dis-
tribution of the output layer is:

Jpredit = −
D∑
d

∑
k={0,1}

fg
k (t) · log(fpred

k (t)) (8)

To get sentiment-specific word embeddings, we combine
the losses from the semantic and the sentiment components
together. The final loss function is Eq.9, where β weights the
two components.

JSP = β · JS + (1− β) · Jpredict (9)

Ranking Model

Sentiment-specific word embedding learning needs a large
scale of training data. However, it is hard to obtain abundant
dataset with carefully labeled sentiment polarity. In view of
well labeled texts, it is easier to obtain weakly labeled texts
from ratings (movie reviews) or emoticons (tweets), without
much manual work. However, the weakly labeled texts may
contain wrong labels, which will influence the quality of the
learned sentiment-specific word embedding. To alleviate the
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influence, the texts belonging to the same sentiment polarity
should be as close as possible, while the texts of different
sentiments should be kept far away. Therefore, we propose
a ranking model based on triplets.

As Figure 3 shows, it also consists of two components.
The semantic component is the same as the prediction
model, while the sentiment component generates valid rank-
ing triplets.

A valid triplet is generated as follows: given the subset P
contains positive texts and the subset N contains negative
texts. Let’s take P as focus, two global text representations
x̃1 and x̃2 are sampled from P , and a global text represen-
tation x̃3 is sampled from N . The case for N as the focus
is a mirror case. Before the output layer, we use a nonlinear
layer to convert global representations to sentiment scores
yi.

yi = f(wx̃ + b) (10)
where w and b are parameters, f(·) is a sigmoid function.

The training objective is defined as the following ranking
loss:

Jrank =
D∑

d=<x̃1 ,̃x2 ,̃x3>

max(0, λ−dst(x̃1, x̃3)+dst(x̃1, x̃2))

(11)
where λ is the margin parameter, dst(·) is the distance be-
tween global text representations, and < x̃1, x̃2, x̃3 > de-
notes a valid triplet. This means we require the distance be-
tween < x̃1, x̃2 > to be closer than that between < x̃1, x̃3 >
by at least λ.

The distance is calculated as the difference scores be-
tween the two representations.

dst(x̃i, x̃j) = |yi − yj| (12)

Compared with pairwise ranking, the triplet-based rank-
ing can easily make representations with the same sentiment
polarity close to one another, while keep representations
with different sentiment polarity away. Because the major-
ity of the representations are with correct labels, they would
gather close to each other in the training process. While, rep-
resentations with wrong labels would go towards the oppo-
site cluster, but with slower speeds compared with pairwise
ranking(Guan et al. 2016).

The final loss function is the combination of the losses
from the semantic and the sentiment components:

JST = β · JS + (1− β) · Jrank (13)

where β weights the two components.

Training

We use two datasets for training the sentiment-specific word
embeddings separately. One is movie reviews that is consid-
ered as document-level texts, while the other is tweets that
is regarded as sentence-level texts. The movie reviews are
extracted from the SAR14(Nguyen et al. 2014) dataset that
contains 233,600 IMDB reviews along with their associated
ratings on a 1-10 scale. We use all reviews with scores ≤ 4
as the negative texts, and randomly select the same amount
of reviews with scores ≥ 7 as the positive texts. We extract

Dataset #Vocab. Lenavg #Pos. #Neg.

Reviews 41,778 283.3 66,000 66,222
Tweets 34,165 16.7 637,728 665,432

Table 1: Statistics of the training datasets for sentiment-
specific word embedding learning.

tweets from a collection of dataset1 that labeled positive or
negative, and filter the tweets that less than 7 words. The
statistics of the datasets are given in Table 1.

For our models, we use AdaGrad (John Duchi 2011) to
update the parameters and the learning rate is 1.0. We em-
pirically set the context window size as 3 and batch size as
128. We set the hyper-parameter α = 1e−4 and p = 0.9 for
corruption. We evaluate the effect of the embedding size and
choose 150 for both models. Our models are implemented in
tensorflow2.

Experiments

We evaluate our learned embeddings by taking them as fea-
tures for sentence-level and document-level sentiment clas-
sification. We use the LIBLINEAR (Fan et al. 2008) as the
classifier.

Datasets

For document-level sentiment classification, we use the
IMDB movie review dataset (Maas et al. 2011). It consists
of 100,000 movie reviews, and half of them are labeled as
either positive or negative. We use the default train/test split,
and randomly select 10% of the training data as the devel-
opment set.

For sentence-level sentiment classification, we use the
Twitter dataset from the SemEval 2013 task 2 (Nakov et al.
2013). The data can be downloaded by running a script3. We
build a 2-class Twitter sentiment classifier. Thus, we only
use positive and negative data. The statistics of our datasets
are given in Table 2.

Dataset Subset #Positive #Negative #Total

IMDB
Train 11,250 11,250 22,500
Dev 1,250 1,250 2,500
Test 12,500 12,500 25,000

Twitter
Train 2978 1162 4,140
Dev 328 170 498
Test 1306 485 1,791

Table 2: Statistics of the IMDB and the Twitter datasets for
sentiment classification.

1thinknook.com/twitter-sentiment-analysis-training-corpus-
datasets-2012-09-22

2www.tensorflow.org
3https://cs.york.ac.uk/semeval-2013/task2/index.html
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IMDB Dataset

Method Word2vec Glove SE-Pred SE-HyRank SWPredict SWRank
Avg. 86.51 ± 0.02 84.43 ± 0.01 83.62 ± 0.02 84.13 ± 0.03 88.31 ± 0.03 88.55 ± 0.05
Conv. 87.68 ± 0.02 86.0 ± 0.01 84.73 ± 0.04 85.82 ± 0.02 88.22 ± 0.04 88.39 ± 0.04

Twitter Dataset

Method Word2vec Glove SE-Pred SE-HyRank SWPredict SWRank
Avg. 77.39 ± 0.02 79.23 ± 0.08 80.9 ± 0.02 81.2 ± 0.03 84.05 ± 0.04 84.02 ± 0.02
Conv. 77.53 ± 0.02 79.74 ± 0.13 81.8 ± 0.08 82.2 ± 0.02 83.73 ± 0.04 82.69 ± 0.03

Table 3: Accuracy of sentiment classification on the IMDB and the Twitter datasets. “Avg.” denotes the average of the word
embeddings in the text, which are features of the SVM classifier. “Conv.” denotes the concatenation of vectors derived from
max,min, average convolutional layers, which are features of the SVM classifier. We mark the best results by boldface.

Setup

We apply word embeddings to sentiment classification under
a supervised learning framework. Given the learned word
embeddings matrix U, we represent each global sentiment
representation as an average of the word embeddings in the
text as Chen(2017) did:

z(x) =
1

T

∑
w∈D

Uw

We also adopt the max,min, average convolutional lay-
ers to represent the global sentiment representation (Socher
et al. 2011; Tang et al. 2014). The representation is regarded
as the concatenation of the vectors derived from different
convolutional layers.

z(x) = [zmax(x̃), zmin(x̃), zavg(x̃)]

where z(x) is the representation of text x. Taking z(x) as
features, we use Support Vector Machine to build sentiment
classifiers. We train them on the training set, and tune pa-
rameters and evaluate the models on the development and
the test datasets respectively.

Baseline Methods

We compare our models with the following baseline word
embedding learning methods:
• Word2vec4: Mikolov et al. developed a widely used

toolkit “Word2vec” that contains CBoW and Skip-Gram
algorithms to learn word embedding. We use CBoW in
the experiments and train it with negative sampling.

• Glove5: Pennington et al.(2014) released a popular algo-
rithm for obtaining word embedding. It is a log bilinear
model that use AdaGrad (John Duchi 2011) to minimize
a weighted square error on global co-occurrence counts.
The method is comparable to Word2vec.

• SE-Pred: A sentiment-specific word embedding learning
model based on C&W(Collobert and Weston 2008). It re-
gards sentiment prediction as a multi-classification task
which proposed by (Tang et al. 2016b). It has high perfor-
mance for twitter sentiment classification.
4https:code.google.com/p/word2vec/
5http://nlp.stanford.edu/projects/glove/

• SE-HyRank: A sentiment-specific word embedding learn-
ing model based on ranking loss that proposed by Tang et
al. It learns context information and sentiment informa-
tion simultaneously through a neural network with a pair-
wise ranking loss. It is the latest model that learns senti-
ment word embeddings.
Here we focus on the comparisons of the model architec-

tures. For a fair comparison, we train all competing methods
on the same datasets using a context window of three words.
For the baseline methods, we use default settings in the pro-
vided implementations or described as their papers.

Sentiment Classification Results

Table 3 shows the performance of the learned word embed-
ding on both sentence-level and document-level sentiment
classification tasks.

On the IMDB dataset, SWPredict and SWrank outper-
form all baselines significantly, especially SWRank achieves
the best result. It denotes that our models learn a better
word embeddings for document-level sentiment classifica-
tion. Compared with SE-Pred and SE-HyRank, Word2vec
and Glove get higher results. The underlying reason is that
SE-Pred and SE-HyRank predict or rank sentiment polar-
ity based on word embeddings in a fixed window of words
across a sentence, which is not appropriate for document-
level texts. We address this problem by encoding senti-
ment information from global text representation. SWRank
achieves a better result than SWPredict indicates the effec-
tiveness of ranking among triplets for document-level senti-
ment classification with weakly labeled texts.

On the Twitter dataset, sentiment-specific word embed-
ding learning models obtain better performance, which
shows the importance of sentiment information for senti-
ment classification. Our models get higher results than SE-
Pred and SE-HyRank, which implies that our models can
capture the most distinguishable information when learning
sentiment-specific word embeddings. The main difference
between our models and SE-Pred as well as SE-HyRank
is that we encode sentiment information from global text
representation and use a corruption strategy as a sentiment-
dependent regularization. That makes our models can learn
more discriminable word embeddings. One of the differ-
ences between SWRank and SE-HyRank is that we use a
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triplet rather than a pairwise in the ranking loss. The results
show that triplet-based ranking is more effective than pair-
wise ranking for sentence-level sentiment classification.

For our models, the accuracy of the average word embed-
dings as features is slightly higher than the concatenation
of the outputs of convolutional layers as features. It indi-
cates that our models can learn the most discriminative word
embeddings and penalize the common or non-discriminative
word embeddings through the corruption strategy.

Effect of β in the models

In this experiment, we investigate the effect of β on the clas-
sification performance with different β on the evaluation
datasets. The parameter β weights the semantic and senti-
ment information. A small value of β means the models pay
more attention on sentiment information.

(a) IMDB

(b) Twitter

Figure 4: Effect of the parameter β with different values on
the sentiment classification performance on the IMDB and
the Twitter datasets.

As shown in Figure 4, for the IMDB dataset, SWPredict
and SWRank obtain best results when setting β as 0.5 on
both global representation methods. While, for the Twitter
dataset, both models get best results when β is 0.6. This
means both models perform better when β is in the range
of [0.5,0.6], which balances the semantic and sentiment in-
formation. We can see a sharp decline when β is 1, which
indicates the essential role of sentiment information for sen-
timent classification.

Effect of λ in the Ranking Model

The margin parameter λ controls the distance between pos-
itive and negative texts. Here, we investigate the effect of λ
on the classification performance. We change λ from 1 to
10, and the performance results are shown in Figure 5.

Figure 5: Effect of margin λ with different values on the
sentiment classification performance on the IMDB and the
Twitter datasets of the SWRank model.

For the IMDB dataset, both global representation methods
obtain the best results when λ is 3, and drop steadily after
that. For the Twitter dataset, the best results are achieved at
λ = 2, and the performance of Conv. method drops quickly.
Moreover, when λ is set to a large value, the networks are
more easily to be trapped in saturating regions (Bengio et al.
2013) after long time training. In addition, the overall train-
ing time will increase when enlarging the margin λ. There-
fore, we set λ = 3 on the movie reviews sentiment-specific
word embedding training dataset and λ = 2 on the tweets
sentiment-specific word embedding training dataset.

Comparison to Document Representation

Model Accuracy %

Paragraph Vectors† 87.9
Skip-Thought Vectors† 82.6

Doc2VecC† 88.3
SWPredit 89.4
SWRank 89.6

Table 4: Comparison with previous work on document rep-
resentation for sentiment classification. †denotes the results
cited from (Chen 2017).

We compare the performance of our models to Paragraph
Vectors (Dai, Olah, and Le 2015), Skip-Thought Vectors
(Kiros et al. 2015) and Doc2VecC (Chen 2017). We directly
cite the results from Chen(2017), for we both use SVM clas-
sifiers to evaluate our models on the same IMDB dataset
(Maas et al. 2011). The main difference is that we only use
the labeled training set that contains 25,000 reviews, while
they also use the unlabeled set that contains 50,000 reviews.
Table 4 shows that our models obtain slightly higher results
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with less data. The reason is that the other document repre-
sentation methods do not model the sentiment polarity infor-
mation into the representation directly, while our approach
incorporates the sentiment polarity information into the vec-
tors in a supervised manner. In addition, a biased corruption
process which favors informative sentiment words is used
when calculating the document representation.

Related Work
Our work is inspired by two fields of research: integrat-
ing sentiment information into semantic word embedding
and learning continuous feature representations for variable-
sized texts.

Sentiment-specific Word Embedding

The common method to generate word embedding is based
on language model. Mikolov et al.(2013) simplified the
structure of a neural probabilistic language model (NNLM)
(Bengio et al. 2003) and introduced two efficient models
which called CBoW and Skip-Gram. While Collobert and
Weston(2008) proposed the C&W model that train word
embedding in a ranking fashion with hinge loss function.
However, a key limitation of the above models for senti-
ment analysis is that they map words with similar contexts
but opposite sentiment polarities into close word vectors in
the embedding space. To avoid this limitation, Labutov et
al.(2013) re-embedding existing word embeddings with lo-
gistic regression by regarding sentiment supervision of sen-
tences as a regularization item. In contrast, Tang et al.(2014)
introduced a neural network based on C&W model to in-
corporate the supervision from sentiment polarity of text for
twitter sentiment classification. In addition, they extended
their work and developed a number of neural networks with
tailoring loss functions to learn sentiment-specific word em-
bedding (Tang et al. 2016b). These models focus on Twitter
sentiment classification and predict or rank sentiment polar-
ity based on word embeddings in a fixed window of words
across a sentence. Based on the Skip-Gram model, Zhang
et al.(2015) proposed a model for word-level and sentence-
level sentiment analysis, and Yang et al.(2017) proposed a
model that predicted the target word and its label simulta-
neously. Both of them took sentiment information as a part
of the local context. Unlike their work, we develop an ar-
chitecture that takes sentiment information as global repre-
sentation and learn sentiment-specific embedding for both
sentence-level and document-level texts.

Feature Representations of Texts

There are two major ways to learn text representation: super-
vised and unsupervised. For supervised learning, researchers
have explored different neural networks for sentence-level
and document-level text representations for sentiment clas-
sification, such as Convolutional Neural Network (Kim
2014) and its variants (Nal, Edward, and Phil 2014; Yin
and Schtze 2015), Recursive Neural Network models which
learn compositionally vector representations for phrases and
sentences(Socher et al. 2012), and Long Short-Term Mem-
ory (Kai Sheng Tai 2015; Tang et al. 2016a). For unsuper-
vised learning, Skip-Thought vectors (Kiros et al. 2015) uses

an encoder-decoder to model the surrounding sentences of
the encoded passage and maps similar sentences into vec-
tors, while Paragraph Vectors (Dai, Olah, and Le 2015) ex-
plicitly learns a document representation with the word em-
beddings. However, the complexity of these models grows
with the size of the training corpus. To alleviate this prob-
lem, Chen(2017) proposed the Doc2VecC that simply repre-
sents a document as an average of word embeddings that are
randomly sampled from the document. We borrow the idea
and take the text representation as the global sentiment infor-
mation, which jointly learned with local contexts. With the
help of sentiment-dependent corruption strategy, our models
can learn informative word embeddings which have strong
discrimination capability for sentiment classification.

Conclusion

In this paper, we propose a sentiment-specific word embed-
ding learning architecture via global sentiment representa-
tion. Different from the existing studies that learn sentiment-
specific word embedding from sentence-level texts for
the specific classification task, our architecture can learn
sentiment-specific word embedding from both sentence-
level and document-level texts. We utilize global sentiment
representation as well as local context to learn word embed-
dings. We take global sentiment representation as a simple
average of word embeddings in the text with a corruption
strategy. The corruption strategy can be seen as a sentiment-
dependent regularization for global sentiment representa-
tion. It makes our models favor informative sentiment words
and reduce the complexity of our models. Based on the pro-
posed architecture, we introduce two neural networks to ef-
fectively learn sentiment-specific word embedding. We eval-
uate the effectiveness of the learned sentiment-specific word
embedding on sentence-level and document-level sentiment
classification. Experimental results show that our architec-
ture is adept in learning sentiment-specific word embeddings
and outperforms the baseline methods.
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