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Abstract

Sequence-to-sequence constituency parsing casts the tree-
structured prediction problem as a general sequential prob-
lem by top-down tree linearization, and thus it is very easy
to train in parallel with distributed facilities. Despite its suc-
cess, it relies on a probabilistic attention mechanism for a
general purpose, which can not guarantee the selected con-
text to be informative in the specific parsing scenario. Previ-
ous work introduced a deterministic attention to select the in-
formative context for sequence-to-sequence parsing, but it is
based on the bottom-up linearization even if it was observed
that top-down linearization is better than bottom-up lineariza-
tion for standard sequence-to-sequence constituency parsing.
In this paper, we thereby extend the deterministic attention
to directly conduct on the top-down tree linearization. Inten-
sive experiments show that our parser delivers substantial im-
provements over the bottom-up linearization in accuracy, and
it achieves 92.3 Fscore on the Penn English Treebank sec-
tion 23 and 85.4 Fscore on the Penn Chinese Treebank test
dataset, without reranking or semi-supervised training.

Introduction
Constituency parsing is a fundamental task in natural lan-
guage processing, and it plays an important role in down-
stream applications such as machine translation (Galley et
al. 2004; 2006) and semantic analysis (Rim, Seo, and Sim-
mons 1990; Manning, Schütze, and others 1999). Over the
decades, feature-rich linear models had been dominant in
constituency parsing (Petrov and Klein 2007; Zhu et al.
2013); but they are not good at capturing the long dis-
tance dependencies due to feature sparsity. Recurrent neu-
ral networks have the advantages to address such issue,
and recently there has been much work on recurrent neu-
ral models for constituency parsing (Vinyals et al. 2015;
Watanabe and Sumita 2015; Dyer et al. 2016; Cross and
Huang 2016).

In particular, sequence-to-sequence parsing (Vinyals et al.
2015) has been increasingly popular. Its basic idea is to
linearize a parse tree into a sequence in a top-down man-
ner (see Figure 1) and then transform parsing into a stan-
dard sequence-to-sequence learning task. The main tech-
nique inside the sequence-to-sequence parsing is a proba-
bilistic attention mechanism, which aligns an output token

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Top-down and bottom-up linearlization of a parse
tree in sequence-to-sequence constituency parsing. The in-
put sequence x is the leaves of the parse tree in the top, and
the output is the linearized sequence y in the bottom. A dash
line indicates the relation between xi and “XX”.

to input tokens to select relevant context for better predic-
tion as shown in Figure 2(a). This parsing model is gen-
eral and easy to understand; particularly it runs in a se-
quential manner and thus is easy to parallelize with GPUs.
However, the probabilistic attention can not guarantee the
selected context is informative enough to yield satisfac-
tory outputs. As a result, its accuracy is only comparable
to the feature-rich linear models (Petrov and Klein 2007;
Zhu et al. 2013), especially given that it utilizes global con-
text.

Ma et al. (2017) proposed a deterministic attention for se-
quence to sequence parsing, which defines the alignments
between output and input tokens in a deterministic manner
to select the relevant context. This method was able to se-
lect better context than probabilistic attention for parsing.
However, their approach was conducted on the bottom up
linearization (see its linearized sequence in Figure 1) and
they require to binarize a parse tree, which induces the is-
sue of ambiguity: different binarized trees may lead to the
same tree. In addition, the bottom-up linearization lacks of
top-down guidance such as lookahead information, which
has been proved to be useful for better prediction (Roark
and Johnson 1999; Liu and Zhang 2017b). As a result, their
parser is still worse than the state of the art parsers in accu-
racy.
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Figure 2: The figures for probabilistic attention (a) and deterministic attention (b). At the timestep t = 5, y<5 have been
available but yt is unavailable and will be predicted next using context by attentions. Probabilistic attention aligns y5 to all
tokens according to a distribution αt shown in dotted arrow lines, while deterministic attention aligns y5 to the phrase P(1, 3),
the semi-phrase P(3, ?) and x3 in a deterministic manner solid shown in arrow lines.

In this paper, therefore, we aim to explore the determinis-
tic attention directly on top of top-down linearization, with
the expectation to improve the sequence-to-sequence con-
stituency parsing. The proposed deterministic attention is in-
spired by the following intuition. When linearizing a parse
tree in a top-down manner, it is clear that each token “XX”
represents a known word in the input side by a dash line
as shown in Figure 1, and thus this output token might de-
terministically align to that specific token in the input side
rather than stochastically align to all input tokens. Respect-
ing this intuition, we analyze the ideal alignment situations
at each decoding timestep and propose a general determin-
istic attention criteria for context selection. Under this cri-
teria, we propose some simple instances to deterministi-
cally specify the alignments between input and output to-
kens (§3). Since our deterministic attention sequentially rep-
resents alignments for a given parse tree, its training still
performs in a sequential manner and thus is easy to par-
allelize as the standard sequence-to-sequence parsing does.
Empirical experiments demonstrate that the resulting deter-
ministic attention on top-down linearization achieves sub-
stantial gains over the model in Ma et al. (2017). Further-
more, with the help of ensemble, the proposed parser is com-
petitive to state-of-the-art RNN parsers (Dyer et al. 2016;
Stern, Andreas, and Klein 2017), which require to maintain
tree structures and thus are not easy to parallelize for train-
ing.

This paper makes the following contributions:

• It analyzes the deterministic attention for sequence-to-
sequence parsing on top of top-down linearization, and
proposes a simple yet effective model without increasing
the training time.

• On both Penn English and Chinese Treebank datasets, in-
tensive experiments show that our parser outperforms sev-
eral direct sequence-to-sequence baselines, and achieve
92.3 Fscore on English dataset and 85.4 Fscore on Chi-
nese dataset without reranking or semi-supervised train-
ing.

Sequence-to-Sequence Parsing

Suppose x =
〈
x1, x2, · · · , x|x|

〉
denotes an input sequence

with length |x|; and y =
〈
y1, y2, · · · , y|y|

〉
denotes the out-

put sequence which represents a linearized parse tree of x
via a linearization method such as top-down linearization.
In Figure 1, x is the sequence 〈John, has, a, dot, .〉 and y is
its linearized tree sequence 〈(S, (NP,XX, · · · ,XX, )S〉.

Generally, sequence-to-sequence constituency parsing di-
rectly maps an input sequence to its linearized parse tree se-
quence by using a neural machine translation model (NMT)
(Vinyals et al. 2015; Bahdanau, Cho, and Bengio 2014).
NMT relies on recurrent neural networks under the encode-
decode framework including two stages. In the encoding
stage, it applies recurrent neural networks to represent x as
a sequence of vectors:

hi = f(exi
, hi−1),

where the hidden unit hi is a vector with dimension d at
timestep i, f is a recurrent function such as LSTM and GRU
and ex denotes the word embedding of x. Suppose the en-
coding sequence is denoted by Ex =

〈
Ex

1 , E
x
2 , · · · , Ex

|x|
〉

.
Then each Ex

i can be set as hi from a reversed recurrent
neural network (Vinyals et al. 2015) or as the concatenation
of the hidden units from bidirectional recurrent neural net-
works (Ma et al. 2017).

In the decoding stage, it generates a linearized sequence
from the conditional probability distribution defined by a re-
current neural network as follows:

p(y | x; θ) =
|y|∏
t=1

p(yt | y<t, E
x)

=

|y|∏
t=1

softmax
(
g(eyt−1 , h

′
t, ct)

)
[yt], (1)

with
h′t = f ′(h′t−1, yt−1, ct)

where θ is the overall parameter of this model; y<t =
〈y1, y2, · · · , yt−1〉; ey denotes the embedding of y; g is a
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projection function mapping into a vector with dimension of
the output vocabulary size V ; and [i] denotes the ith compo-
nent of a vector; ct is a context vector at timestep i and h′t is
a hidden unit specified by a RNN unit f similar to f defined
in encoding stage.

As shown in Eq.(1), ct is used to not only update the hid-
den unit ht in f but also predict yt in softmax, and thus it is
critical for NMT. In order to capture informative information
in context ct, NMT employs a probabilistic attention, which
aligns the token yt to tokens in x. In detail, at each timestep
t, ct is defined as the weighted sum of input encodings Ex

with weight αt:

ct = φ(α,Ex) = α�t E
x.

Here the weight αt implements an probabilistic attention
mechanism indicating that αt,i is the alignment probability
of yt being aligned to xi. αt is derived as follows:

αt = softmax
(
A(h′t−1, E

x)
)
, (2)

where A is a feedforward neural network mapping h′t−1 and
Ex into a |x|−dimension vector; and softmax makes this
vector to be a distribution, indicating that yt stochastically
aligns to all tokens in x as shown in Figure 2(a).

The Proposed Parsing Model

Despite of the success of sequence-to-sequence parsing, its
context is defined by a probabilistic attention which can not
guarantee that the selected context is always informative for
reliable predictions. Ma et al. (2017) proposed an approach
based on the deterministic attention to address this issue.
Unlike the probabilistic attention, the deterministic atten-
tion only aligns to some informative tokens in the input side
and thus selects their representations as the context at each
prediction timestep t. In order to specify those informative
tokens easily, they developed the deterministic attention on
top of bottom up linearization in an indirect manner, even
if it was observed that top-down linearization is better for
the standard sequence-to-sequence parsing in their experi-
ments. Inspired by this observation, this paper aims to apply
the deterministic attention directly based on the top-down
linearization.

Top-down Deterministic Attention

Suppose x is an input sequence and y is its top-down lin-
earized tree. According to the tree linearization procedure,
there are some natural alignment signals for “XX” tokens in
y if y is given. For example, in Figure 1, y3 = “XX” repre-
sents x1 = “John” and thus y3 may deterministically align
to x1 at least. For other tokens in y with the forms of “)” and
“(”, we consider the following two intuitive cases in Figure
1.

In Figure 1, y4 = “NP)”, the label “NP” in y4 shows that
there is a noun phrase “John” spanning [1, 2) in the input
side, and thus y4 may align to this “NP” phrase. In this paper,
this phrase is denoted by P(bt, st), where bt and st denote
the beginning and stopping positions. In this case, b4 = 1
and s4 = 2. Similarly, y5 = “(VP” in Figure 1, the label
“VP” in y5 indicates that the next phrase is a verb phrase

starting at “has”, and thus y5 may align to this noun phrase.
As the stopping position of this phrase is unknown, we call it
a semi-phrase represented by P(bt, ?) throughout this paper.
In this case, b5 = 2.

The above analysis is the exact case in the training stage,
where the entire tree sequence y is given in Figure 1. How-
ever, in testing stage the entire y is not available but gen-
erated incrementally starting from the beginning timestep
t = 1 as in Figure 2(b). Suppose in testing stage the de-
coder has already generated the tokens y<t and reaches the
timestep t. For each k < t satisfying yk=“XX”, we can spec-
ify some k′ such that yk represents xk′ . Then it is easy to
calculate bt and st in Figure 2(b), where t = 5, b5 = 1 and
s5 = 3. At this moment, although yt is not available but to
be generated next, there are three choices for yt, “XX”, a
form of “)” or a form of “(”:
• yt aligns to xst if yt is to be “XX”.
• yt aligns to the phrase P(bt, st) if yt is to be “)”.
• yt aligns to the semi-phrase P(st, ?) if yt is to be “(”.
Accordingly, for an unknown yt at the timestep t, we define
its alignments to the union of P(bt, st), P(st, ?) and et, in-
stead of a single alignment case. For example in Figure 2(b),
even if y5 will be “XX”, its alignment is not the input token
x3 it represented, but the union of P(1, 3), P(3, ?) and x3.
This alignment criteria makes our attention strategy differ-
ent from the probabilistic attention stochastically aligning to
all tokens in x as shown in Figure 2(a).

Interestingly, Liu and Zhang (2017a) recently proposed
an improved attention mechanism for sequence-to-sequence
parsing. They split x into two parts x<st and x/x<st , and
define two different probabilistic distributions for each parts.
Therefore, their model stills fall into the framework of prob-
abilistic attention as Vinyals et al. (2015) while ours is be-
yond this framework. Furthermore, our experiments will
demonstrate that our model delivers substantial gains over
their model (see §4).

Definition of Context Function

Instead of defining the context using the probabilistic atten-
tion, we define the context ct for yt based on the determin-
istic attention as following:

ct = φ
(P(bt, st),P(st, ?), st, E

x
)
, (3)

where φ denotes the context function. To specify the context
function φ, one requires to represent the phrase P(bt, st) and
the semi-phrase P(st, ?) based on the input sequence repre-
sentation Ex. In this paper, we employ some simple methods
to represent both the phrase and the semi-phrase, based on
their boundary representations.

The first one represents the phrase P(bt, st) as the con-
catenation of both its boundary representations, and repre-
sents the semi-phrase P(st, ?) as the representation of st.
Thus, φ is defined as follows:

φ = θc · [Ex
bt ;E

x
st−1;E

x
st ] (4)

where θc denotes the parameter of the context function and
it is a component of the entire parameter θ; [ · ; · ; · ] denotes
the concatentation of vectors.
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The context function φ in Eq.(4) actually defines on the
xbt , xst−1 and xst . As xst and xst−1 are adjacent in Ex de-
rived from RNNs, Ex

st may contain some information from
xst−1. We thereby reduce the context function such that it
depends on two words xbt , xst as follows:

φ = θc · [Ex
bt ;E

x
st ] (5)

Additionally, since st is the stopping position of P(bt, st)
and the beginning position of P(st, ?), Ex

st encodes some
information of both. We further reduce the dependency of φ
to only one word xst as follows:

φ = θc · Ex
st (6)

Please note that our representations for a phrase and a
semi-phrase are defined on their boundaries rather than their
entire structures, and especially we do not consider the stop-
ping boundary for a semi-phrase at all. Thus there may be
some further improvements in their representations. For ex-
ample, Cross and Huang (2016) and Stern, Andreas, and
Klein (2017) employ some sophisticated methods to repre-
sent a phrase in syntactic parsing. In addition, we simply em-
ploy a linear layer to define φ, and it is promising to adopt
a GRU layer to summarize this context together as shown in
Tu et al. (2017a). As the above simple method works well
in our experiments, and we instead remain these advanced
methods as our future work.

Detailed Model

In encoding of our model, we define the representation of xi

by using three different types of word embeddings similar
to Dyer et al. (2015) and Liu and Zhang (2017a). We define
exi

as the concatenation of three embeddings:

exi
= [êxi

; êpi
; ēxi

],

where êxi is a word embedding of xi, êpi is an embedding
of the pos tag of xi, and ēxi is a pretrained embedding of
xi. Both êxi and epi are randomly initialized and tuned in
the training data; while ēxi is fixed as a constant during the
training. While for the word embedding yt in the output side,
we simply consider it as a variable and tune it during the
training.

Until now, we complete the definition of our parsing
model: if one substitutes the Eq.(3) with φ specified in
Eq.(4), Eq.(5) or Eq.(6) into Eq.(1) one can obtain its entire
definition.

Note that our model is on top of deterministic attention,
and it requires to figure out bt and st at each timestep,
to which our context function is attentive. Fortunately, we
can still maintain the similar complexity to the standard
sequence-to-sequence parsing model (Vinyals et al. 2015)
in both the training and testing stages. In training stage, for
a given x and y pair, we can calculate the bt and st at each
timestep t in advance and then store them as an additional
input sequence to calculate the log probability P (y | x).
In this way, our neural architecture does not maintain the
tree structure and thus our training procedure still performs
in a sequential manner, which is easy for parallelization.
This advantage makes it different from the models in Dyer

et al. (2016) and Stern, Andreas, and Klein (2017), which
require to explicitly maintain the tree structure in neural net-
works. In testing stage1, although we have to calculate both
bt and st on-the-fly, its additional complexity is neglected
compared with the calculation of neural models involving in
large matrix multiplications.

Experiments

Datasets

The experiments are conducted on both English and Chi-
nese constituent parsing tasks. For English task, we use the
benchmark of WSJ sections in Penn Treebank (PTB) (Mar-
cus, Marcinkiewicz, and Santorini 1993), and we follow the
standard splits: the training data ranges from section 2 to
section 21; the development data is section 24; and the test
data is section 23. For Chinese parsing task, we use the
Penn Chinese Treebank (CTB) of the version 5.1 (Xue et al.
2005). The training data includes the articles 001-270 and
articles 440-1151; the development data is the articles 301-
325; and the test data is the articles 271-300. The statistics
of these datasets are shown in Table 1. We pretrained the En-
glish word embeddings on the AFP portion of English Giga-
word and Chinese word embeddings on Wikipedia corpus,
using the skip-gram model in the word2vec toolkit with the
default settings (Mikolov et al. 2013).

English(PTB) Chinese(CTB)
train dev test train dev test

Sents 39,831 1,346 2,416 18,072 352 348
Toks 2,430k 84k 145k 1,611k 22k 25k

Table 1: The Corpus statistics of Penn English Treebanks
(PTB) and Chinese Treebanks (CTB).

Settings

The part-of-speech tags for both English and Chinese
datasets are obtained by using the Stanford tagger (Toutan-
voa and Manning 2000) with 10-way jackknifing. In both
English and Chinese tasks, the words with frequency less
than 9 are replaced by UNK, leading to an English vocabu-
lary sizes of 6870 and a Chinese vocabulary of 4967.

The training objective is optimized by a stochastic gradi-
ent descent algorithm on the training data and its optimized
epoch is observed on the development data. In the SGD al-
gorithm with a learning rate schema of an exponential de-
cay. The parameters θ of our models are randomly initial-
ized from the uniform distribution as suggested by Glorot
and Bengio (2010). The overall hyper-parameters are shown
in Table 2 without further tuned in our experiments.

As there are randomnesses in our training algorithm, we
independently run the algorithm for five times and the final
results was reported as the averaged results of these runs.
The ensemble model includes these five independent models
as its individual model.

1Compared with testing stage, training efficiency is the bottle-
neck for neural models in practice, because training usually takes
several days.
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Parameter Value
LSTM Layers 1
Hidden unit dim 512
Trained word embedding dim 256
English pretrained word embedding dim 100
Chinese pretrained word embedding dim 200
POS tag embedding dim 128
Dropout rate 0.3
English batch size 10
Chinese batch size 5
Beam size in search 10

Table 2: Hyper-parameters used in our models.

Results on PTB

Model F1

DA1 90.2
DA2 90.2
DA3 90.3

Table 3: F1 score of different context functions on the PTB
development data. DAi denotes the model with regarding to
the ith context function in Section §3.

In Table 3, we compare the proposed modes based on dif-
ferent context functions φ as presented in Section §3. From
this table, we can see that there are no significant differ-
ences among these three models. Therefore, in the rest of
this paper, we only report the results of DA3 for simplicity.
Note that DA1 includes more information than the other two
models, since its context function φ defines on top of both
the phrase P(bt, st) and the semi-phrase P(st, ?). However,
this does not lead to more gains accordingly. One possible
reason is that the simple linear layer in Eq.(4) can not make
full use of these additional information; and another reason
may be that the phrase representation method is not strong
enough to make them differentiable.

Figure 3 shows the F1 score and model score according to
different beam sizes on the development dataset. From this
figure, we can see that our parser achieves decent F1 score of
89.8 even with the greedy decoding, i.e. beam size 1. As the
beam size increases, there are modest improvements but the
accuracy peaks at the beam size of 80, achieving F1 score of
90.3; and this case is similar for model score. In addition, we
found that our accuracy almost stays at the same level when
using a large beam size. This result is very different from the
findings of NMT system on machine translation task, where
the translation accuracy decreases largely with a large beam
size as reported in Tu et al. (2017b) and Koehn and Knowles
(2017). This may be caused by our deterministic attention in
parsing, which is unsuitable to MT except the probabilistic
attention. To trade-off the parsing accuracy and efficiency,
in the rest of this experiments, the beam size is set to be 10.

Table 4 shows the comparison of the proposed model over
other sequence-to-sequence parsing models, under the sin-
gle model setting. Our model achieves significant gains over

Figure 3: F1 score (dashed curve with the left y axis) and
model score (solid curve with the right y axis) with respect
to different beam sizes during decoding on the development
set.

Model F1

Vinyals et al. (2015) (single) 88.3
NMT-top-down (single) 87.2
Ma et al. (2017) (single) 88.6
Liu and Jiang (2017a) 90.5
This paper (single) 91.2

Table 4: Comparison between our model and other
sequence-to-sequence parsers on English PTB test dataset.

the models with probabilistic attention on the top-down lin-
earization, i.e., Vinyals et al. (2015) and NMT baselines.
Similarly, compared with Ma et al. (2017), which is with
the deterministic attention on the bottom-up linearization,
our model obtains substantial improvements as well. In ad-
dition, compared with the fine-grained probabilistic atten-
tion model (Liu and Zhang 2017a), our model still obtains a
gain of 0.7 F1 score. Note that both (Liu and Zhang 2017a)
and our model include the POS tag information and external
word embeddings, while the other three models do not in-
volve these additional information and thus one might argue
that their comparison is unfair.

Model F1

Vinyals et al. (2015) 88.3
Ma et al. (2017) 88.6
This paper (Ablated) 90.1

Table 5: The F1 of a single seq2seq parsing models on En-
glish PTB test data without POS tags and External embed-
dings.

To make an apple-to-apple comparison, we omit the POS
tags and external word embedding from our model, and
compare it with these sequence-to-sequnce models again. As
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Model F1

Vinyals et al. (2015) (ensemble) 90.5
NMT-top-down (ensemble) 89.8
Ma et al. (2017) (ensemble) 90.6
This paper (ensemble) 92.3
This paper (single) 91.2

Table 6: Comparison with direct sequence-to-sequence
parsers on English PTB Section 23 dataset.

shown in Table 5, without the pretrained word embedding
and pos tags, the accuracy of our model drops about 1 point
from 91.2 to 90.1. Fortunately, our model still obtains sub-
stantial improvements over the baselines. Our model outper-
forms Vinyals et al. (2015) with 1.8 F1 score, which demon-
strates that deterministic attention is better than probabilis-
tic attention in constituent parsing. In addition, Our model
achieves improvements of 1.5 F1 score over Ma et al. (2017).
This fact shows that top-down linearization is better than
bottom-up linearization under the settings of sequence-to-
sequence parsing.

Note that Vinyals et al. (2015) tried to introduce POS tags
in the decoding phase, by replacing “XX” with its corre-
sponding POS tag, but no performance improvement was
observed. In this paper, we introduce the POS tags in the
encoding phase and found they are useful according to our
experiments. This finding is consistent with that in state-of-
the-art neural parsers (Zhu et al. 2013; Liu and Zhang 2017b;
Dyer et al. 2016; Stern, Andreas, and Klein 2017), all of
which involve the POS tag information. Furthermore, to the
best of our knowledge, it is the first time that a single model
without POS tags and any other external resources achieves
competitive accuracy on the PTB dataset.

Ensemble is an effective technique for recurrent neural
networks,and thus we implement an ensemble of five models
for further improvements. For comparison, we report the en-
semble results of Vinyals et al. (2015), NMT-top-down, and
Ma et al. (2017). Note that the first two baselines include five
individual models as ours, and the third baseline includes
ten individual models. The results are depicted in Table 6.
From this table, we can see that the ensemble boosts our ac-
curacy from 91.2 to 92.3 F1 score, and it still outperforms
the ensemble models including at least the same number of
individual models.

We also compare our models with various state-of-the-art
parsers as shown in Table 7. Several observations can be ob-
tained from the table. Firstly, our single model outperforms
the fully-supervised feature-rich models with gains up to 0.8
F1 score, and it can match the performance of several neu-
ral models such as Cross and Huang (2016). Secondly, our
model is better than the other sequence-to-sequence base-
lines except Vaswani et al. (2017), which relies on a proba-
bilistic attention but a different model architecture. It is pos-
sible and would be interesting to integrate our idea on their
model architecture. Thirdly, our single model is competitive
to the best fully-supervised neural models such as Dyer et
al. (2016), Stern, Andreas, and Klein (2017) and Liu and
Zhang (2017b) in parsing accuracy. Since our model is se-

Model F1

fully-supervised
Petrov and Klein (2007)¶ 90.1
Socher et al. (2013)‡ 90.4
Zhu et al. (2013)¶ 90.4
Liu and Zhang (2017a)† 90.5
Watanabe and Sumita (2015)† 90.7
Durrett and Klein (2015)† 91.1
Cross and Huang (2016)† 91.3
Dyer et al. (2016)† 91.7
Stern, Andreas, and Klein (2017)† 91.7
Liu and Zhang (2017b) ‡ 91.7
Petrov (2010) (ensemble)¶ 91.9
Vaswani et al. (2017)† 91.3
Vinyals et al. (2015) (ensemble)† 90.5
Ma et al. (2017) (ensemble)† 90.7
This paper (ensemble)† 92.3
This paper (single)† 91.2
reranking
Charniak and Johnson (2005)¶ 91.5
Huang (2008)¶ 91.7
Choe and Charniak (2016)† 92.6
Dyer et al. (2016)† 93.3
Kuncoro et al. (2017)† 93.6
semi-supervised
Wang, Mi, and Xue (2015)† 90.7
Zhu et al. (2013)¶ 91.3
Vinyals et al. (2015)† 92.8
Choe and Charniak (2016)† 93.8

Table 7: Comparison with state-of-the-art parsers on English
PTB test data.¶, † and ‡ denote feature-rich models, neural
models and hybrid feature-rich and neural models.

quential and does not require the tree-structured networks as
Dyer et al. (2016) and Stern, Andreas, and Klein (2017), its
training is easier to parallelize and scale to the large train-
ing datasets. In addition, as the parser proposed by Liu and
Zhang (2017b) is essentially a feature-rich model with an
additional RNN feature, in this sense our model is promis-
ing to be integrated into a feature-rich model for further im-
provements. Finally, our ensemble model delivers a decent
result compared to the reranking and semi-supervised mod-
els. On the other hand, our model is orthogonal to both of
these models. For instance, our model can provide a better
kbest candidates for reranking with these notable generative
models in Dyer et al. (2016) and Choe and Charniak (2016).

Results on CTB

We additionally train parsers on the CTB and testify its ac-
curacy on the test data. We list our final results and compare
them to several other papers in Table 8. Our single model
is competitive to Watanabe and Sumita (2015). Although it
falls short of the score achieved by the structured neural net-
works in Dyer et al. (2016) and the hybrid model in Liu and
Zhang (2017b), such gap can be narrowed by a simple en-

4878



Model F1

fully-supervised
Petrov and Klein (2007)¶ 83.3
Zhu et al. (2013)¶ 83.2
Wang et al. (2015)‡ 83.2
Watanabe and Sumita (2015)† 84.3
Dyer et al. (2016)† 84.6
Liu and Jiang (2017b)‡ 85.5
This paper (single)† 84.1
This paper (ensemble)† 85.4
reranking
Charniak and Johnson (2005)¶ 82.3
Dyer et al. (2016)† 86.9
semi-supervised
Zhu et al. (2013)¶ 85.6
Wang and Xue (2014)¶ 86.3
Wang et al. (2015)‡ 86.6

Table 8: Comparison with state-of-the-art parsers on CTB
test data. ¶, † and ‡ denote feature-rich models, neural mod-
els and hybrid feature-rich and neural models.

semble technique.

Errors on PTB

error type bottom-up top-down reduction

PP Attach 850 668 182 (21%)
1-word Span 687 489 198 (29%)
Unary 555 412 143 (25%)
NP Int 464 335 129 (28%)
Clause Att 376 311 65 (17%)
Different label 374 269 105 (28%)
Mod Attach 317 264 53 (17%)
Co-ordination 379 225 154 (41%)
UNSET add 291 216 75 (26%)
NP Attachment 216 161 55 (25%)
Other 413 304 109 (26%)

Table 9: Error types between bottom-up and top-down de-
terministic attentions on PTB.

We used the toolkit in Kummerfeld et al. (2012) to ana-
lyze the parsing errors on different error types.2 Table 9 lists
the error results between a single model in Ma et al. (2017)
and a single of our model with POS tags and external word
embeddings. Generally, both sequence-to-sequence models
suffer most errors from the types of PP attachment, 1-word
span and unary. Compared with the parser in Ma et al.
(2017), our improved parser can largely reduce these er-
rors, and the Coordination errors are particularly reduced by
about 40%.

2https://code.google.com/p/berkeley-parser-analyser/

Related Work

Constitency parsing is a traditional NLP task and there
have been many attempts to model this task. Over the
decades, feature-rich linear models have been widely em-
ployed in constituency parsing. For example, Petrov and
Klein (2007) proposed a log-linear model with hand-crafted
features based on the CKY parsing agenda. Zhu et al. (2013)
and Wang and Xue (2014) integrated more abundant fea-
tures into the shift-reduce parsing agenda. These feature-rich
models are efficient for training, but they are unable to make
the full use of the long-distance features due to feature spar-
sity.

Neural models are appealing to avoid the feature sparsity
by mapping discrete features into dense vectors and provide
a natural way to make use the large context for parsing action
predictions (Vinyals et al. 2015; Watanabe and Sumita 2015;
Cross and Huang 2016; Dyer et al. 2016). For instance, Dyer
et al. (2016) proposed a stack-LSTM to represent the history
action predictions into a tree structure; Stern, Andreas, and
Klein (2017) proposed a variant neural network based on the
CKY structure; and both of the notable models achieved the
new state of the art parsing accuracy so far. Unlike these ex-
plicit tree-structured models, there are some sequential neu-
ral models by casting constituency parsing as an instance of
sequence-to-sequence learning (Vinyals et al. 2015; Liu and
Zhang 2017b; Vaswani et al. 2017). Similar to these mod-
els, our parsing model is essentially a sequential models;
whereas our model is based on the deterministic attention
as Ma et al. (2017) rather than the probabilistic attention in
their models.

Conclusion and Future Work

This paper proposed an improved sequence-to-sequence
constituency parser. Its key technique is a deterministic at-
tention mechanism, which is able to select informative con-
text from the input side at each timestep along the top-down
linearized sequence of a parse tree. Empirical experimental
results show that our parser achieves substantial improve-
ments over many sequence-to-sequence baseline parsers,
and obtains 92.3 Fscore on the Penn English Treebank sec-
tion 23 dataset and 85.4 Fscore on the Chinese Treebank test
dataset, without reranking and semi-supervised training.

In the future, as we utilized a simple method to represent a
phrase and a semi-phrase, it is promising to investigate more
sophisticated methods for their representations in our deter-
ministic attention mechanism. In additition, since our parser
is trained in a sequential manner, it would be interesting to
train it on a large mount of corpus by tri-training, which is
potential to further boost the parsing accuracy (Vinyals et al.
2015; Choe and Charniak 2016).
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