
AMR Parsing with Cache Transition Systems

Xiaochang Peng, Daniel Gildea
Department of Computer Science

University of Rochester
Rochester, NY 14627

{xpeng, gildea}@cs.rochester.edu

Giorgio Satta
Department of Information Engineering

University of Padua
Via Gradenigo 6/A, 35131 Padova, Italy

satta@dei.unipd.it

Abstract

In this paper, we present a transition system that generalizes
transition-based dependency parsing techniques to generate
AMR graphs rather than tree structures. In addition to a buffer
and a stack, we use a fixed-size cache, and allow the sys-
tem to build arcs to any vertices present in the cache at the
same time. The size of the cache provides a parameter that
can trade off between the complexity of the graphs that can
be built and the ease of predicting actions during parsing. Our
results show that a cache transition system can cover almost
all AMR graphs with a small cache size, and our end-to-end
system achieves competitive results in comparison with other
transition-based approaches for AMR parsing.

Introduction

In recent years, graph-based representations of semantic
structures and the algorithms for producing them have
gained renewed interest as deeper representations are inves-
tigated by statistical natural language processing systems.
These algorithms usually take as input a sentence, and pro-
duce a graph representation of the semantics of the sentence
itself as the output.

Abstract Meaning Representation (AMR) (Banarescu et
al. 2013) is a semantic formalism where the meaning of a
sentence is encoded as a rooted, directed graph. Figure 1
shows an example of an AMR in which the nodes repre-
sent the AMR concepts and the edges represent the relations
between the concepts. AMR concepts consist of predicate
senses, named entity annotations, and in some cases, simply
lemmas of English words. AMR relations consist of core se-
mantic roles drawn from the Propbank (Palmer, Gildea, and
Kingsbury 2005) as well as very fine-grained semantic rela-
tions defined specifically for AMR. These properties render
the AMR representation useful in applications like question
answering and semantics-based machine translation.

Stack-based transition systems have been widely used for
syntactic parsing as the performance of transition systems
has improved, while speed becomes increasingly important
for different applications. There are also a number of exten-
sions of stack-based transition systems which deal with non-
projective trees; see for instance (Attardi 2006; Nivre 2009;
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Figure 1: An example of AMR graph representing the mean-
ing of: “John wants to go”

Choi and McCallum 2013; Gómez-Rodrı́guez and Nivre
2013; Pitler and McDonald 2015).

The task of AMR graph parsing is to map natural lan-
guage strings to AMR semantic graphs. Different parsers
have been developed to tackle this problem (Flanigan et
al. 2014; Wang, Xue, and Pradhan 2015b; Artzi, Lee, and
Zettlemoyer 2015; Peng, Song, and Gildea 2015; Peng et
al. 2017; van Noord and Bos 2017; Konstas et al. 2017).
Recently, stack-based transition systems have been used for
parsing the set of AMR graphs (Wang, Xue, and Pradhan
2015b; 2015a; Damonte, Cohen, and Satta 2016; Wang and
Xue 2017). In these systems, special transition actions are
added separately to deal with local re-entrancies which are
siblings in the generated AMR graph.

Gildea, Satta, and Peng (2018) present an extension of the
existing stack-based transition framework to generate the set
of semantic graphs. More specifically, they adapt the stack-
based parsing system by adding a working set, which they
refer to as a cache, to the traditional stack and buffer. They
theoretically prove that the class of graphs that can be suc-
cessfully constructed by this parsing system can be analyzed
using the graph-theoretic notion of treewidth. The treewidth
of a graph gives a measure of how tightly interconnected it
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is, and the size of the cache in the parsing system is corre-
lated to the treewidth statistics.

In this paper, we apply the cache transition system to
AMR parsing and deal with some practical implementation
issues when designing the parser. We maintain the tokens of
each sentence and the newly generated concept in the buffer
and the AMR concepts this new concept has access to in a
fixed-sized cache. We also put the vertices that will be pro-
cessed later in the stack structure. As the average treewidth
of AMR is low, we assume that the set of AMR graphs can
be built with relatively small cache size, which is confirmed
in our experiments.

When designing the cache-transition-based AMR parser,
we decompose the sequence of push or pop transitions
by Gildea, Satta, and Peng (2018) into a sequence of four
phases: 1) a push or pop action which either processes the
next word in the buffer or moves a concept out of the cache,
2) a concept identification action which generates a concept
(or an empty symbol) for the leftmost word, 3) a connect-
arc action which builds a labeled arc between a new concept
and a concept in the cache, and 4) a push-index action which
takes a concept at a certain position of the cache and pushes
it onto the stack. Each of the four phases is modeled with a
separate feedforward neural classifier and learned separately
with oracle actions.

Our preliminary results show that the cache transition sys-
tem achieves competitive results with relatively simple fea-
ture settings in comparison with other transition-based AMR
parsers, which shows promising future applications to AMR
parsing using more refined features and advanced modeling
techniques. Also, our cache transition system is general and
can be applied for parsing to other graph structures by ad-
justing the size of the cache based on the complexity of the
graphs.

Parsing to Graphs
Our parser is similar to standard shift-reduce dependency
parsing in that its fundamental data structure consists of a
stack. However, we allow both crossing arcs, as in non-
projective dependency parsing (Attardi 2006; Nivre 2009;
Choi and McCallum 2013; Gómez-Rodrı́guez and Nivre
2013; Pitler and McDonald 2015; Sun, Cao, and Wan 2017),
and cyclic graphs, rather than restricting our output to trees.
An early transition system producing cyclic graphs is that of
Sagae and Tsujii (2008), who drop the constraint of a sin-
gle head for each word. Wang, Xue, and Pradhan (2015b)
provide a transition system that takes a syntactic tree, rather
than a string, as input. We wish to take a string as input for
greater generality, although our parser can and does use fea-
tures from a syntactic parser in predicting actions. The most
general approach in terms of the class of graphs that can
be generated is that of Covington (2001), which was cast
as a stack-based transition system by Nivre (2008). Coving-
ton (2001) considers building arcs to all previous words as
each word is shifted onto the stack, allowing any graph to
be built in a total running time of O(n2) in the sentence
length. However, this broad coverage of graphs also makes
the prediction of transitions more difficult, as a large num-
ber of actions are available to the system at each step. We

aim to find a better trade-off between coverage and predic-
tion by designing a system with the properties of semantic
graphs in mind. Our use of a stack enforces a tree-like struc-
ture on the graphs at a high level, and is consistent with the
fact that the AMR graphs tend to have low treewidth. We
only build arcs to vertices in our cache, described formally
below. Our use of a cache as a working set allows us the flex-
ibility to produce non-projective and cyclic graphs. The size
of the cache controls the degree of this flexibility, and pro-
vides a parameter that can be tuned to optimize the trade-off
between coverage and ease of prediction.

Cache Transition Parser

In this section we precisely define a nondeterministic com-
putational model for graph-based parsing, which is called a
cache transition parser (Gildea, Satta, and Peng 2018). The
model takes as input an ordered sequence of tokens, reads
and processes each token strictly from left to right, and in-
crementally produces a graph as output.

We apply the cache transition parser to AMR graph pars-
ing. The cache transition parser processes input tokens from
a sentence and produces an output AMR graph. The AMR
graph is defined on a set of vertices produced from the input
tokens. Besides its stack and buffer, the parser also uses a
cache. A cache is a fixed-size array of m ≥ 1 elements and,
along with the stack, represents the storage of the parser. At
any time during the computation, a vertex that is in the stor-
age of the parser is either in the cache or else in the stack,
but not in both at the same time. The tokens of the sentence
in the input buffer are first mapped to vertex symbols and
then shifted into the cache before entering the stack. While
in the cache, vertices can be directly accessed and edges be-
tween the new vertex and the vertices in the cache can be
constructed.

Standard AMR parsing algorithms are usually decom-
posed into two phases. First the tokens in the string are
mapped to vertices (concepts) in the graph. Then in a sec-
ond phase directed, labeled arcs are made between concepts
to build the target AMR graph. We design separate compo-
nents in our transition system to model this procedure.

Cache Transition System

Formally, a cache transition parser consists of a stack, a
cache, and an input buffer. The stack is a sequence σ of (in-
teger, vertex) pairs, as explained below, with the topmost el-
ement always at the rightmost position. The buffer is a se-
quence of tokens β containing a suffix of the input sentence,
with the first element to be read, possibly with a newly gen-
erated vertex of the graph at the leftmost position. Finally,
the cache is a sequence of vertices η = [v1, . . . , vm]. The
element at the leftmost position is called the first element of
the cache, and the element at the rightmost position is called
the last element.

Operationally, the functioning of the parser can be de-
scribed in terms of configurations and transitions. Each tran-
sition is a binary relation defined on the set of configurations.
A configuration of our parser has the form:

C = (σ, η, β,Gp)
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where σ, η and β are as described above, and Gp is the par-
tial graph that has been built so far. The initial configura-
tion of the parser is ([], [$, . . . , $], [w1, . . . , wn], ∅), meaning
that the stack and the partial graph are initially empty, and
the cache is filled with m occurrences of the special symbol
$. The buffer is initialized with all the tokens in the sen-
tence. The final configuration is ([], [$, . . . , $], [], G), where
the stack and the cache are as in the initial configuration and
the buffer is empty. The constructed graph is the goal AMR
graph.

The transitions of the parser are specified as follows.
• Pop pops a pair (i, v) from the stack, where the integer
i records the position in the cache that it originally came
from. We place v in position i in the cache shifting the
remainder of the cache one position to the right, and dis-
carding the last element in the cache.

• ConceptGen(c) generates an unaligned concept c ∈ Pε

and appends it to the left of the buffer. The symbol Pε is
the unaligned concept set learned from the training data.
A concept is unaligned if it is not mapped to any token.
The generated concept c is then ready for further process-
ing.1

• ConceptID(ci) reads the next token wi of the buffer, and
replaces it with a concept ci ∈ (Q(wi) ∪ {ε}) generated
from the token. The symbol Q is a mapping from tokens
in the string to concepts or collapsed categories represent-
ing subgraphs in the graph. A token is unaligned if it is
mapped to ε and the generated ε is shifted out of the buffer
immediately, otherwise the generated concept ci (we call
it the candidate concept) is ready for further processing in
the next two steps.

• Arc(i, d, l) builds an arc with direction d and label l be-
tween the candidate concept and the i-th vertex in the
cache.2

• PushIndex(i) shifts the candidate concept out of the buffer
and moves it into the last position of the cache. We also
take the vertex vi appearing at position i in the cache and
push it onto the stack σ, along with the integer i recording
the position in the cache from which it came.
Given the sentence “John wants to go”, our cache transi-

tion parser can construct the AMR graph shown in Figure 1
using the run shown in Figure 2 with cache size of 2. Each
time we process the leftmost word in the buffer, we either
rewrite the leftmost word with a candidate concept (person
name category Per for “John”) or an empty symbol and shift
it out of the buffer (∅ for to). If a candidate concept is gen-
erated, we proceed to make new arcs between this concept
and the concepts in the cache. For example, for the candidate
concept go-01, the arc actions Arc(1, L, ARG0) and Arc(2, R,

1In this paper, we don’t deal with this type of transitions and
leave it as future work. During training, we ignore all training ex-
ample involving this action.

2For ease of this operation, we consider arc choices made to all
elements in the cache and then select a vertex to be pushed onto
the stack, which is different from Gildea, Satta, and Peng (2018)
where a vertex is selected to be pushed onto the stack first and the
arc choices are made to the remaining elements in the cache.

ARG1) make an arc from go-01 to the first cache concept Per
and another arc from the second cache concept want-01 to
go-01, thus creating the re-entrancy as desired.

Oracle Extraction Algorithm

A cache transition parser is a nondeterministic automaton:
given a fixed input sequence π which initializes the buffer
and an individual graph G, there may be several runs of the
parser on π, each constructing G through a different series
of transitions having input order π.

In this section we develop an oracle (Nivre 2008) algo-
rithm that can be used to drive a cache transition parser with
cache size m, in such a way that the parser becomes deter-
ministic. This means that at most one computation is possi-
ble for each pair of G and π. More precisely, our algorithm
takes as input a configuration C of the parser obtained when
running on π, and a graph G to be constructed. Then the
algorithm computes the unique transition that should be ap-
plied to C in order to construct G according to the input
order π. If the graph G can not be constructed through a se-
quence of such transitions, then the algorithm fails at some
configuration obtained when running on π.

Let EG be the set of edges of the gold graph G. We also
have the alignment table Q from tokens in the input to ver-
tices in the graph. The vertices in G that are not aligned to
any token in π are called unaligned vertices. We maintain
the set of vertices that is not yet shifted into the cache as
S, which is initialized with all vertices in G. We also order
all the vertices in G according to their aligned position in π
and the unaligned vertices are listed according to their order
in the depth-first traversal of the graph, which we call a se-
quence φ. The oracle algorithm can look into EG and Q in
order to decide which transition to use at C, or else to decide
that it should fail. This decision is based on the mutually ex-
clusive rules listed below.

1. If there is no edge (vm, v) in EG such that vertex v is in S,
the oracle chooses transition Pop.

2. Otherwise, if the next token in the buffer is unaligned, the
oracle chooses transition ConceptID(ε) and simply shifts
it out of the buffer.

3. If the next token wi in the buffer is aligned to concept ci,
the oracle chooses transition ConceptID(ci). We replace
the leftmost token with the candidate concept ci for fur-
ther processing, which includes the next two steps.

4. For each vertex in the cache, we make a binary decision
about whether there is an arc between the candidate con-
cept ci and this vertex. If there is an arc, and if d and l are
the direction and the label of the arc and the cache vertex
is at position j, the oracle chooses transition Arc(j, d, l).

5. In this step, the oracle first chooses an index i in the cache
and removes the vertex at this position and then places
its index, vertex pair onto the stack. The oracle chooses
transition PushIndex(i).

6. If the stack and buffer are both empty, and the cache is in
the initial state, the oracle finishes with success, otherwise
we proceed to the first step.
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stack cache buffer edges resulting from action
[ ] [ $, $] [ j, w, t, g ] ∅ —
[ ] [ $, $] [ Per, w, t, g ] ∅ ConceptID(Per)
[ ] [ $, $] [ Per, w, t, g ] ∅ —
[ 1, $ ] [ $, Per ] [ w, t, g] ∅ PushIndex(1)
[ 1, $ ] [ $, Per ] [ want-01, t, g ] ∅ ConceptID(want-01)
[ 1, $ ] [ $, Per ] [ want-01, t, g ] E1 Arc(2, L, ARG0)
[ 1, $, 1, $ ] [ Per, want-01 ] [ t, g ] E1 PushIndex(1)
[ 1, $, 1, $ ] [ Per, want-01 ] [ g ] E1 ConceptID(∅)
[ 1, $, 1, $ ] [ Per, want-01 ] [ go-01 ] E1 ConceptID(go-01)
[ 1, $, 1, $ ] [ Per, want-01 ] [ go-01 ] E2 Arc(1, L, ARG0); Arc(2, R, ARG1)
[ 1, $, 1, $, 1, Per ] [ want-01, go-01 ] [ ] E2 PushIndex(1)
[ 1, $, 1, $ ] [ Per, want-01 ] [ ] E2 Pop
[ 1, $ ] [ $ , Per ] [ ] E2 Pop
[ ] [ $, $ ] [ ] E2 Pop

Figure 2: Example run of the cache transition system constructing the graph for the sentence “John wants
to go” with cache size of 2. j=“John”, w=“wants”, t=“to”, g=“go”. E1 = {(Per,want-01, L-ARG0)}, E2 =
{(Per,want-01, L-ARG0), (Per, go-01, L-ARG0), (want-01, go-01,R-ARG1)}.

To decide which position in the cache to take out, we need
to develop some additional notation. For j ∈ [|β|], we write
βj to denote the j-th vertex in β (with the candidate concept
moved out). We choose a vertex vi∗ in η such that:

i∗ = argmax
i∈[m]

min {j | (vi, βj) ∈ EG} . (1)

In words, vi∗ is the vertex from the cache whose closest
neighbour in the buffer β is furthest forward in β. In case
of ties in the min and argmax operators, we choose the left-
most position. If a vertex in η has no edges pointing to ver-
tices in β, that vertex should be selected. The main idea here
is that we want to process vertices by giving higher priority
to those vertices with closer forward neighbours. We there-
fore move out of the cache vertex vi∗ and push it onto the
stack, for later processing.

AMR Parsing

Training

The basic AMR parsing pipeline is shown in Figure 3. We
first run the oracle algorithm on the training data and ex-
tract the training examples for each type of transition. We
use feedforward neural networks for the training:

h = g(W1e(f(C)) + b)

p(a|C; θ) = softmax(W2h)

where C is the current configuration and a is the target tran-
sition. The function f(C) extracts features from the current
configuration C. The function e() is an embedding layer
which maps token features to their continuous vector repre-
sentation and g() is a non-linear activation function. Symbol
h is the hidden layer representation, W1 and W2 are linear
weights between the layers, and b is the bias. As the transi-
tions in our cache-transition system are very diverse, we ex-
tract different features for each type of transition and predict
each type with a separate classifier. We use separate feedfor-
ward neural classifiers for the following transitions:
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Figure 3: Cache transition AMR parsing pipeline
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Figure 4: Neural network architecture
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Transition type word, lemma, POS dep concept arc
PushOrPop η−j (j = 1 to 3), β1 #(η−1, β), l(η−1, β) η−j (j = 1 to 3) ∅
ConceptID β1 + i (i = −2 to 2) ∅ ∅ ∅
ArcBinary β1, ηcur, wdist() I(), l(), ddist() β1, ηcur children(β1), children(ηcur)
ArcLabel β1, ηcur, wdist() l(), ddist(), deps(β1), deps(ηcur) β1, ηcur children(β1), children(ηcur)
PushIndex η ∅ η ∅

Table 1: Features used for each classifier

• We use a binary classifier to decide whether to Pop or not.
If the next action is not Pop, we proceed to process the
buffer.

• We also predict the concept labels for the next word in
the buffer using a classifier.3 As the output vocabulary is
too large, we only predict the possible candidates from
the alignment of the training data. If a word is unseen, we
build its candidate using its POS tag and lemma l: if it’s a
verb, we use l-01. Otherwise we use l as the candidate.

• When connecting arcs from the candidate concept to con-
cepts in the cache, we first use a binary classifier to predict
whether there is an arc between the two concepts (ArcBi-
nary). If there is an arc, another classifier is used to predict
the direction and label of the arc (ArcLabel). This proce-
dure continues until all the decisions between the candi-
date concept and the concepts in the cache are decided.

• Finally we predict the index of the concept in the cache
that needs to be pushed onto the stack and place the can-
didate concept in the last position of the cache.

Feature Extraction

We extract features separately for each classifier based on
the current configuration. Figure 4 shows the neural archi-
tecture for each feedforward classifier. The detailed features
are shown in Table 1. Here η−j is the word position for the
j-th rightmost cache element and ηcur is the word position
for the current cache element. The symbol β1 is the word
position of the leftmost element in the buffer and β, η mean
we look at all the positions in the buffer and cache sepa-
rately. For concept features, these indices indicate the con-
cept generated from the word at each position.4 The func-
tion #(η−1, β) computes the number of dependency arcs be-
tween the rightmost cache position and all the positions in
the buffer, while the function l is the dependency arc label
for each connection.

For ArcBinary and ArcLabel, function wdist computes
the word distance of two words while ddist computes their
distance in the dependency tree. The function I is an indi-
cator of whether there is a dependency arc between the can-
didate word and the current cache position, while l is the
dependency arc label. The function deps looks at the de-
pendencies of the word while children looks at the concept

3In practice, using feedforward, average perceptron or most fre-
quent concept for this step perform similarly.

4When we generate a candidate concept or shift the candidate
concept into the cache, we also keep the position of the word it is
generated from.

generated from a certain word and returns all the arcs gener-
ated so far for the concept.

Categorization of Data

As the AMR data is very sparse, we first collapse some sub-
graphs and some spans into corresponding categories based
on the alignment. We define some special categories such
as named entities (NE), dates (DATE), verbalization5 (VB),
numbers (NUMBER) and phrases (PHRASE). The phrases
are extracted based on the multiple to one alignment in the
training data. We consider a span of tokens to be a phrase
if these tokens align to the same concept more frequently
than to separate concepts. One example phrase is more than
which aligns to a single concept more-than. We first col-
lapse spans and subgraphs into these categories based on
the alignment from an automatic aligner (Pourdamghani et
al. 2014). This categorization procedure enables the parser
to capture mappings from continuous spans on the sentence
side to connected subgraphs on the AMR side.

During decoding, our output has categories, and we need
to map each category to the corresponding AMR concepts
or subgraphs. When we categorize the tokens or spans on
the sentence side, we save the mapping from each category
to its original token or span as a table Q. Given table Q,
we can track which source side token or span it comes from
and use either the most frequent concept or subgraph learned
from the training data or use heuristic rules to generate the
target-side AMR subgraph based on the source side tokens
(for example, NE and DATE).

Experiments

We evaluate our system on the released dataset
(LDC2015E86) for SemEval 2016 task 8 on meaning
representation parsing (May 2016). The dataset contains
16,833 training, 1,368 development and 1,371 test sentences
which mainly cover domains like newswire, discussion
forum, etc. All parsing results are measured by Smatch
(version 2.0.2) (Cai and Knight 2013).

Experiment Settings

We categorize the training data using the automatic align-
ment and dump a template for date entities and frequent
phrases from the multiple to one alignment. We also gen-
erate an alignment table from tokens or phrases to their can-
didate target-side subgraphs. For the dev and test data, we

5http://amr.isi.edu/download/lists/verbalization-list-v1.06.txt
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Figure 5: Statistics of AMR graphs that can be processed
using different cache size

first extract the named entities using the Illinois Named En-
tity Tagger (Ratinov and Roth 2009) and extract date enti-
ties by matching spans with the date template. We further
categorize the dataset with the other categories we have de-
fined. After categorization, we use Stanford CoreNLP (Man-
ning et al. 2014) to get the POS tags and dependencies of
the categorized dataset. We run the oracle algorithm sep-
arately for training and dev data (with alignment) to get
the statistics of the AMR dataset and also the training and
evaluation examples for each classifier. As for the feedfor-
ward classifiers, we use one hidden layer with 200 tanh
hidden units and a learning rate of 0.005. The embeddings
for words are pre-trained from an April 2010 snapshot of
the Wikipedia corpus (Shaoul and Westbury 2010) using
the skip-gram model of word2vec (Mikolov et al. 2013a;
2013b). The embeddings for other token features are ran-
domly initialized. The number of dimensions for words and
other token features are 50. The concatenation of these token
embeddings and the numerical feature embeddings is fed as
input to the network.

Results

First we compute the coverage statistics of the training data.
Our transition system can already cover 90% of the AMR
graphs with cache size 4. Using cache size 7, the coverage
can go up to 99%. This shows that the cache transition sys-
tem is more capable for generating the set of AMR graphs.
In our AMR parsing experiments, we use a cache size of 4.

Classifier accuracy
PushOrPop 0.87
ConceptID 0.88
ArcBinary 0.83
ArcLabel 0.81
PushIndex 0.87

Table 2: Performance breakdown of each classifier

We proceed to more detailed evaluation of our parser on
the AMR dataset. We first evaluate the prediction accuracy
for each classifier. We can see from Table 2 that all the clas-
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Figure 6: Connection ratio relative to distance in the depen-
dency tree

sifiers can achieve an accuracy between 0.80 and 0.90. For
the ConceptID classifier, part of the errors are propagated
from the alignment errors from the automatic aligner. An-
other type of alignment error comes from the limits we put
on the current parser. Currently we don’t design specific
actions to handle alignment from discontinuous tokens to
a concept or from one token to disconnected components
of the graph, while this kind of alignment does appear in
the data (although not frequently). When one token maps to
multiple disconnected concepts on the graph, we randomly
pick one concept as the aligned concept and the others are
considered unaligned. When discontinuous tokens align to
the same concept, we only consider the alignment from the
first continuous span.

The ArcBinary and ArcLabel actions are directly related
to the labeled arcs in the AMR graph. Figure 6 shows the
distribution of connected arcs relative to different depen-
dency distance. We can see that most of arcs are connected
between words that are within a distance of 3 in the depen-
dency tree (around 90%). In practice, we get the best per-
formance when only allowing arcs to be connected within
a dependency distance of 3. Table 2 shows the accuracy of
the ArcBinary using this constraint. For ArcLabel, we have
also used a constraint on the arc labels that are allowed be-
tween different categories of concepts. While Damonte, Co-
hen, and Satta (2016) have designed specific rules for dif-
ferent types of concepts and used Propbank to constrain the
ARGs for different predicates, here we use the frequency of
concepts and their category information to constrain the set
of arc labels between the two concepts. Here we have used
a frequency threshold of 100 for concepts in the training
data and the categories we have introduced. For other low-
frequency concepts, we map predicates to the type PRED-01
and others to OTHER. The basic intuition is that if a concept
appears frequently enough, it is very likely that the possible
arc labels already appear in a certain context of that con-
cept. In practice, the labeling accuracy using this constraint
is 0.81.

Finally, we compare our cache transition parser with the
two other transition-based AMR parsers: CAMR and Da-
monte, Cohen, and Satta (2016). Table 3 shows the com-
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Sentence: the pirates have consistently expressed willingness to negotiate the financial figures .

Reference AMR: 
 (e/express-01  :ARG0  (p/pirate)
                         :ARG1  (w/will-02  :ARG0  p
                                                       :ARG1  (n/negotiate-01  :ARG0 p
                                                                                              :ARG2  (f/figure  :mod  (f/finance))))                                                  
                         :manner (c/consistent))

Output AMR: 
 (e/express-01  :ARG0  (p/pirate)
                         :ARG1  (w/will-02  :ARG0  p
                                                       :ARG1  (n/negotiate-01  :ARG0  (c/consistent)
                                                                                              :ARG2  (f/figure  :mod  (f/finance)))
                                                       :manner c)
                         :purpose n
                         :manner c)

Figure 7: An example AMR output for predicting re-entrancies.

System P R F
Our system 0.69 0.59 0.64
Damonte et al. 0.64
CAMR (github) 0.64 0.62 0.63
CAMR (full) 0.70 0.63 0.66

Table 3: Comparison to other AMR parsers.

parison with other transition-based parsers. CAMR (github)
shows the performance with the actions and features de-
scribed in Wang, Xue, and Pradhan (2015b), and CAMR
(full) is with a refined action set and additional features such
as coreference information, semantic role labeling and word
cluster features. We can see that with the relatively simple
feature settings and using feedforward neural networks, our
parser can already achieve competitive results in comparison
with the other transition-based parsers.

Predicting re-entrancy is an important but also challeng-
ing part of AMR parsing. In Figure 7, we can see an out-
put AMR graph where re-entrancy appears. In this example,
our parser can accurately predict the re-entrancy from will-
02 to pirate. However, it also makes the wrong re-entrancy
from negotiate-01 to consistent instead of pirate. This error
results from the decision of the ArcBinary classifier, which
usually prefers making arcs between words that are close
and not if they are distant. The parser also makes an ad-
ditional re-entrancy from purpose to negotiate-01. This re-
entrancy results from their adjacency in the dependency tree.
More refined features would be needed to solve these re-
entrancy issues concerning distance.

Conclusion

In this paper, we have designed a cache transition system for
AMR parsing. Our experiments show that the set of AMR

graphs can be constructed with relatively small cache size
and competitive results can be achieved using our transition
system. It would be interesting to extend our current fea-
ture settings to model long-distance dependencies and re-
entrancies. The cache transition system also provides a good
trade-off between the set of graph structures that can be con-
structed and the speed for building the graphs. By adjusting
the size of the cache, the cache transition system can be eas-
ily applied to other parsing to graph tasks.
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