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Abstract

Question retrieval is a crucial subtask for community ques-
tion answering. Previous research focus on supervised mod-
els which depend heavily on training data and manual fea-
ture engineering. In this paper, we propose a novel unsu-
pervised framework, namely reduced attentive matching net-
work (RAMN), to compute semantic matching between two
questions. Our RAMN integrates together the deep semantic
representations, the shallow lexical mismatching information
and the initial rank produced by an external search engine.
For the first time, we propose attention autoencoders to gen-
erate semantic representations of questions. In addition, we
employ lexical mismatching to capture surface matching be-
tween two questions, which is derived from the importance of
each word in a question. We conduct experiments on the open
CQA datasets of SemEval-2016 and SemEval-2017. The ex-
perimental results show that our unsupervised model obtains
comparable performance with the state-of-the-art supervised
methods in SemEval-2016 Task 3, and outperforms the best
system in SemEval-2017 Task 3 by a wide margin.

Introduction

Community question answering (CQA) portals, like Yahoo!
Answers and Baidu Knows, are popular forums where users
ask and answer questions on diverse topics. As a conse-
quence, the CQA has accumulated a large quantity of ques-
tions and answers, which have made CQA portals valuable
resources. In these CQA forums, questions may be repeated
or closely related to previously asked questions, and there
exists a large amount of answers with respect to a given
question. As a result, it will be difficult and time-consuming
for users to search and distinguish the good answers. The
CQA system could help to automate the process of finding
good answers to new questions in a community-created dis-
cussion forum. The system first retrieves similar questions
(i.e. question retrieval) in the forum and then identifies the
posts (i.e. answer selection) in the answer threads of those
similar questions. In this paper, we focus on question re-
trieval for CQA, with the purpose of developing semantic
textual similarity measures for such noisy texts.
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The challenge of question retrieval is that two natural lan-
guage sentences often express similar meanings with dif-
ferent but semantically related words, which results in se-
mantic gaps between them. In previous work, various ap-
proaches have been proposed to bridge the semantic gaps be-
tween two objects, most of which are supervised. Some re-
searches leverage word-to-word (or phrase-to-phrase) trans-
lation probabilities to capture sematic matching terms (Xue,
Jeon, and Croft 2008; Zhou et al. 2011). In order to train
the translation model, one needs to collect a large amount
of monolingual parallel strings of similar questions pairs,
which are generally not available in practice. Alternatively,
question-answer pairs are also treated as parallel strings,
but the assumption that questions and answers are semanti-
cally equivalent is hardly true in reality. Furthermore, many
research (Romeo et al. 2016; Barrón-Cedeño et al. 2016;
Franco-Salvador et al. 2016; Charlet and Damnati 2017) ap-
ply a learning to rank architecture to handle question re-
trieval. These methods are supervised fusion of different fea-
tures, including both supervised and unsupervised similarity
features. Among the features, many were based on overlap
count between components which include but are not limited
to, n-grams of words or characters, named entities, frame
representations and knowledge graphs (Franco-Salvador et
al. 2016). Recently, much attention is also paid for the use
of neural matching features (Goyal 2017), which can ex-
tract high level matching signals from distributed represen-
tations of the sentences and capture their similarity beyond
lexicons. Overall, the limitation of previous work is that,
building a large amount of training data with similar ques-
tions is expensive and careful feature engineering is time-
consuming.

In this paper, we propose an unsupervised framework to
compute question-question similarity, relying only on the
large collection of unannotated data in CQA forums. We
focus on core textual semantic similarity, avoiding using
any metadata analysis (such as user profile and question
categories). We propose a reduced attentive matching net-
work (RAMN), which integrates three aspects of informa-
tion in a robust and simple unsupervised framework, includ-
ing the question representations generated by the deep net-
work, the lexical mismatching information based on the sur-
face matching and the initial rank produced by an external
search engine. We conduct experiments on the benchmark
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CQA datasets of Semeval-2016 (Nakov et al. 2016) and
Semeval-2017 (Nakov et al. 2017). Evaluation results show
that our unsupervised model outperforms the winner system
at the campaign, and obtains comparable results with state-
of-the-art methods which are all supervised. Our model is
unsupervised and domain independent, and so can be easily
generalized to other text-matching tasks, like answer selec-
tion and paraphrase detection.

First, we propose attention autoencoders to embed ques-
tions into semantic representations, which is pre-trained us-
ing a large scale unannotated data. In the recurrent neural
network (RNN) architecture, those representations near the
end of a sentence are likely to contain more information,
which may result in biased representations towards the end
of a sentence. Our attention autoencoders is inspired by the
work of Vaswani et al. (2017), with the goal of generating
the input sequence itself. The representation from attention
autoencoders contains context information with a strong fo-
cus on the current word of the input sequence, which is more
suitable for semantic matching. What’s more, the attention
autoencoders allow for more parallelization and achieve sig-
nificant improvements in computational efficiency.

Recently, researchers have proposed various neural net-
work models to deal with question answering. The strong
generalization power enables these methods to find texts
with similar latent representations, but they may miss or ob-
scure the detailed matching information. In this paper, we
employ mismatching to find exact matching in question re-
trieval. In practice, if there is a key term in the new ques-
tion not appearing in the candidate question, the similarity
between them should be reduced. In contrast, the similar-
ity should be less vulnerable if a background word of the
new question does not appear in the candidate question. Fol-
lowing the observation, we propose a simple but effective
method to capture the lexical mismatching information. We
automatically calculate the importance of each word in the
new question, and then acquire a reduced vector according
to lexical mismatching relation between the new question
and candidate question.

We summarize our contributions in this paper as follows:

• We propose a new unsupervised architecture RAMN for
question retrieval, in which the deep question similarity,
the lexical mismatching score and the external searching
rank are seamlessly integrated.

• For the first time, we propose attention autoencoders
to generate sentence representations in an unsupervised
manner.

• We propose to model surface matching by computing lex-
ical mismatching information in an unsupervised way,
which obviously improves the performance.

Problem Formalization

Suppose that we have a new question q and a candidate ques-
tion Q. Formally, we denote the embedding sequence of q as
{xqi|0 < i <= n, i ∈ N+}, the embedding sequence of Q
as {xQj |0 < j <= m, j ∈ N+}, where n and m are the
number of words in q and Q respectively. hqi and hQj are

hidden representations of q at step i and Q at step j respec-
tively. Based on the lexical mismatching relation between
q and Q, we can compute a reduced vector which we rep-
resent as dq . Our goal is to design a matching model g(·, ·)
with hidden representations and the reduced vector. For each
question pair (q,Q), g(q,Q) returns a matching score which
can be used to rank candidate questions for the new question.

To obtain g(q,Q), we need to answer two questions: 1)
how to represent questions in the latent space using unsuper-
vised methods, and 2) how to capture surface matching in-
formation and incorporate it into the matching model. In the
following sections, we first present our method on question
representation, and then elaborate on our matching model.

Attention Autoencoders for Question

Representation

The sequence autoencoder (Dai and Le 2015) is similar
to sequence to sequence learning (also known as seq2seq)
(Sutskever, Vinyals, and Le 2014). It employs a recurrent
network as an encoder to read in an input sequence into a
hidden representation. Then, the representation is fed to a
decoder recurrent network to reconstruct the input sequence
itself. The sequence autoencoder is an unsupervised learn-
ing model which is a powerful tool for modeling sentence
representations with large scale unannotated data.

Different from the traditional RNN autoencoders, we pro-
pose attention autoencoders to model sentence representa-
tions. Our approach is inspired by the work of neural se-
quence transduction models (Vaswani et al. 2017), which
has been successfully applied for machine translation. It is
the first transduction model relying entirely on self-attention
to compute representations of the input and output se-
quences without using RNNs or convolution. Our autoen-
coder is similar to the concept, except that it is an unsuper-
vised learning model and the objective is to reconstruct the
input sequence itself. The experimental results show that our
attention autoencoders obtain better performance over RNN
autoencoders in reconstructing the input sequence.

Our attention autoencoders follow the encoder-decoder
architecture, as shown in Figure 1. Each layer of encoder
has two sub-layers: the first layer is a self-attention mech-
anism, and the second is a position-wise feed-forward net-
work. Besides the two sub-layers, the decoder inserts a third
sub-layer, which performs attention over the output of the
encoder. In the self-attention sub-layer of the decoder, we
apply mask to ensure that the predictions for position i can
depend only on the known outputs at positions less than i.
We also employ residual connection and layer normalization
around each of the sub-layers.

The attention mechanism is to map a query and a set of
key-value pairs to an output. The output is computed as a
weighted sum of the values, where the weight assigned to
each value is computed based on the query and the cor-
responding key. In attention autoencoders, there are three
types of attention: the encoder self-attention, the encoder-
decoder attention and the decoder self-attention. We com-
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Figure 1: The attention autoencoders applied in our model.

pute the attention on a set of queries simultaneously:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

where Q ∈ R
nq×dk , K ∈ R

nk×dk and V ∈ R
nk×dv are

queries, keys and the corresponding values respectively; nq

is the number of queries and nk is the number of key-value
pairs.

The encoder transforms a sentence into a list of vectors,
one vector per input symbol. Given the input embedding se-
quence x = (x1, . . . , xn), we produce hidden representa-
tions he = (he1, . . . , hen) with the following equations:

a′e = Attention(xW q
e ,xW

k
e ,xW

v
e ) (2)

ae = LayerNorm(a′e + x) (3)

h′e = ReLU(aeWe1 + be1)We2 + be2 (4)

he = LayerNorm(h′e + ae) (5)

where W q
e ∈ R

dm×dk , W k
e ∈ R

dm×dk , W v
e ∈ R

dm×de ,
We1 ∈ R

dm×df and We2 ∈ R
df×dm are parameter ma-

trices; be1 ∈ R
df and be2 ∈ R

dm are bias vectors;
LayerNorm denotes layer normalization and ReLU is ac-
tivation function.

Given the encoder representations he, the decoder is re-
sponsible for generating the input sequence. The encoder
and decoder are connected through an attention module,
which allows the decoder to focus on different parts of the
input sequence during the course of decoding.

We first shift the input embedding x right and get x′ =
(0, x1, . . . , xn−1) as the decoder input. Through employing
equation (2) and (3) in the decoder self-attention layer, we
get ad = (ad1, . . . , adn). The encoder-decoder attention is

applied following the self-attention layer, which is computed
as:

a′ed = Attention(adW
q
a ,heW

k
a ,heW

v
a ) (6)

aed = LayerNorm(a′ed + ad) (7)

where W q
a ∈ R

dm×dk , W k
a ∈ R

dm×dk and W v
a ∈ R

dm×dm

are parameter matrices in encoder-decoder attention layer.
Then, aed is fed to the position-wise feed-forward layer

to produce the hidden representations hd = (hd1, . . . , hdn).
Given hd and the previous (i− 1) words, the probability of
generating word wi is:

P (wi|w1, . . . , wi−1, hdi) ∝ exp(W phdi + bp) (8)

The objective is the sum of the log-probabilities for the
input sequence itself:

J(θ) =
∑

i

logP (wi|w1, . . . , wi−1, hdi) (9)

The attention autoencoders learns to reconstruct the in-
put sequence by optimizing the objective in equation (9).
In CQA forums, most of questions are unlabeled, and only a
small fraction of questions are labeled manually for research
usage. The attention autoencoders are very suitable for us to
make better use of the unlabeled data in CQA archives.

Reduced Attentive Matching Network

Based on the question representations generated by attention
autoencoders, we further propose a reduced attentive match-
ing network (RAMN) to handle question retrieval. Figure 2
gives the architecture of our model. Given a new question
q and a candidate question Q, our model first embeds them
into sequences of hidden representations by our attention au-
toencoders, and computes the deep semantic matching vec-
tor. Further, we compute lexical mismatching representation
to capture the surface matching information. Finally, we in-
corporate the initial rank produced by a search engine into
our model.

Similarity based on Hidden Representations

After obtaining the hidden representation Hq = {hqi|0 <
i <= n} of new question q and the hidden representation
HQ = {hQj |0 < j <= m} of candidate question Q, we
compute the interactions of each paired segments in q and
Q. Specifically, for the i-th hidden state hqi in q and the j-th
hidden state hQj in Q, their interaction shij is calculated by:

shij = hqi · hQj (10)

In order to compute the matching score between q and
Q, we first use row-wise pooling to obtain a vector that
summarizes the interaction of each segment in query with
all segments in candidate question. Then, we decomposes
the query-question similarity g(q,Q) to a product of word-
question similarities g(wqi, Q). Thus, our base model can be
formulated as:

g(wqi, Q) = max
j

shij (11)

g(q,Q) =
∏

i

g(wqi, Q) (12)
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Figure 2: The overall structure of our model. A circle de-
notes a real number, � is element-wise product.

In our model, in contrast to the one-hot representation, the
hidden representations are able to capture semantic relations
of different words effectively, and can partially overcome the
lexical gaps. Moreover, we can make use of the large scale
unannotated data in CQA to learn effective hidden repre-
sentations of questions, and we needn’t worry about how to
collect lots of annotated data or monolingual parallel strings.

Lexical Mismatch

The match between hidden representations can capture se-
mantic relations between two questions. However, it ignores
lexical matching which is considered as one of the impor-
tant features for question retrieval. Therefore, we propose to
model lexical matching through lexical mismatching.

We first calculate the importance of each word in a ques-
tion through a simple and effective approach. In informa-
tion retrieval, the TF-IDF is a classical algorithm to compute
term weighting, which reflects how important a word w is to
a document D in a large corpus C:

TF − IDF (w|D,C) = tf(w|D)idf(w|C) (13)

Inspired by the TF-IDF, we calculate the frequency of a
word in corpus C, and the importance of a word wqi in the
new question q is given by:

fqi =
tf(wqi|C)∑

wqi′∈q tf(wqi′ |C)
(14)

The smaller fqi is, the more important wqi is in q. Such
a definition allows us to model lexical matching in a more
preferable way.

Based on the importance of each word, we can obtain the
reduced vector of q which we represent as dq . If wqi exists
in the candidate question, we set dqi to one. Otherwise, dqi
will be equal to fqi, which implies reduced match.

For example, given a q and a Q:

q: We propose an unsupervised model

Q: We propose a supervised model

The importance of each word is given in (15), and then dq
can be obtained as in (16):

(0.5401, 0.0075, 0.4221, 0.0008, 0.0295) (15)
dq = (1, 1, 0.4221, 0.0008, 1) (16)

where the query words “We”, “propose” and “model” exist
in Q, and we set the corresponding elements in dq to one.
“an” and “unsupervised” don’t appear in Q, and dq3 and
dq4 are equal to fq3 and fq4 respectively. It demonstrates
that, “unsupervised” is the most important word in q, the
mismatch of which will result in a serious penalization in
similarity computation.

Equipped with the reduced vector, we can overwrite the
similarity computation in equation (11) by:

g(wqi, Q) = dqi max
j

shij (17)

So, the more important wqi is in q, the more serious reduce
g(wqi, Q) suffer when wqi mismatches in Q.

Rank Factor

In most cases, the research goal of question retrieval is to
re-rank candidate questions initially ranked by a search en-
gine. The initial rank is often computed using powerful al-
gorithms, so it is essential to incorporate it into the match-
ing model. For each candidate question Q, we compute a
rank factor R using the equation (18) where α is a param-
eter which is tuned in the development set. We apply R to
update equation (12) as in (19):

R = 1− α ∗ rank (18)

g(q,Q) = R
∏

i

g(wqi, Q) (19)

Experiments

Dataset

We conduct experiments on the CQA datasets of SemEval-
2016 Task 3 and SemEval-2017 Task 3. These datasets con-
tain real data from the community-created Qatar Living Fo-
rums. There are three English subtasks and we focus on Sub-
task B: Question-Question Similarity. The SemEval-2017
Task 3 is an extended edition of SemEval-2016 Task 3,
where the organizers reuse the same training dataset from
SemEval-2016 but annotate fresh test sets for all subtasks.
For a new question, there are 10 candidate questions re-
trieved by the Google search engine. The research goal is to
re-rank the candidate questions according to their similarity
with respect to the new question.
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Class Train Dev 2016-Test 2017-Test
Original 267 50 70 88
Candidates 2669 500 700 880
PerfectMatch 235 59 81 24
Relevant 648 155 152 139
Irrelevant 1586 286 467 717

Table 1: Statistics distribution in the training, development
and test partitions on the Subtask B.

The task is in a supervised setting. Human annotators
were asked to assign one of the three labels to each can-
didate question: perfectMatch, relevant and irrelevant. Per-
fectMatch and relevant questions are regarded as positive in-
stances, and irrelevant questions as negative instances. The
labeled dataset is divided into three folders: training, devel-
opment and test. Table 1 gives the statistics distribution of
the dataset.

Our model is unsupervised, and so we only use the de-
velopment data to tune parameters, and use the same test
data to compare our methods with previous research. In our
model, any external resources of unlabeled data can be uti-
lized to train attention autoencoders. In our experiment, we
utilize the large amount of unlabeled data released by the or-
ganizers, which consists of 189,941 questions and 1,894,456
comments.

In this task, the evaluation metrics are MAP and MRR,
which are widely used for question retrieval. We utilize the
official evaluation script published by the organizer.

Experimental Setup

We concatenated the subject and main body of a question to
be a unique question. All texts were tokenized, lowercased
and stemmed to reduce the dimensionality of the dictionary.
For computational reasons, we opted to limit the size of the
input texts at 128 words, and we did not observe any degra-
dation in performance.

For the attention autoencoders, the dimensionality of
word embeddings was set to 200. Word embeddings were
initialized by the result of word2vec (Mikolov et al. 2013)
trained on unannotated Qatar data and updated in training.
Tokens that did not appear in the pre-trained word embed-
dings were replaced with UNK symbol, of which the em-
beddings were initialized randomly.

In training the autoencoders, we initialized all attention
parameters with orthogonal initialization. The parameters of
position-wise feed-forward layers were initialized by a uni-
form distribution in [−0.1, 0.1]. Both the encoder and de-
coder consist of a stack of 2 identical layers. The dimension
of hidden representation was set to 200, which was equal
to the dimensionality of word embeddings. We applied the
Adam algorithm (Kingma and Ba 2014) to optimize the at-
tention autoencoders, using shuffled mini-batches of size 48.
The initial learning rate is 0.0004. The autoencoders learn
until the performance in the development data stops improv-
ing, with patience p = 3, i.e., the number of epochs to wait
before early stopping.

The unlabeled data used in attention autoencoders also

Model MAP MRR

2016

Baseline (IR) 74.57 83.79
SemEval Best 76.70 83.02
Tree Pruning 77.82 84.64
Tree Kernel Classifier 78.56 85.12
Our model 77.79 85.76

2017

Baseline (IR) 41.85 46.42
SemEval Best 47.22 50.07
SemEval Second 46.93 53.01
SemEval Third 46.66 50.85
Our model 48.53 52.75

Table 2: Experimental results of our model comparing with
the state-of-the-art methods.

served as the corpus C in equation (14). We set α in equa-
tion (18) to 0.035, which was tuned via grid search over the
following range of values {0.01, 0.015, 0.02, . . . , 0.1}.

Baselines

We compare our model with the following state-of-the-art
baselines, which are all supervised methods.

• SemEval-2016 Best (Franco-Salvador et al. 2016): This
method employed Support Vector Machines (SVMrank)
to rank candidate questions, by using a variety of lexical
and semantic features.

• Tree Pruning (Romeo et al. 2016): It employed LSTM
with an attention mechanism to select the important sen-
tences as well as the important chunks/words from syn-
tactic parsing trees, and then exploited implicit features
of the subtrees to re-rank questions.

• Tree kernel classifier (Barrón-Cedeño et al. 2016): It also
addressed the problem of selecting the most relevant text
chunks in the questions. It employed supervised and unsu-
pervised models that operated both at sentence and chunk
level (using constituency trees). A tree-kernel-based clas-
sifier was utilized.

• SemEval-2017 Best (Charlet and Damnati 2017): The ap-
proach was a supervised combination of different unsu-
pervised textual similarities, by introducing a soft-cosine
that takes into account relations between words. The fea-
tures were fused using logistic regression.

• SemEval-2017 Second (Goyal 2017): It employed pair-
wise learning to rank methods, and used various semantic
features to achieve promising results on this subtask.

• SemEval-2017 Third (Filice, Da San Martino, and Mos-
chitti 2017): It modeled the task as a binary classification
problem. All classifiers and kernels were implemented in
the Kernel-based Learning Platform (KeLP). It is the only
system that appears in the top-3 ranking for all the three
English subtasks.

Evaluation Results

The experimental results are shown in Table 2 for SemEval-
2016 and SemEval-2017.
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At SemEval-2016, our model performs best over all state-
of-the-art methods in term of MRR. And our model also
obtains a promising MAP score of 77.79, which outper-
forms the strong baseline by 3.22 and beats the best sys-
tem by 1.09. Our result is comparable with the Tree Pruning
method, and is a little lower (less than 1 MAP point) than the
Tree Kernel Classifier. At SemEval-2017, our model outper-
forms the best system with 1.31 MAP points, and beats the
baseline by a wide margin (6.68 MAP points).

It is worth noticing that the MAP score adopted in this
campaign is sensitive to the amount of original questions
which don’t have any relevant questions in the gold labels.
In fact, these questions always account for a precision of 0 in
the MAP scoring. Comparing the two subtasks of SemEval-
2016 and SemEval-2017, the SemEval-2017 Task 3 is more
challenging. The upper bound of MAP performance is 88.57
for SemEval-2016, but only 67.05 for SemEval-2017; the
baseline is 74.57 for SemEval-2016, but only 41.85 for
SemEval-2017. Our model obtains much gain at SemEval-
2017, demonstrating that it is more robust to the hard task.

It should be noted again that our model is unsupervised,
while the above state-of-the-art methods are all supervised
and need training data to train the model. As everyone know,
to construct a training data is time consuming, laborious and
expensive. Our model needs only a large amount of unla-
beled data to train autoencoders, which can be easily down-
loaded from CQA forums. Whats more, it is a non-trivial
task for supervised methods to do domain adaptation.

Our method is in an end-to-end manner, while the above
state-of-the-art methods need rich features and external re-
sources. They did careful feature engineering work, and gen-
erated features from external knowledge bases (like Word-
Net and FrameNet). In addition, they needed a sophisticated
parser to effectively parse the full text. Romeo et al. (2016)
conducted an end-to-end LSTM network to treat question
ranking as a classification task, but the experimental result
was poor with a MAP of 67.96. As they reported, the small
dataset (only 2,669 training examples) is not qualified with
complicated neural network methods.

Ablation Study for Model Components

To further analyze our model especially the effectiveness of
lexical mismatch, we make a detail analysis on each step of
the model, by removing one component at a time. Table 3
report the evaluation results at SemEval-2016 and SemEval-
2017, where the base model refers to the semantic matching
based only on the question representations generated by at-
tention autoencoders.

In our model, the performance is consistently increased
step by step at both datasets. The performance is obvi-
ously improved when introducing the lexical mismatch into
the model, where the improvement over the base model
is 2.87 MAP points at SemEval-2016 and 2.04 points at
SemEval-2017. In this step, comparing with the best sys-
tem at the campaign, our model obtains comparable results
at SemEval-2016 and better results at SemEval-2017. The
rank factor further improves 1.87 and 1.13 respectively in
two datasets.

Models MAP MRR

2016

SemEval Best 76.70 83.02
Our base model 73.05 81.51
+ lexical mismatch 75.92 84.29
+ initial rank 77.79 85.76

2017

SemEval Best 47.22 50.07
Our base model 45.36 51.27
+ lexical mismatch 47.40 51.61
+ initial rank 48.53 52.75

Table 3: Experimental results of our model with respect to
each step.

Autoencoders Base model Full model

2016 RNN 71.76/81.14 77.06/84.16
Attention 73.05/81.51 77.79/85.76

2017 RNN 43.59/48.80 46.38/52.07
Attention 45.36/51.27 48.53/52.75

Table 4: Experimental results (MAP/MRR) of attention au-
toencoders comparing with RNN autoencoders.

It shows that the proposed unsupervised matching model,
which fuses the distributed representations, the lexical mis-
matching information and the initial rank, is extremely ro-
bust and effective in tackling learning tasks defined on sen-
tence pairs.

Analysis on Attention Autoencoders

In this paper, we propose attention autoencoders and apply
them to question retrieval. Here, we conduct experiments
to compare our attention autoencoders with the traditional
RNN autoencoders. We create a RNN autoencoder which
consists of a two-layer encoder with GRU activation and a
two-layer decoder with conditional GRU. In the encoder, we
produce sentence representation by average pooling over all
hidden representations. Then, the sentence representation is
fed to the decoder to reconstruct the input sequence itself.
The parameter configurations are consistent with our atten-
tion autoencoder.

Table 4 report the evaluation results at SemEval-2016
and SemEval-2017. The base model refers to the semantic

Figure 3: The training loss curve of RNN autoencoders and
attention autoencoders.
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Models Questions
original Where in Qatar is the best place for Snorke-

ling? I’m planning to go out next friday but
don’t know where to go.

RNN Where is the best place in Qatar for holi-
day? I’m going to go to sealine but don’t
know.

attention I’m planning to go out next friday but don’t
know where is the best place for Snorkeling
in Qatar?

original Can anyone tell me where I can buy some
indoor plants; besides the supermarket.
Are there any nurseries in Doha? Also;
are there any photography competitions in
Doha? Thanks in advance

RNN Can anyone tell me where I can find some
good outdoor plants; are there? ? ? are the
only available in Doha; any other place in
Doha? Thank you

attention Can anyone tell me where I can buy some
indoor plants in Doha? Are there any nurs-
eries; besides the indoor plants in Doha?
Also; are there? Thanks in advance

Table 5: Comparison of reconstructed questions in RNN au-
toencoders and attention autoencoders.

matching based only on the question representations gener-
ated by RNN/attention autoencoders, and further integrating
the lexical mismatch information and rank factor forms the
full model.

At both SemEval-2016 and SemEval-2017, the semantic
matching with attention autoencoders obtains better perfor-
mance than the RNN autoencoders. It shows more clearly
in the base model, where the attention autoencoders out-
perform the RNN autoencoders by 1.29 MAP points at
SemEval-2016 and 1.77 MAP points at SemEval-2017.

Further, Figure 3 demonstrates the descending curve of
the training loss of different autoencoders. It shows that our
attention autoencoders are more effective and robust than the
RNN autoencoders in reconstructing the input sequences.
In Table 5, we present two examples from the development
set to compare the reconstructed questions by RNN autoen-
coders and our attention autoencoders.

Related Work

With the flourishing of CQA forums, research on question
retrieval has attracted much attention. The studies that are
close to our work can be roughly classified into the following
categories.
Language model for information retrieval. This kind of
methods (Zhai and Lafferty 2004) computes the similarity
based on the weights of the matching text terms between
questions. Zhang et al. (2016) interpret language model
methods from an embedding perspective. A key challenge of
this kind of models is the lexical gap between new queries
and existed questions.

Translation models. In these models, the similarity function
between questions is defined as the translation probability
from a question to another one. Xue, Jeon, and Croft (2008)
train a translation model from question-answer pairs. Zhou
et al. (2011) propose a phrase-based translation model that
can capture contextual information by treating phrases as a
whole. A key limitation of these works is that they assume
questions and answers are parallel texts and are semantic
equivalent, which is hardly true in reality.
Topic Models. In these methods, the similarity between
questions is defined in the latent topic space (Ji et al. 2012;
Zhang et al. 2014).
Deep learning based strategies. Recently, various neu-
ral network architectures are applied to model question-
question similarities. Das, Shrivastava, and Chinnakotla
(2016) propose a deep structured topic model, which first
retrieve similar questions in the latent topic vector space and
then reranking them using a deep layered semantic model.
They train the neural network on question-answer pairs. Das
et al. (2016) propose the Siamese Convolutional Neural Net-
work for CQA (SCQA), which consists of twin convolu-
tional neural networks with shared parameters. Our model
is also under the flag of deep learning methods, but the dif-
ference is that our model is totally unsupervised and is more
flexible.
SemEval campaign. SemEval organizes a series of evalua-
tions on CQA, SemEval-2015 Task 3 (Nakov et al. 2015),
SemEval-2016 Task 3 (Nakov et al. 2016) and SemEval-
2017 Task 3 (Nakov et al. 2017), which provide bench-
mark datasets for evaluating different strategies on CQA.
These tasks provide training data and so are in supervised
setting (Franco-Salvador et al. 2016; Romeo et al. 2016;
Barrón-Cedeño et al. 2016). We conduct experiments on this
benchmark dataset, and compare our unsupervised model
with state-of-the-art supervised methods.
Autoencoders. Another relevant topic is autoencoders. Au-
toencoders is an unsupervised network method to learn la-
tent representations that retain useful features to effectively
reconstruct the inputs, which has been successfully applied
in sentiment analysis, textual representations and so on. Li,
Luong, and Jurafsky (2015) employ hierarchical autoen-
coders to reconstruct paragraph representations. Makhzani
et al. (2015) propose the adversarial autoencoders, which ap-
ply generative adversarial networks (GAN) to perform vari-
ational inference.

Conclusion

In this paper, we present an unsupervised framework RAMN
for question retrieval in CQA. The attention autoencoders,
which are pre-trained using large scale unlabeled data in
CQA archives, are applied to generate question represen-
tations. Further, we apply lexical mismatch information to
effectively capture the surface matching between two ques-
tions. The final matching score is computed based on ques-
tion representations, lexical mismatching information and
the initial rank produced by a search engine. Our model en-
joys the powerful matching capability of the deep seman-
tic representations and at the same time captures the surface
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lexical matching. We conducted experiments at SemEval-
2016 and SemEval-2017 CQA datasets. Our unsupervised
model outperforms the winner system and is comparable
with state-of-the-art methods which are all supervised. In fu-
ture work, we will try to use the attention autoencoders for
learning generic paragraph representations.

Acknowledgments

We thank Wei Li and Yixiu Wang for valuable comments
and suggestion. This work is supported by National High
Technology Research and Development Program of China
(2015AA015403) and National Natural Science Foundation
of China (61773026, 61371129). The corresponding author
of this paper is Yunfang Wu.

References

Barrón-Cedeño, A.; Da San Martino, G.; Romeo, S.; and
Moschitti, A. 2016. Selecting sentences versus selecting tree
constituents for automatic question ranking. In Proceedings
of the 26th International Conference on Computational Lin-
guistics, Osaka, Japan.
Charlet, D., and Damnati, G. 2017. Simbow at semeval-
2017 task 3: Soft-cosine semantic similarity between ques-
tions for community question answering. In Proceedings
of the 11th International Workshop on Semantic Evaluation
(SemEval-2017), 315–319.
Dai, A. M., and Le, Q. V. 2015. Semi-supervised sequence
learning. In Advances in Neural Information Processing
Systems, 3079–3087.
Das, A.; Yenala, H.; Chinnakotla, M.; and Shrivastava, M.
2016. Together we stand: Siamese networks for similar
question retrieval. In Meeting of the Association for Compu-
tational Linguistics, 378–387.
Das, A.; Shrivastava, M.; and Chinnakotla, M. 2016. Mirror
on the wall: Finding similar questions with deep structured
topic modeling. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining, 454–465. Springer.
Filice, S.; Da San Martino, G.; and Moschitti, A. 2017.
Kelp at semeval-2017 task 3: Learning pairwise patterns in
community question answering. In Proceedings of the 11th
International Workshop on Semantic Evaluation (SemEval-
2017), 326–333.
Franco-Salvador, M.; Kar, S.; Solorio, T.; and Rosso, P.
2016. Uh-prhlt at semeval-2016 task 3: Combining lexi-
cal and semantic-based features for community question an-
swering. Proceedings of SemEval 16:814–821.
Goyal, N. 2017. Learningtoquestion at semeval 2017 task
3: Ranking similar questions by learning to rank using rich
features. In Proceedings of the International Workshop
on Semantic Evaluation. Vancouver, Canada, SemEval, vol-
ume 17, 310–314.
Ji, Z.; Xu, F.; Wang, B.; and He, B. 2012. Question-answer
topic model for question retrieval in community question an-
swering. In Proceedings of the 21st ACM international con-
ference on Information and knowledge management, 2471–
2474. ACM.

Kingma, D., and Ba, J. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.
Li, J.; Luong, M.-t.; and Jurafsky, D. 2015. A hierarchi-
cal neural autoencoder for paragraphs and documents. In In
Proceedings of ACL. Citeseer.
Makhzani, A.; Shlens, J.; Jaitly, N.; Goodfellow, I.; and
Frey, B. 2015. Adversarial autoencoders. arXiv preprint
arXiv:1511.05644.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In Advances in neural
information processing systems, 3111–3119.
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