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Abstract

Embedding knowledge graphs (KGs) into continuous vector
spaces is a focus of current research. Combining such an em-
bedding model with logic rules has recently attracted increas-
ing attention. Most previous attempts made a one-time injec-
tion of logic rules, ignoring the interactive nature between
embedding learning and logical inference. And they focused
only on hard rules, which always hold with no exception and
usually require extensive manual effort to create or validate.
In this paper, we propose Rule-Guided Embedding (RUGE),
a novel paradigm of KG embedding with iterative guidance
from soft rules. RUGE enables an embedding model to learn
simultaneously from 1) labeled triples that have been directly
observed in a given KG, 2) unlabeled triples whose labels are
going to be predicted iteratively, and 3) soft rules with vari-
ous confidence levels extracted automatically from the KG. In
the learning process, RUGE iteratively queries rules to obtain
soft labels for unlabeled triples, and integrates such newly la-
beled triples to update the embedding model. Through this
iterative procedure, knowledge embodied in logic rules may
be better transferred into the learned embeddings. We evalu-
ate RUGE in link prediction on Freebase and YAGO. Exper-
imental results show that: 1) with rule knowledge injected it-
eratively, RUGE achieves significant and consistent improve-
ments over state-of-the-art baselines; and 2) despite their un-
certainties, automatically extracted soft rules are highly bene-
ficial to KG embedding, even those with moderate confidence
levels. The code and data used for this paper can be obtained
from https://github.com/iieir-km/RUGE.

Introduction

Knowledge graphs (KGs) such as WordNet (Miller 1995),
Freebase (Bollacker et al. 2008), YAGO (Suchanek, Kas-
neci, and Weikum 2007), and NELL (Carlson et al. 2010)
are extremely useful resources for many AI related applica-
tions. A KG is a multi-relational graph composed of entities
as nodes and relations as different types of edges. Each edge
is represented as a triple (head entity, relation, tail entity),
indicating that there is a specific relation between two enti-
ties, e.g., (Paris, CapitalOf, France). Although effective
in representing structured data, the underlying symbolic na-
ture of such triples often makes KGs hard to manipulate.

∗Corresponding author: Quan Wang (wangquan@iie.ac.cn).
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Recently, a new research direction termed as knowledge
graph embedding has been proposed and quickly received
massive attention (Nickel, Tresp, and Kriegel 2011; Bordes
et al. 2013; Wang et al. 2014; Lin et al. 2015b; Yang et al.
2015; Nickel, Rosasco, and Poggio 2016; Trouillon et al.
2016). The key idea is to embed entities and relations in a
KG into a low-dimensional continuous vector space, so as
to simplify the manipulation while preserving the inherent
structure of the KG. Such embeddings contain rich semantic
information, and can benefit a broad range of downstream
applications (Weston et al. 2013; Bordes et al. 2014; Zhang
et al. 2016; Xiong, Power, and Callan 2017).

Traditional methods performed embedding based solely
on triples observed in a KG. But considering the power of
logic rules in knowledge acquisition and inference, combin-
ing embedding models with logic rules has become a focus
of current research (Rocktäschel et al. 2014; Vendrov et al.
2015; Wang and Cohen 2016; Hu et al. 2016). Wang et al.
(2015) and Wei et al. (2015) tried to use embedding models
and logic rules for KG completion. But in their work, rules
are modeled separately from embedding models, and would
not help to learn more predictive embeddings. Rocktäschel
et al. (2015) and Guo et al. (2016) then devised joint learning
paradigms which can inject first-order logic (FOL) into KG
embedding. Demeester et al. (2016) further proposed lifted
rule injection to avoid the costly propositionalization of FOL
rules. Although these joint models are able to learn better
embeddings after integrating logic rules, they still have their
drawbacks and restrictions.

First of all, these joint models made a one-time injection
of logic rules, taking them as additional rule-based training
instances (Rocktäschel, Singh, and Riedel 2015) or regular-
ization terms (Demeester, Rocktäschel, and Riedel 2016).
We argue that rules can better enhance KG embedding, how-
ever, in an iterative manner. Given the learned embeddings
and their rough predictions, rules can be used to refine the
predictions and infer new facts. The newly inferred facts, in
turn, will help to learn better embeddings and more accurate
logical inference. Previous methods fail to model such in-
teractions between embedding models and logic rules. Fur-
thermore, they focused only on hard rules which always hold
with no exception. Such rules usually require extensive man-
ual effort to create or validate. Actually, besides hard rules,
a significant amount of background information can be en-
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Figure 1: Framework overview. RUGE enables an embed-
ding model to learn simultaneously from labeled triples, un-
labeled triples, and soft rules in an iterative manner, where
each iteration alternates between a soft label prediction stage
and an embedding rectification stage.

coded as soft rules, e.g., “a person is very likely (but not nec-
essarily) to have a nationality of the country where he/she
was born”. Soft rules can be extracted automatically and ef-
ficiently via modern rule mining systems (Galárraga et al.
2013; 2015). Yet, despite this merit, soft rules have not been
well studied in previous methods.

This paper proposes RUle-Guided Embedding (RUGE), a
novel paradigm of KG embedding with iterative guidance
from soft rules. As sketched in Fig. 1, it enables an embed-
ding model to learn simultaneously from 1) labeled triples
that have been directly observed in a given KG, 2) unlabeled
triples whose labels are going to be predicted iteratively, and
3) soft rules with different confidence levels extracted auto-
matically from the KG. During each iteration of the learning
process, the model alternates between a soft label prediction
stage and an embedding rectification stage. The former uses
currently learned embeddings and soft rules to predict soft
labels for unlabeled triples, and the latter further integrates
both labeled and unlabeled triples (with hard and soft labels
respectively) to update current embeddings. Through this it-
erative procedure, knowledge embodied in logic rules may
be better transferred into the learned embeddings.

We empirically evaluate RUGE on large scale public KGs,
namely Freebase and YAGO. Experimental results reveal
that: 1) by incorporating logic rules, RUGE significantly and
consistently improves over state-of-the-art basic embedding
models (without rules); 2) compared to those one-time in-
jection schemes studied before, the iterative injection strat-
egy maximizes the utility of logic rules for KG embedding,
and indeed achieves substantially better performance; 3) de-
spite the uncertainties, automatically extracted soft rules are
highly beneficial to KG embedding, even those with moder-
ate confidence levels.

The contributions of this paper are threefold. 1) We devise
a novel paradigm of KG embedding which iteratively injects
logic rules into the learned embeddings. To our knowledge,
this is the first work that models interactions between em-
bedding learning and logical inference in a principled frame-
work. 2) We demonstrate the usefulness of automatically ex-
tracted soft rules in KG embedding, thereby eliminating the
requirement of laborious manual rule creation. 3) Our ap-

proach is quite generic and flexible. It can integrate various
types of rules with different confidence levels to enhance a
good variety of KG embedding models.

Related Work
Recent years have witnessed increasing interest in learning
distributed representations for entities and relations in KGs,
a.k.a. KG embedding. Various techniques have been devised
for this task, e.g., translation-based models which take re-
lations as translating operations between head and tail enti-
ties (Bordes et al. 2013; Wang et al. 2014; Lin et al. 2015b),
simple compositional models which match compositions of
head-tail entity pairs with their relations (Nickel, Tresp, and
Kriegel 2011; Yang et al. 2015; Nickel, Rosasco, and Pog-
gio 2016; Trouillon et al. 2016), and neural networks which
further introduce non-linear layers and deep architectures
(Socher et al. 2013; Bordes et al. 2014; Dong et al. 2014;
Liu et al. 2016). Among these techniques, ComplEx (Trouil-
lon et al. 2016), a compositional model which represents
entities and relations as complex-valued vectors, achieves a
very good trade-off between accuracy and efficiency. Most
of the currently available techniques perform the embedding
task based solely on triples observed in a KG. Some recent
work further tried to use other information, e.g., entity types
(Guo et al. 2015; Xie, Liu, and Sun 2016) and textual de-
scriptions (Xie et al. 2016; Xiao, Huang, and Zhu 2017), to
learn more predictive embeddings. See (Wang et al. 2017)
for a thorough review of KG embedding techniques.

Given the power of logic rules in knowledge acquisition
and inference, combining KG embedding with logic rules
becomes a focus of current research. Wang et al. (2015) and
Wei et al. (2015) devised pipelined frameworks which use
logic rules to further refine predictions made by embedding
models. In their work, rules will not help to learn better em-
beddings. Rocktäschel et al. (2015) and Guo et al. (2016)
then tried to learn KG embeddings jointly from triples and
propositionalized FOL rules. Demeester et al. (2016) further
proposed lifted rule injection to avoid the costly proposi-
tionalization. These joint models, however, made a one-time
injection of logic rules, ignoring the interactive nature be-
tween embedding learning and logical inference. Moreover,
they can only handle hard rules which are usually manually
created or validated.

Besides logic rules, relation paths which can be regarded
as Horn clauses and get a strong connection to logical infer-
ence (Gardner, Talukdar, and Mitchell 2015), have also been
studied in KG embedding (Neelakantan, Roth, and McCal-
lum 2015; Lin et al. 2015a; Guu, Miller, and Liang 2015).
But in these methods, relation paths are incorporated, again,
in a one-time manner. Our approach, in contrast, iteratively
injects knowledge contained in logic rules into KG embed-
ding, and is able to handle soft rules with various confidence
levels extracted automatically from KGs.

Combining logic rules with distributed representations is
also an active research topic in other contexts outside KGs.
Faruqui et al. (2014) tried to inject ontological knowledge
from WordNet into word embeddings. Vendrov et al. (2015)
introduced order-embedding to model the partial order struc-
ture of hypernymy, textual entailment, and image caption-
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ing. Hu et al. (2016) proposed to enhance various types of
neural networks with FOL rules. All these studies demon-
strate the capability of logic rules to enhance distributed rep-
resentation learning.

Rule-Guided Knowledge Graph Embedding

This section introduces RUle-Guided Embedding (RUGE),
a novel paradigm of KG embedding with iterative guidance
from soft rules. RUGE enables an embedding model to learn
simultaneously from labeled triples, unlabeled triples, and
soft rules in an iterative manner. During each iteration, the
model alternates between a soft label prediction stage and
an embedding rectification stage. Fig. 1 sketches this overall
framework. In what follows, we first describe our learning
resources, and then detail the two alternating stages.

Learning Resources

Suppose we are given a KG with a set of triples observed,
i.e., O = {(ei, rk, ej)}. Each triple is composed of two en-
tities ei, ej ∈ E and their relation rk ∈ R, where E and R
are the sets of entities and relations respectively. We obtain
our learning resources (i.e., labeled triples, unlabeled triples,
and soft rules) and model them as follows.
Labeled Triples. We take the triples observed in O as pos-
itive ones. For each positive triple (ei, rk, ej), we randomly
corrupt the head ei or the tail ej , to form a negative triple
(e′i, rk, ej) or (ei, rk, e

′
j), where e′i ∈ E \ {ei} and e′j ∈

E \{ej}. We denote a labeled triple as x�, and associate with
it a label y� = 1 if x� is positive, and y� = 0 otherwise. Let
L = {(x�, y�)} denote the set of these labeled triples (along
with their labels).
Unlabeled Triples. Besides the labeled triples, we collect a
set of unlabeled triples U = {xu}, where xu = (ei, rk, ej)
indicates an unlabeled triple. In fact, all the triples that have
not been observed in O can be taken as unlabeled ones. But
in this paper, we consider only those encoded in the conclu-
sion of a soft rule, as detailed below.
Soft Rules. We also consider a set of FOL rules with dif-
ferent confidence levels, denoted as F = {(fp, λp)}Pp=1.
Here, fp is the p-th logic rule defined over the given KG,
represented, e.g., in the form of ∀x, y : (x, rs, y) ⇒
(x, rt, y), stating that two entities linked by relation rs
might also be linked by relation rt. The left-hand side of
the implication “⇒” is called the premise, and the right-
hand side the conclusion. In this paper, we restrict fp
to be a Horn clause rule, where the conclusion contains
only a single atom and the premise is a conjunction of
several atoms. The confidence level of rule fp is denoted
as λp ∈ [0, 1]. Rules with higher confidence levels are
more likely to hold, and a confidence level of λp = 1
indicates a hard rule which always holds with no excep-
tion. Such rules as well as their confidence levels can be
extracted automatically from the KG (with the observed
triple set O as input), by using modern rule mining systems
like AMIE and AMIE+ (Galárraga et al. 2013; 2015).

We then propositionalize these rules to get their ground-
ings. Here a grounding is the logical expression with all vari-
ables instantiated with concrete entities in E . For instance, a

universally quantified rule ∀x, y : (x, BornInCountry, y)
⇒ (x, Nationality, y) could be instantiated with two en-
tities EmmanuelMacron and France, and gives a resultant
grounding (EmmanuelMacron, BornInCountry, France)
⇒ (EmmanuelMacron, Nationality, France). Ob-
viously, there could be a huge number of groundings,
especially given a large entity vocabulary E . In this
paper, to maximize the utility for knowledge acquisi-
tion and inference, we take as valid groundings only
those where premise triples are observed in O while
conclusion triples are not. That means the aforemen-
tioned grounding will be considered as valid if the triple
(EmmanuelMacron, BornInCountry, France) ∈ O but
(EmmanuelMacron, Nationality, France) /∈ O. For
each FOL rule fp, let Gp = {gpq}Qp

q=1 denote the set of
its valid groundings. All the premise triples of gpq are
contained in O, but the single conclusion triple is not.
These conclusion triples are further used to construct our
unlabeled triple set U . That means, our unlabeled triples are
those which are not directly observed in the KG but could
be inferred by the rules with high probabilities.
Modeling Triples and Rules. Given the labeled triples L,
unlabeled triples U , and the valid groundings of FOL rules
G = {Gp}Pp=1, we discuss how to model these triples and
rules in the context of KG embedding. To model triples, we
follow ComplEx (Trouillon et al. 2016), a recently proposed
method which is simple and efficient while achieving state-
of-the-art predictive performance. Specifically, we assume
entities and relations to have complex-valued vector embed-
dings. Given a triple (ei, rk, ej) ∈ E×R×E , we score it by
a multi-linear dot product:

ηijk = Re(〈ei, rk, ēj〉) = Re(
∑

m
[ei]m[rk]m[ēj ]m), (1)

where ei, ej , rk ∈ C
d are the complex-valued vector em-

beddings associated with ei, ej , and rk, respectively; ēj is
the conjugate of ej ; [·]m is the m-th entry of a vector; and
Re(·) means taking the real part of a complex value. We fur-
ther introduce a mapping function φ : E×R×E → (0, 1), so
as to map the score ηijk to a continuous truth value which
lies in the range of (0, 1), i.e.,

φ(ei, rk, ej) = σ(ηijk) = σ
(
Re(〈ei, rk, ēj〉)

)
, (2)

where σ(x) = 1/(1 + exp(−x)) denotes the sigmoid func-
tion. Triples with higher truth values are more likely to hold.

To model propositionalized rules (i.e. groundings), we use
t-norm based fuzzy logics (Hájek 1998). The key idea is to
model the truth value of a propositionalized rule as a com-
position of the truth values of its constituent triples, through
specific logical connectives (e.g. ∧ and ⇒). For instance,
the truth value of a grounded rule (eu, rs, ev)⇒ (eu, rt, ev)
will be determined by the truth values of the two triples
(eu, rs, ev) and (eu, rt, ev), via a composition defined by
logical implication. We follow (Guo et al. 2016) and define
the compositions associated with logical conjunction (∧),
disjunction (¬), and negation (¬) as:

π(a ∧ b) = π(a) · π(b), (3)
π(a ∨ b) = π(a) + π(b)− π(a) · π(b), (4)
π(¬a) = 1− π(a). (5)
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Here, a and b are two logical expressions, which can either
be single triples or be constructed by combining triples with
logical connectives; and π(a) is the truth value of a, indi-
cating to what degree the logical expression is true. If a is a
single triple, say (ei, rk, ej), we have π(a) = φ(ei, rk, ej),
as defined in Eq. (2). Given these compositions, the truth
value of any logical expression can be calculated recursively
(Guo et al. 2016), e.g.,

π(a⇒ b) = π(¬a ∨ b) = π(a) · π(b)− π(a) + 1. (6)

Logical expressions with higher truth values have greater de-
grees to be true. Let Θ = {e}e∈E ∪{r}r∈R denote the set of
all entity and relation embeddings. The proposed approach,
RUGE, then aims to learn these embeddings by using the
labeled triples L, unlabeled triples U , and valid groundings
{Gp}Pp=1 in an iterative manner, where each iteration alter-
nates between a soft label prediction stage and an embedding
rectification stage.

Soft Label Prediction

This stage is to use currently learned embeddings and propo-
sitionalized rules to predict soft labels for unlabeled triples.
Specifically, let n be the iteration index, and Θ(n−1) the set
of current embeddings learned from the previous iteration.
Recall that we are given a set of P FOL rules with their con-
fidence levelsF = {(fp, λp)}Pp=1, and each FOL rule fp has
Qp valid groundings Gp = {gpq}Qp

q=1. Our aim is to predict a
soft label s(xu) ∈ [0, 1] for each unlabeled triple xu ∈ U , by
using the current embeddings Θ(n−1) and all the groundings
G = {Gp}Pp=1.

To do so, we solve a rule-constrained optimization prob-
lem, which projects truth values of unlabeled triples com-
puted by the current embeddings into a subspace constrained
by the rules. The key idea here is to find optimal soft la-
bels that stay close to these truth values, while at the same
time fitting the rules. For the first property, given each un-
labeled triple xu ∈ U , we calculate its truth value φ(xu)
using the current embeddings via Eq. (2), and require the
soft label s(xu) to stay close to this truth value. We measure
the closeness between s(xu) and φ(xu) with a squared loss,
and try to minimize it. For the second property, we further
impose rule constraints onto the soft labels S = {s(xu)}.
Specifically, for each FOL rule fp and each of its ground-
ings gpq , we expect gpq to be true, i.e., π(gpq|S) = 1 with
confidence λp. Here, π(gpq|S) is the conditional truth value
of gpq given the soft labels, which can be calculated recur-
sively with the logical compositions defined in Eq. (3) to
Eq. (5). Take gpq := (eu, rs, ev) ⇒ (eu, rt, ev) as an ex-
ample, where the premise (eu, rs, ev) is directly observed in
O, and the conclusion (eu, rt, ev) is an unlabeled triple in-
cluded in U . The conditional truth value of gpq can then be
calculated as:

π(gpq|S)=φ(eu, rs, ev)·s(eu, rt, ev)−φ(eu, rs, ev)+1, (7)

where φ(eu, rs, ev) is a truth value defined by Eq. (2) with
the current embeddings; and s(eu, rt, ev) is a soft label to be
predicted. Comparing Eq. (7) with Eq. (6), we can see that
during the calculation of π(gpq|S), for any unlabeled triple,

we use the soft label s(·) rather than the truth value φ(·), so
as to better impose rule constraints onto the soft labels S .

Combining the two properties together and further allow-
ing slackness for rule constraints, we finally get the follow-
ing optimization problem:

min
S,ξ

1

2

∑
xu∈U

(s(xu)− φ(xu))
2
+ C

∑
p,q

ξpq,

s.t. λp (1− π(gpq|S)) ≤ ξpq, q=1,· · ·, Qp, p=1,· · ·, P,
ξpq ≥ 0, q=1,· · ·, Qp, p=1,· · ·, P,
0 ≤ s(xu) ≤ 1, ∀s(xu) ∈ S, (8)

where ξpq is a slack variable and C the penalty coefficient.
Note that confidence levels of rules (i.e. λp’s) are encoded
in the constraints, making our approach capable of handling
soft rules. Rules with higher confidence levels show less tol-
erance for violating the constraints. This optimization prob-
lem is convex, and can be solved efficiently with its closed-
form solution:

s(xu) =
[
φ(xu) + C

∑
p,q
λp∇s(xu)π(gpq|S)

]1
0

(9)

for each xu ∈ U . Here, ∇s(xu)π(gpq|S) means the gradient
of π(gpq|S) w.r.t s(xu), which is a constant w.r.t. S ,1 and
[x]10 = min(max(x, 0), 1) is a truncation function enforcing
the solutions to stay within [0, 1]. We provide the proof of
convexity and detailed derivation as supplementary materi-
als. Soft labels obtained in this way shall 1) stay close to the
predictions made by the current embedding model, and 2) fit
the rules as well as possible.

Embedding Rectification

This stage is to integrate both labeled and unlabeled triples
(with hard and soft labels respectively) to update current em-
beddings. Specifically, we are given a set of labeled triples
with their hard labels specified in {0, 1}, i.e., L={(x�, y�)},
and also a set of unlabeled triples encoded in propositional-
ized rules, i.e., U = {xu}. Each unlabeled triple xu has a
soft label s(xu) ∈ [0, 1], predicted by Eq. (9). We would
like to use these labeled and unlabeled triples to learn the
updated embeddings Θ(n). Here n is the iteration index.

To this end, we minimize a global loss over L and U , so
as to find embeddings which can predict the true hard labels
for triples contained in L, while imitating the soft labels for
those contained in U . The optimization problem is:

min
Θ

1

|L|
∑
L

�(φ(x�), y�) +
1

|U|
∑
U

�(φ(xu), s(xu)), (10)

where �(x, y) = −y log x − (1 − y) log(1 − x) is the cross
entropy; and φ(·) is a function w.r.t. Θ defined by Eq. (2).
We further impose L2 regularization on the parameters Θ to
avoid overfitting. Gradient descent algorithms can be used
to solve this problem. Embeddings learned in this way will
1) be compatible with all the labeled triples, and 2) absorb
rule knowledge carried by the unlabeled triples.

1Note that each gpq contains only a single unlabeled triple, i.e.,
the conclusion triple. Take π(gpq|S) defined in Eq. (7) for example.
In this case, s(xu) = s(eu, rt, ev) is the soft label to be predicted
and ∇s(xu)π(gpq|S) = φ(eu, rs, ev) is a constant w.r.t. S.
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Whole Procedure

Algorithm 1 summarizes the iterative learning procedure of
our approach. To enable efficient learning, we use an online
scheme in mini-batch mode. At each iteration, we sample a
mini-batch Lb, Ub, and Gb from the labeled triples L, unla-
beled triples U , and propositionalized rules G, respectively
(line 3).2 Soft label prediction and embedding rectification
are then conducted locally on these mini-batches (line 4 and
line 5 respectively). This iterative procedure captures the in-
teractive nature between embedding learning and logical in-
ference: given current embeddings, logic rules can be used
to perform approximate inference and predict soft labels for
unlabeled triples; these newly labeled triples carry rich rule
knowledge and will in turn help to learn better embeddings.
In this way, knowledge contained in logic rules can be fully
transferred into the learned embeddings. Note also that our
approach is flexible enough to handle soft rules with various
confidence levels extracted automatically from the KG.

Discussions

We further analyze the space and time complexity, and dis-
cuss possible extensions of our approach.

Complexity. RUGE follows ComplEx to represent entities
and relations as complex-valued vectors, hence has a space
complexity of O(ned+ nrd) which scales linearly w.r.t. ne,
nr, and d. Here, ne is the number of entities, nr the num-
ber of relations, and d the dimensionality of the embedding
space. During the learning procedure, each iteration requires
a time complexity of O(τ(n�d + nud)), where n�/nu is the
average number of labeled/unlabeled triples in a mini-batch,
and τ the number of inner epochs used for embedding recti-
fication (cf. Eq. (10)). In practice, we usually have nu � n�

(see Table 2 for the number of labeled and unlabeled triples
used on our datasets), and we can also set τ to a very small
value, e.g., τ = 1. That means, RUGE has almost the same
time complexity as those most efficient KG embedding tech-
niques (e.g. ComplEx) which require O(n�d) per iteration
during training.3 In addition, RUGE further requires prepro-
cessing steps before training, i.e., rule mining and proposi-
tionalization. But these steps are performed only once, and
not required during the iterations.

Extensions. Our approach is quite generic and flexible. 1)
The idea of iteratively injecting logic rules can be applied to
enhance a wide variety of embedding models, as long as an
appropriate scoring function is accordingly designed, e.g.,
the one defined in Eq. (1) by ComplEx. 2) Various types of
rules can be incorporated as long as they can be modeled by
the logical compositions defined in Eq. (3) to Eq. (5), and
we can even use other types of t-norm fuzzy logics to define
such compositions. 3) Rules with different confidence levels
can be handled in a unified manner.

2We first sample Lb from L. Gb is then constructed by those
whose premise triples are all contained in Lb but conclusion triples
are not. These conclusion triples are further used to construct Ub.

3Such techniques often use SGD in mini-batch mode for train-
ing, and sample a mini-batch of n� labeled triples at each iteration.

Algorithm 1 Iterative Learning Procedure of RUGE

Require: Labeled triples L = {(x�, y�)}
Unlabeled triples U = {xu}
FOL rules F={(fp, λp)} and their groundings G={gpq}

1: Randomly initialize entity and relation embeddings Θ(0)

2: for n = 1 : N do
3: Sample a mini-batch Lb / Ub / Gb from L / U / G
4: Sb←SoftLabelPrediction (Ub,Gb,Θ

(n−1)) � cf. Eq. (9)
5: Θ(n)←EmbeddingRectification (Lb,Ub,Sb) � cf. Eq. (10)
6: end for

Ensure: Θ(N)

Experiments

We evaluate RUGE in the link prediction task. This task is
to complete a triple (ei, rk, ej) with ei or ej missing, i.e., to
predict ei given (rk, ej) or ej given (ei, rk).
Datasets. We use two datasets: FB15K and YAGO37. The
former is a subgraph of Freebase containing 1,345 relations
and 14,951 entities, released by Bordes et al. (2013).4 The
latter is extracted from the core facts of YAGO3.5 During
the extraction, entities appearing less than 10 times are dis-
carded. The final dataset consists of 37 relations and 123,189
entities. Triples on both datasets are split into training, vali-
dation, and test sets, used for model training, hyperparame-
ter tuning, and evaluation, respectively. We use the original
split for FB15K, and draw a split of 989,132/50,000/50,000
triples for YAGO37.

Note that on both datasets, the training sets contain only
positive triples. Negative triples are generated using the local
closed world assumption (Dong et al. 2014). This negative
sampling procedure is performed at runtime for each batch
of training positive triples. Such positive and negative triples
(along with their hard labels) form our labeled triple set.

We further employ AMIE+ (Galárraga et al. 2015)6 to au-
tomatically extract Horn clause rules from each dataset, with
the training set as input. To enable efficient extraction, we
consider rules with length not longer than 2 and confidence
levels not less than 0.8.7 The length of a Horn clause rule is
the number of atoms appearing in its premise, e.g., ∀x, y :
(x, BornInCountry, y) ⇒ (x, Nationality, y) has the
length of 1. And the confidence threshold of 0.8 leads to the
best performance on both datasets (detailed later). Using this
setting, we extract 454 (universally quantified) Horn clause
rules from FB15K, and 16 such rules from YAGO37. Table 1
shows some examples with their confidence levels.

Then, we instantiate these rules with concrete entities, i.e.,
propositionalization. Propositionalized rules whose premise
triples are all contained in the training set (while conclusion
triples are not) are taken as valid groundings and used during
embedding learning. We obtain 96,724 valid groundings on

4https://everest.hds.utc.fr/doku.php?id=en:smemlj12
5http://www.mpi-inf.mpg.de/departments/databases-and-

information-systems/research/yago-naga/yago/downloads/
6https://www.mpi-inf.mpg.de/departments/databases-and-

information-systems/research/yago-naga/amie/
7AMIE+ provides two types of confidence, i.e. standard confi-

dence and PCA confidence. This paper uses PCA confidence.
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Table 1: Horn clause rules with confidence levels extracted
by AMIE+ from FB15K (top) and YAGO37 (bottom).

/location/people born here(x,y)⇒/people/place of birth(y,x) 1.00
/director/film(x,y)⇒/film/directed by(y,x) 0.99
/film/directed by(x,y)∧/person/language(y,z)⇒/film/language(x,z) 0.88

isMarriedTo(x,y)⇒isMarriedTo(y,x) 0.97
hasChild(x,y)∧isCitizenOf(y,z)⇒isCitizenOf(x,z) 0.94
playsFor(x,y)⇒isAffiliatedTo(x,y) 0.86

Table 2: Statistics of datasets, where ne/nr denotes the num-
ber of entities/relations, n�/nu/ng is the number of labeled
triples/unlabeled triples/valid groundings used for training,
and nv/nt denotes the number of validation/test triples.

Train Valid Test

Dataset ne nr n� nu ng nv nt

FB15K 14,951 1,345 483,142 74,707 96,724 50,000 59,071
YAGO37 123,189 37 989,132 69,619 72,580 50,000 50,000

FB15K and 72,580 on YAGO37. Conclusion triples of these
valid groundings are further collected to form our unlabeled
triple set. We finally get 74,707 unlabeled triples on FB15K
and 69,619 on YAGO37. Table 2 provides some statistics of
the two datasets.

Evaluation Protocol. To evaluate the performance in link
prediction, we follow the standard protocol used in (Bordes
et al. 2013). For each test triple (ei, rk, ej), we replace the
head entity ei with each entity e′i∈E , and calculate the score
for (e′i, rk, ej). Ranking these scores in descending order,
we get the rank of the correct entity ei. Similarly, we can get
another rank by replacing the tail entity. Aggregated over all
test triples, we report three metrics: 1) the mean reciprocal
rank (MRR), 2) the median of the ranks (MED), and 3) the
proportion of ranks no larger than n (HITS@N). During this
ranking process, we remove corrupted triples which already
exist in either the training, validation, or test set, since they
themselves are true triples. This corresponds to the “filtered”
setting in (Bordes et al. 2013).

Comparison Settings. We compare RUGE with four state-
of-the-art basic embedding models, including TransE (Bor-
des et al. 2013), DistMult (Yang et al. 2015), HolE (Nickel,
Rosasco, and Poggio 2016), and ComplEx (Trouillon et al.
2016). These basic models rely only on triples observed in
a KG and use no rules. We further take PTransE (Lin et al.
2015a) and KALE (Guo et al. 2016) as additional baselines.
Both of them are extensions of TransE, with the former in-
tegrating relation paths (Horn clauses), and the latter FOL
rules (hard rules) in a one-time injection manner. In contrast,
RUGE incorporates soft rules and transfers rule knowledge
into KG embedding in an iterative manner.

We use the code provided by Trouillon et al. (2016)8 for
TransE, DistMult, and ComplEx, and reimplement HolE so
that all these four basic models share the identical mode of

8https://github.com/ttrouill/complex

optimization, i.e., SGD with AdaGrad (Duchi, Hazan, and
Singer 2011) and gradient normalization. As such, we repro-
duce the results of TransE, DistMult, and ComplEx reported
on FB15K (Trouillon et al. 2016), and improve the results of
HolE substantially compared to those reported in the origi-
nal paper (Nickel, Rosasco, and Poggio 2016).9 The code for
PTransE is provided by its authors.10 We implement KALE
and RUGE in Java, both using SGD with AdaGrad and gra-
dient normalization to facilitate a fair comparison.

There are two types of loss functions that could be used
for these baselines, i.e., the logistic loss or the pairwise rank-
ing loss (Nickel, Rosasco, and Poggio 2016). Trouillon et
al. (2016) have recently demonstrated that the logistic loss
generally performs better than the pairwise ranking loss, ex-
cept for TransE. So, for TransE and its extensions (PTransE
and KALE) we use the pairwise ranking loss, and for all the
other baselines we use the logistic loss. To extract relation
paths for PTransE, we follow the optimal configuration re-
ported in (Lin et al. 2015a), where paths constituted by at
most 3 relations are included. For KALE and RUGE, we use
the same set of propositionalized rules to make it a fair com-
parison.11

For all the methods, we create 100 mini-batches on each
dataset, and tune the embedding dimensionality d in {50,
100, 150, 200}, the number of negatives per positive triple α
in {1, 2, 5, 10}, the initial learning rate γ in {0.01, 0.05, 0.1,
0.5, 1.0}, and the L2 regularization coefficient λ in {0.001,
0.003, 0.01, 0.03, 0.1}. For TransE and its extensions which
use the pairwise ranking loss, we further tune the margin δ in
{0.1, 0.2, 0.5, 1, 2, 5, 10}. The slackness penalty C in RUGE
(cf. Eq. (8)) is selected from {0.001, 0.01, 0.1, 1}, and the
number of inner iterations (cf. Eq. (10)) is fixed to τ = 1.
Best models are selected by early stopping on the validation
set (monitoring MRR), with at most 1000 iterations over the
training set. The optimal configurations for RUGE are: d =
200, α = 10, γ = 0.5, λ = 0.01, C = 0.01 on FB15K; and
d = 150, α = 10, γ=1.0, λ=0.003, C=0.01 on YAGO37.

Link Prediction Results. Table 3 shows the results of these
methods on the test sets of FB15K and YAGO37. The results
indicate that RUGE significantly and consistently outper-
forms all the baselines on both datasets and in all metrics. It
beats not only the four basic models which use triples alone
(TransE, DistMult, HolE, and ComplEx), but also PTransE
and KALE which further incorporate logic rules (or relation
paths) in a one-time injection manner. This demonstrates the
superiority of injecting logic rules into KG embedding, par-
ticularly in an iterative manner. Compared to the best per-
forming baseline ComplEx (this is also the model based on
which RUGE is designed), RUGE achieves an improvement
of 11%/18% in MRR/HITS@1 on FB15K, and an improve-
ment of 3%/6% on YAGO37. The improvements on FB15K
are more substantial than those on YAGO37. The reason is
probably that FB15K contains more relations from which a

9HolE in its original implementation uses SGD with AdaGrad,
but no gradient normalization.

10https://github.com/thunlp/KB2E
11KALE takes all these groundings as hard rules. This approxi-

mation works quite well with an appropriate confidence threshold.
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Table 3: Link prediction results on the test sets of FB15K and YAGO37. As baselines, rows 1-4 are the four basic models which
use triples alone, and rows 5-6 further integrate logic rules (or relation paths) in a one-time injection manner.

FB15K YAGO37

HITS@N HITS@N

Method MRR MED 1 3 5 10 MRR MED 1 3 5 10

TransE 0.400 4.0 0.246 0.495 0.576 0.662 0.303 13.0 0.218 0.336 0.387 0.475
DistMult 0.644 1.0 0.532 0.730 0.769 0.812 0.365 6.0 0.262 0.411 0.493 0.575
HolE 0.600 2.0 0.485 0.673 0.722 0.779 0.380 7.0 0.288 0.420 0.479 0.551
ComplEx 0.690 1.0 0.598 0.756 0.793 0.837 0.417 4.0 0.320 0.471 0.533 0.603
PTransE 0.679 1.0 0.565 0.768 0.810 0.855 0.403 9.0 0.339 0.444 0.473 0.506
KALE 0.523 2.0 0.383 0.616 0.683 0.762 0.321 9.0 0.215 0.372 0.438 0.522

RUGE 0.768 1.0 0.703 0.815 0.836 0.865 0.431 4.0 0.340 0.482 0.541 0.603

Figure 2: MRR achieved by RUGE with different confidence
thresholds on the test set of FB15K.

good range of rules can be extracted (454 universally quan-
tified rules from FB15K, and 16 from YAGO37).
Influence of Confidence Levels. We further investigate the
influence of the threshold of rules’ confidence levels used
in RUGE. To do so, we fix all the hyperparameters to the
optimal configurations determined by the previous experi-
ment, and vary the confidence threshold in [0.1, 1] with a
step 0.05. Fig. 2 shows MRR achieved by RUGE with var-
ious thresholds on the test set of FB15K. We can see that
the threshold of 0.8 is a good tradeoff and indeed performs
best. A threshold higher than that will reduce the number of
rules that can be extracted, while a one lower than that might
introduce too many less credible rules. Both hurt the perfor-
mance. However, even so, RUGE outperforms ComplEx by
a large margin, with the threshold set in a broad range of
[0.35, 0.9]. This observation indicates that soft rules, even
those with moderate confidence levels, are highly beneficial
to KG embedding despite their uncertainties.
Comparison of Runtime. Finally, we compare RUGE with
ComplEx, PTransE, and KALE in their runtime.12 ComplEx
is a basic model which only requires model training. RUGE
as well as the other two baselines further require preprocess-
ing of rule/path extraction and propositionalization. Table 4
lists the runtime of these methods required for each step on
FB15K and YAGO37. Here, to facilitate a fair comparison,
we set d=200 (embedding dimensionality) and α=2 (num-
ber of negatives per positive triple) for all the methods. Other

12The other three baselines are implemented in Python and much
slower. So they are not considered here.

Table 4: Runtime (in sec.) on FB15K and YAGO37. Extr. is
the time required for rule/path extraction, Prop. for proposi-
tionalization, and Lean. for training per iteration.

FB15K YAGO37

Method Extr. Prop. Learn. Extr. Prop. Learn.

ComplEx — — 11.4 — — 49.5
PTransE 868.4 — 46.5 13939.5 — 23.8
KALE 43.1 4.0 4.8 337.5 13.8 27.5
RUGE 43.1 4.0 14.1 337.5 13.8 55.2

hyperparameters are fixed to their optimal configurations de-
termined in link prediction. We can see that RUGE is still
quite efficient despite integrating additional rules. The aver-
age training time per iteration increases from 11.4 to 14.1
on FB15K, and from 49.5 to 55.2 on YAGO37. The prepro-
cessing steps, although performed only once, are also highly
efficient, requiring much less time compared to PTransE.

Conclusion

This paper proposes a novel paradigm that learns entity and
relation embeddings with iterative guidance from soft rules,
referred to as RUGE. It enables an embedding model to learn
simultaneously from labeled triples, unlabeled triples, and
soft rules in an iterative manner. Each iteration alternates
between 1) a soft label prediction stage which predicts soft
labels for unlabeled triples using currently learned embed-
dings and soft rules, and 2) an embedding rectification stage
which further integrates both labeled and unlabeled triples
to update current embeddings. This iterative procedure may
better transfer the knowledge contained in logic rules into
the learned embeddings. Link prediction results on Freebase
and YAGO show that RUGE achieves significant and con-
sistent improvements over state-of-the-art baselines. More-
over, RUGE demonstrates the usefulness of automatically
extracted soft rules. Even those with moderate confidence
levels can be highly beneficial to KG embedding.
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