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Abstract

Emails in the workplace are often intentional calls to action
for its recipients. We propose to annotate these emails for what
action its recipient will take. We argue that our approach of
action-based annotation is more scalable and theory-agnostic
than traditional speech-act-based email intent annotation, while
still carrying important semantic and pragmatic information.
We show that our action-based annotation scheme achieves
good inter-annotator agreement. We also show that we can
leverage threaded messages from other domains, which exhibit
comparable intents in their conversation, with domain adap-
tive Rainbow(Recurrently AttentIve Neural Bag-Of-Words).
On a collection of datasets consisting of IRC, Reddit, and
email, our reparametrized RNNs outperform common mul-
titask/multidomain approaches on several speech act related
tasks. We also experiment with a minimally supervised sce-
nario of email recipient action classification, and find the
reparametrized RNNs learn a useful representation.

1 Introduction
Despite the emergence of many new communication tools in
the workplace, email remains a major, if not the dominant,
messaging platform in many corporate settings (Agema 2015).
Helping people manage and act on their emails can make them
more productive. Recently, Google’s system that suggests
email replies has gained wide adoption (Kannan et al. 2016).
We can imagine many other classes of assistance scenarios
that can improve worker productivity. For example, consider
a system that is capable of predicting your next action when
receiving an email. The system could then offer assistance to
accomplish that action, for example in the form of a quick
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reply, adding a task to your to-do list, or helping you take
action against another system. To build and train such systems,
email data sets are essential, but unfortunately public email
datasets such as Klimt and Yang; Oard et al. (2004; 2015) are
much smaller than the proprietary data used by Google; and
more importantly, they lack any direct information/annotation
regarding the recipients’ actions.
In this paper, we design an annotation scheme for such

actions and have applied it to a corpus of publicly avail-
able emails. In order to overcome the data bottleneck for
end-to-end training, we leverage other data and annotations
that we hypothesize to contain structures similar to email
and recipient actions. We apply multitask and multidomain
learning, which use domain or task invariant knowledge to im-
prove performance on a specific task/domain (Caruana 1997;
Yang and Hospedales 2014). We show that these secondary
domains and tasks in combination with multitask and multido-
main learning can help our model discover invariant structures
in conversations that improve a classifier on our primary data
and task: email recipient action classification.
Previous work in the deep learning literature tackled mul-

tidomain/multitask learning by designing an encoder that
encodes all data and the domain/task description into a
shared representation space (Collobert and Weston 2008;
Glorot, Bordes, and Bengio 2011; Ammar et al. 2016;
Yang, Salakhutdinov, and Cohen 2017). The overall model
architecture generally is unchanged from the single-domain
single-task setting; but the learned representations are now
reparametrized to take account of knowledge from additional
data and task/domain knowledge. In this work, we propose
an alternative approach of model reparametrization. We train
multiple parameter-sharing models across different domains
and tasks jointly, without maintaining a shared encoded rep-
resentation in the network. We show that reparametrized
LSTMs consistently achieve better likelihood and overall
accuracy on test data than common domain adaption variants.
We also show that the representation extracted from a network
instantiated with the shared parameter weights performs well
on a previously unseen task.
The contributions of this paper are:
First, we designed an annotation scheme for labeling ac-

tionable workplace emails, which as we argue in section 2.2,
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is more amenable to an end-to-end training paradigm, and
collected an annotated dataset. Second, we propose a family
of reparametrized RNNs for both multitask and multidomain
learning. Finally, we show that such models encode domain-
invariant features and, in the absence of sufficient data for
end-to-end learning, still provide useful features for scoping
tasks in an unsupervised learning setting.

2 Data
2.1 The Avocado Dataset
In this study, all email messages we annotate and evaluate
on are part of the Avocado dataset (Oard et al. 2015), which
consists of emails and attachments taken from 279 accounts
of a defunct information technology company referred to
as “Avocado”.1 Email threads are reconstructed from the
recipients’ mailboxes. For the purpose of this paper, we only
use complete (thread contains all replies) and linear (every
follow-up is a reply to the previous email) threads.2

2.2 Recipient Actions
Workplace email is known to be highly task-oriented (Khous-
sainov and Kushmerick 2005; Corston-Oliver et al. 2004).
As opposed to chit chat on the Internet, speaker intents and
expected actions on the email are in general very precise.
We aim to annotate the actions, which makes our approach
differ in a subtle but important way from previous work such
as (Cohen, Carvalho, and Mitchell 2004), which is mostly
focused on annotating emails for sender intents, modeled
after illocutionary acts in Speech Act theory (Searle 1976).
We believe that annotating recipient actions has the following
advantages over annotating sender intents: First, action based
annotation is not tied to a particular speech act taxonomy.
The design of such a taxonomy is highly dependent on the
system’s use cases (Traum 1999) and definitions of sender
intent can be circular (Riezler 2014). Even within a single
domain such as email, there have been several different sender
intent taxonomies (Goldstein and Sabin 2006). A speech-
act-agnostic scheme that focuses on the recipient’s action
generalizes better across scenarios. Our annotation scheme
also has a lower risk of injected bias because the annotation
relies on expected (or even observed) actions performed in
response to an email, as opposed to relying on the annotator’s
intuition about the sender’s intent. Lastly, while in this paper
we rely on annotators for these action annotations, many of
our annotated actions translate into very specific actions on
the computer. Therefore we anticipate intelligent user inter-
faces could be used to capture and remind users of such email
actions, as in Dredze et al. (2008).
Based on our findings in two pilot runs of email annotations

among the authors, we propose the set of recipient actions
listed in table 1, which fall in three broad categories:
Message sending We identify that in many cases, the recip-
ient is most likely to send out another email, either as a

1We considered other email corpora such as the Enron corpus
(Klimt and Yang 2004). We decided to use the Avocado dataset
because it is the largest and newest one publicly available.

2The summary statistics are in table 3.

reply to the sender or to someone else. As listed in table 1,
Reply-Yesno, Reply-Ack, Reply-Other, Investigate,
Send-New-Email are actions that send out a new email,
either on the same thread or a new one.

Software interaction In our pilot study we find some of
the most likely recipient actions to be interaction with
office softwares such as Setup-Appointment and Approve-
Request.

Share content On many occasions, the most likely actions
are to share a document, either as an attachment or via
other means. We have an umbrella action Share-Content
to capture these actions.

2.3 Data Annotation

Action Description
Reply-Yesno Short yes/no reply to a question

raised in the previous email
Reply-Ack Simple acknowledgements such as

‘got it’, ‘thank you.’
Reply-Other Reply to the thread based on infor-

mation that is availablewithout do-
ing any additional investigation.

Investigate Look into some ques-
tions/problems to gather the
necessary information and reply
with that information.

Send-New-Email Write a new email that is not a
reply to the current thread.

Setup-
Appointment

Set up appointments/cancel ap-
pointments.

Approve-Request Approve requests (typically from
subordinates) through an external
system such as an expense report
system etc.

Share-Content Share content, as an attachment, a
link in the email body, or a location
on the network that is known to
both the sender and recipients

Table 1: Set of possible recipient actions in our annotation
scheme.

A subset of the preprocessed email threads described in
section 2.1 are subsequently annotated. We ask each annotator
to imagine that they are a recipient of threaded emails in
a workplace environment. For each message, we ask the
annotator to read through the previous messages in the thread,
and annotate with the most likely action (in table 1) they may
perform if they had been the addressee of that message. If
the most probable action is not defined in our list, we ask the
annotators to annotate with an Other action.
A total of 399 emails from 110 distinct threads have been

annotated by two paid and trained independent annotators.
Cohen’s Kappa is 0.75 for the two annotators. The authors
arbitrated the disagreements. We include the distribution
across the actions in table 1.
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Dataset Message
IRC could somebody explain how i get the oss compatibility drivers to load automatically

in ubuntu ?
IRC you should try these ones , apt src deb __URL__ unstable/
IRC Ah , cool . Thanks , I ’ll try that .
Reddit Does this really appeal to Sanders supporters ? Can one ( or more of you ) explain

to me why ? Full disclosure : I do n’t pay ATM fees .

Table 2: Some example non-email messages that are likely to elicit actions related to those observed in email data. IRC chats are
very task specific. They are mostly about obtaining technical help. Therefore, we observe many conversational turns that start
with information requests, followed by delivery of that information. The Reddit dataset, on the other hand, is more diverse: the
discussions in r/politics more or less pertain to comments on American public policies and politics. We rarely observe messages
that require the recipient to take action; but there are requests and deliveries of information which can potentially help learn the
underlying representation.

Dataset name (type) # of threads # of messages Average thread length Average message length
Avocado (Email) 50 890 121 917 2.4 73.0
r/politics (Reddit) 15 813 42 952 2.7 31.4
Ubuntu Dialog (IRC) 50 812 416 721 8.2 12.7

Table 3: Statistics of conversational data used in this paper. During preprocessing we truncate each message to 256 words,
including bos and eos symbols; and each thread to 32 messages. The original Ubuntu dataset is much larger (with ≈ 500 000
threads). We truncated it to match the Avocado dataset size for faster training and evaluation of our model.

2.4 Additional Domains
The annotations we collect are comparable in size to other
speech act based annotation datasets. However like other
expert-annotated datasets, ours is not large enough for end-
to-end training. Therefore, we aim to enrich our training with
additional semantic and pragmatic information derived from
other tasks and domains without annotation for expected ac-
tion. We consider data from the following additional domains
for multidomain learning:
IRC The Ubuntu Dialog Corpus is a curated collection of
chat logs from Ubuntu’s Internet Relay Chat technical
support channels (Lowe et al. 2015).

Reddit Reddit is an internet discussion community consist-
ing of several subreddits, each of which is more or less a
discussion forum pertaining to a certain topic. We curate a
dataset from the subreddit r/politics over two consecutive
months. Each entry in our dataset consists of the post title,
an optional post body, and an accompanying tree of com-
ments. We collect linear threads by recursively sampling
from the trees.

Messages from IRC and Reddit are less precise in terms
of speaker intents; and our recipient action scheme is not
directly applicable to them. However, previous studies on
speech acts in Internet forums and chatrooms have shown
that there are speech acts common to all these heterogeneous
domains, e.g. information requests and deliveries. Some such
examples are listed in table 2. (Arguello and Shaffer 2015;
Moldovan, Rus, and Graesser 2011)We hypothesize that more
data from these domains will help recognition of these speech
acts, which in turn help recognize the resulting recipient
actions.
In all experiments in section 4, we use half of the dataset

Identifier Dataset Description
e-t Email end of an email thread
e-a Email this message has attachment(s)
i-t IRC turntaking
r-t Reddit end of a Reddit thread

Table 4: Description of additional prediction labels for multi-
task learning that we extracted from datasets introduced in
section 2.

as training data, a quarter as the validation data and the
remaining quarter as test data.

2.5 Metadata-Derived Prediction Tasks
The datasets introduced in sections 2.1 and 2.4 are largely
unlabeled as far as recipient actions are concerned, except for
the small subset of Avocado data that was manually annotated.
However we can still extract useful information from their
metadata, such as inferred end-of-thread markers or system-
logged events that can help us formulate additional prediction
tasks for amultitask learning setting (listed in table 4).We also
use these multitask labels to evaluate our multitask/domain
model in section 4.3.

3 Modeling Threaded Messages
3.1 Notations
We model threaded messages as a two-layer hierarchy: at the
lower layer we have a message m consisting of a list of words:
m = [w1... |m | ]. And in turn, a thread x is a list of messages:
x = [m1... |x | ] ∈ X. We assume each message thread to come
from a specific domain; and therefore define a many-to-one
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mapping f (x) = d where d ∈ D is the set of all domains. We
also define the tasks t ∈ T to have a many-to-one mapping
g(t) = d, d ∈ D. For prediction we define the predictor of
task t as ht (x) : X → Y, which predicts sequential tags
y = [y1 . . . y |x | ] ∈ Y from a thread x on (a valid) task t. We
also define the real-valued task loss of task t on thread x to
be �t (y, ŷ) : Y ×Y → R, where ŷ ∈ Y is the ground truth.

3.2 Definition of Multitask/domain Loss
In this paper, we define the multitask loss lmt as the sum of
task losses of tasks Td under the same domain d for a single
(output, ground truth) pair (y, ŷ):

lmt(Td, y, ŷ) =
∑
t∈Td

�t (y, ŷ),

and the aggregate loss

Lmt(Td, {y(d)1...Kd
, ŷ(d)1...Kd

}) =

Kd∑
k=1

lmt(Td, y(d)k
, ŷ(d)

k
)

is the sum over Kd examples y(d)1 . . . y
(d)
Kd

.
We also define the multidomain loss Lmd to be the sum of

aggregate losses over D:

Lmd({{y(d)1...Kd
, ŷ(d)1...Kd

} | d ∈ D}) =∑
d∈D

Lmt(Td, {y(d)1...Kd
, ŷ(d)1...Kd

}) (1)

3.3 The Recurrent AttentIve Neural
Bag-Of-Words model (Rainbow)

We start with the Recurrent AttentIve Neural Bag-Of-Word
model (Rainbow) as the baseline model of threaded mes-
sages. From a high level view, Rainbow is a hierarchical
neural network with two encoder layers: the lower level
encoder is a neural bag-of-words encoder that encodes
each message m into its message embeddings b(m). And
in turn, the upper level encoder transforms the indepen-
dently encoded message embeddings [b(m1) . . . b(m |x | )] into
thread embeddings via a learned recurrent neural network
e1 . . . e |x | = fRNN(b(m1) . . . b(m |x | )).3 Rainbowhas three
main components: message encoder, thread encoder, and
predictor.

Message encoder. We implement the message encoder
b(m) as a bag of words model over the words in m. Motivated
by the unigram features in previous work on email intent mod-
eling, we also add an attentive pooling layer (Rush, Chopra,
and Weston 2015) to pick up important keywords. The aver-
aged embeddings then undergo a nonlinear transformation:

b(m) = q

( ∑
w∈m

exp(a(emb(w)))∑
w′ ∈m exp(a(emb(w′)))

emb(w)
)
, (2)

where q : Rn → R
h is a learned feedforward network,

emb : N→ Rn is the word embeddings of w and a : Rn → R

3There is a slight abuse of annotation since fRNN actually differs
for x of different lengths.

is the (learned) attentive network that judges how much each
word w contributes towards the final representation b(m).4

Thread encoder and predictor. The message embeddings
are passed onto the thread-level LSTM to produce a thread
embeddings vector:

[e1 . . . e |x | ] = r(b(m1) . . . b(m |x | ))

Thread embeddings are then passed to the predictor layer.
In this paper, the predictions are distributions over pos-
sible labels. We therefore define the predictor ht to be
a 2-layer feed forward network p that maps thread em-
beddings to distributions over Vt , the label set of task t:
ht (e1 . . . e |x | ) = [p(· | e1) . . . p(· | e |x | )]. The accompanying
loss is naturally defined as the cross entropy between the
predictions p(e1) . . . p(e |x | ) and the empirical distribution
ŷ = ŷ1... |x |:

�t (ŷ, e1... |x | ) =
∑ |x |

i=1 −ŷi log p(ŷi | ei)
|x| . (3)

3.4 Multi-Task RNN Reparametrization
Rainbow is an extension of Deep Averaging Networks (Iyyer
et al. 2015) to threaded message modeling. It works well
for tagging threaded messages for the messages’ properties,
such as conversation-turn marking in online chats and end-
of-thread detection in emails. However, in its current form,
the model is trained to work on exactly one task. It also does
not capture the shared dynamics of these different domains
jointly when given out-of-domain data. In this section we
describe a family of reparametrized recurrent neural networks
that easily accommodates multi-domain multi-task learning
settings.
In general, recurrent neural networks take a sequence of

input data x and recurrently apply a nonlinear function, to get
a sequence of transformed representation h. Here we denote
such transformation with the function fRNN parametrized
by the RNN parameters θR as h = fRNN(x; θR). For an
LSTM model, θR can be formulated as the concatenated
vector of input, output, forget and cell gate parameters
[Wi,Wo,W f ,Wc]. And in general, the goal of training an
RNN is to find the optimal real-valued vector θ̂R such that
θ̂
R
= argminθR L( fRNN(x; θR)), for a given loss function L.
In the context of multidomain learning, we parametrize

eq. (1) in a similar fashion:

Lmd({{y(d)1...Kd
, ŷ(d)1...Kd

} | d ∈ D}) =

Lmd({{h(x(d)1 ) . . . h(x(d)Kd
), ŷ(d)1...Kd

} | d ∈ D}) =∑
t,x,ŷ
�t (h(x), ŷ; θRt ).

4There may be concerns about the unordered nature of the neural
bag-of-words (NBOW) model. However it has been shown that with
a deep enough network, an NBOW model is competitive against
syntax-aware RNN models such as Tree LSTMs(Tai, Socher, and
Manning 2015). In preliminary experiments we did not find the
difference between an NBOW and an RNN to be substantial. But
the NBOW architecture trains much faster.
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Figure 1: A comparison between partial computation graphs of a single (vanilla) LSTM cell, and our proposed parameter-sharing
variants described in section 3.4. White circles are learned parameters. Dotted connections indicate parametrization. Parametrized
and non-parametrized functions are indicated with blue and gray circles respectively. To model sequences from multiple domains,
the conventional LSTM (depicted in fig. 1a) either shares everything with a set of parameters (the Tied setup; i = 1) or do not
share parameters at all (the Disjoint setup; i = D). In contrast, our parameter-sharing variant in fig. 1b models domain-invariant
parameters with θs and domain-specific parameters with {θd}.

Here we are faced with two modeling choices (depicted in
fig. 1a): we can either model every task t Disjointly or with
Tied parameters. The Disjoint approach learns a separate
set of parameters θRt per task t. Therefore, performance of a
task is little affected by data from other domain/tasks, except
for the regularizing effect through the word embeddings.
On the other hand the Tied approach ties parameters of

all domains to a single θR, which has been a popular choice
for multitask/domain modeling — it has been found that the
RNN often learns to encode a good shared representation
when trained jointly for different tasks (Collobert et al. 2011;
Yang, Salakhutdinov, and Cohen 2016). The network also
seems to generalize over different domains, too (Ragni et
al. 2016; Peng and Dredze 2016). However it hinges on the
assumption that either all domains are similar, or the network
is capable enough to capture the dynamics of data from all
domains at the same time.
In this paper we propose an alternative approach. Instead

of having a single set of parameters θ̂R for all domains, we
propose to reparametrize θR as a function φ of shared com-
ponents θRs and domain specific components θRd . Namely:

θR = φ(θRs , θRd ), (4)

and our goal becomes minimizing the loss w.r.t both θRs , θRd :

θ̂
Rs
, θ̂

Rd
= argmin

θRs ,θRd

∑
�t (x, ŷ; θRs , θRd ). (5)

A comparison between the vanilla RNN and our proposed
modification can be found in fig. 1. This reparametrization
allows us to share parameters among networks trained on data
of different domains with the shared component θs, while
allowing the network to work differently on data from each
domain with the domain specific parameters θd .

The design of the function φ requires striking a balance
between model flexibility and generalizability. In this paper
we consider the following variants of φ:

Additive (Add) First we consider φ to be a linear interpola-
tion of a shared base θRs and a network specific component
θRd :

θR = φAdd(θ
Rs , θRd ; ud) = θRs + exp(ud)θ

Rd , (6)

where ud ∈ R. In this formulation Addwe learn a shared θRs ,
and additive domain-specific parameters {θRd | d ∈ D} for
each domain. We also learn ud for each domain d ∈ D, which
controls how much effect θRd has on the final parameters.
Both Disjoint and Tied can be seen as degenerate cases

of Add: we recover Disjointwhen the shared component is a
zero vector: θRs = 0 And with ud → −∞ we have θR = θRs ,
namely Tied.

Additive + Multiplicative (AddMul) Add has no nonlin-
ear interaction between θRs and θRd : they have independent
effects on the composite θR. In AddMul we have two compo-
nents in θRd = [θRda, θRdm ]: the additive component θRda

and the multiplicative component θRdm which introduces
nonlinearity without significantly increasing the parameter
count:

θR = φAddMul(θ
Rs , θRd ; ud, vd)

= θRs + exp(ud)θ
Rda + exp(vd)θRdm ⊗ θs, (7)

where ⊗ is the Hadamard product and ud, vd ∈ R are learned
parameters as in the Add formulation.

Affine (Affine) In this formulation θRd are seen as task
embeddings. We apply a learned affine transformation W to
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the task embeddings and add up the shared component θRs :

θR = Affine(θRs , θRd ;W) = θRs +WθRd , (8)

where W is a learned parameter.

3.5 Optimization
Weoptimize for themultidomain loss as defined in eq. (1) with
gradient descent methods. To update parameters, we sample
one thread from each domain {md | d ∈ D} and optimize
the network parameters with the ADAM optimizer.(Kingma
and Ba 2014)

4 Experiments
4.1 Evaluation Metrics
In this section we evaluate Rainbow and its multi-
task/multidomain variants on the datasets we introduced
in section 2. We also apply our extracted thread embeddings
on a real-world task setting of email action classification with
impoverished resources.
Probabilistic models are usually evaluated on the log-

likelihood of the test data S = {(x1, ŷ1) . . . (x |S |, ŷ |S | )}:∑
(x,ŷ)∈S log p(ŷ | x). However, in our multidomain setting we

have multiple datasets that differ in size and average sequence
length. Therefore we evaluate our models on mean average
cross entropy (MACE):

MACE(S) =

−
∑

(x,ŷ)∈S(1/|y|) ·
(∑ |ŷ |

i=1 log pt (ŷi | e)
)

|S |
, (9)

where e are the thread embeddings of x, and pt (· | e) follow the
definition in section 3.3. MACE normalizes by both sequence
length |y| and dataset length |S |: a model that ignores the
resource-poor tasks or short sequences tends to perform
poorly under this metric. MACE can therefore be seen as
per-task (log) perplexity: a larger MACE value means the
model performs worse on the dataset; and the oracle would
obtain a MACE value of 0. The average of MACE scores
also has the natural interpretation of the geometric mean of
log likelihoods over different tasks/domains. In addition to
MACE, we also evaluate on accuracy in table 6.
All experiments in section 4 are trained on train splits.

For experiments in sections 4.2 and 4.3 we evaluated on
metadata-derived features in table 4. After each epoch of
training, the model is evaluated on the validation split to
check if the performance has stopped increasing. The training
procedure terminates when no new performance gains are
observed for two consecutive epochs.

4.2 Effectiveness of Rainbow: Ablation Studies
We evaluate Rainbow by comparing it, in the single task
setup, against two simpler variant architectures: one is taking
away the recurrent thread encoder (-R), the other is replacing
the attentive pooling layer with an unweighted mean (-A).
We evaluate the four configurations on the four labels listed
in table 4 and report the averaged MACE numbers in table 5.
We find that both attentive pooling and the recurrent network

help; but the latter has a much more pronounced effect.
Rainbow without the two additions (-R, -A) is reduced to the
vanilla Deep Average Network model, a neural baseline that
has been shown to be competitive against other neural and
non-neural models.

Configuration +R -R
+A 0.0796 0.1163
-A 0.0800 0.1174

Table 5: MACE values of the Rainbowablation tests (lower is
better). +/-R and +/-A indicates the presence/absence of the
thread encoder and the attentive pooling layer, respectively.

4.3 Multidomain/task Experiments
We compare our reparametrized models against the following
feature-reparametrizing approaches:
MaLOPa For each task t, we concatenate the word embed-
dings emb(w) with task embeddings kt : [emb(w);kt ]. kt

are trained along with the network, and hopefully contains
task-relevant information. This idea originated from the
MaLOPa (MAny Language One PArser) parser (Ammar
et al. 2016).

Fenda In this setting, each task has its own predictor and
two message encoders, one shared and the other specific to
itself. The two encoder outputs are concatenated, linearly
transformed, and fed into the predictor. This is an adaptation
of the Fenda(Frustratingly Easy Neural Domain Adaption)
model in (Kim, Stratos, and Sarikaya 2016), which in turn is
a neural extension of the classic paper by Daume III (2007).

We also compare them against the two baselines:
Disjoint Each task has its own predictor, thread encoder,
and message encoder.

Tied Each task has its own predictor. All tasks share the
same thread encoder and message encoder. As we noted
in section 3.4 it has been empirically found that the model
is capable of learning a shared representation across tasks
and domains.(Glorot, Bordes, and Bengio 2011)

We evaluate our proposed models, feature-reparametrizing
models, and the non-domain-adaptive baselines on tasks
listed in table 4 in these following multidomain/multitask
transfer settings: (E), (E+I), (E+R), (I+R), (E+I+R), where
E=Email, I=IRC, R=Reddit. Note that since only the emails
have two meta features E-A and E-T, we have (E) as our only
multitask transfer setting. The results are in table 6. Difference
between results from all models is small. We inspected the
model outputs and found they all suffer severely from the label
bias problem — all four tasks have very unbalanced label
distributions; and the network learns to strongly favor the
more frequent label. The label bias problem can potentially
be addressed by using a globally normalized model which
we leave as future work. Despite the small margins, we
can see that both model- and feature-reparametrizing models
outperform the baselines in terms of likelihood.Moreover, our
reparametrized models consistently achieve higher likelihood
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Task E-T E-A I-T R-T Average
MACE Acc MACE Acc MACE Acc MACE Acc MACE Acc

Aggregated Results
Add 0.0919 81.0 0.0509 93.4 0.0741 22.3 0.1039 68.0 0.3208 66.2

AddMul 0.0927 81.0 0.0510 93.3 0.0742 22.4 0.1050 67.6 0.3229 66.1
Affine 0.0930 81.0 0.0502 93.4 0.0741 22.7 0.1055 66.2 0.3228 65.8
Disjoint 0.0933 80.9 0.0507 93.4 0.0742 22.4 0.1078 65.4 0.3260 65.5
Tied 0.0937 80.7 0.0518 93.0 0.0744 22.7 0.1048 67.1 0.3246 65.9

MaLOPa 0.0939 81.0 0.0514 93.3 0.0744 22.8 0.1044 67.9 0.3241 66.2
Fenda 0.0919 80.8 0.0516 93.1 0.0741 22.8 0.1054 67.7 0.3231 66.1

Table 6: Aggregated Multidomain/multitask results of tasks in table 4: bold indicates best average results over all models.

than baselines on test data in all transfer settings. In addition,
Add and AddMul perform comparably well against strong
domain-adaptive models in terms of accuracy.

4.4 Recipient Action with Minimal Supervision

Setting F1
Add 32.7∗

AddMul 32.6
Affine 31.7
Disjoint 27.9
Tied 30.7

MaLOPa 30.7
Fenda 31.4

Doc2Vec 26.7

Table 7: Results of section 4.4. Add is significantly outper-
forming the best baseline Fenda(p = 0.0443) and AddMul
borderline significant (p = 0.0816) against Fenda , the best-
performing domain-adaptive baseline model under paired
t-test. The difference between Addand AddMul against
other baseline models are also significant under paired t-test.
Hyperparameters are regularization strength C and transfer
setting.

F1
Setting E E+I+R E+R E+I
Add 24.3 30.2 26.0 32.7

AddMul 22.9 30.3 27.8 33.1
Affine 30.8 28.4 26.6 33.1
Disjoint 27.6 29.3 26.2 25.8
Tied 27.2 31.2 25.2 30.9

Table 8: Breakdown on different transfer settings.

We now turn to a task-based evaluation where we use our
extracted thread embeddings on the task of predicting an email
recipient’s next action. In particular, we focus on scenarios
where we do not have a sizable amount of annotated data to
train a neural network in an end-to-end fashion, and when we

simply did not anticipate the task when we trained the model.
This setting evaluates the network’s ability to generalize over
multiple tasks and learn a good representation.
To be more specific, the setup is as follows: we use trained

models from section 4.3 to encode thread embeddings from
action-annotated emails {ma} of section 2. Subsequently we
use these thread embeddings to train L2-regularized logistic
regression classifiers for the action labels. We compare them
against classifiers trained with features extracted from the
baselines Tied, Disjoint, MaLOPa, and Fenda. We also
compare it against doc2vec embeddings trained on the whole
Avocado corpus (listed in table 7 as Doc2Vec).
Given the small size of annotated data, we decide to

evaluate the models with nested cross validation (CV). In
the outer layer, we randomly split the annotated emails into
(train+dev)-test splits,5 in a thread-wise fashion. In the inner
layer, we use 7-fold CV on the (train+dev) split to find the best
hyperparameters. The best hyperparameters are then used
to train a classifier, which is subsequently evaluated on the
test split of the outer layer CV. We report the average F1 in
table 7. Disjoint performs poorly on this task since there is
no baked-in constraint for it to learn a shared representation.
All shared-representation baselines (Tied, Fenda, MaLOPa)
performed better than both Disjoint and Doc2Vec. Still,
our reparametrized models compare favorably against the
feature-reparametrizing baselines.
We do another cross validation evaluation, over different

transfer settings in table 8. It seems that while both Reddit
(E+R) and the IRC (E+I) datasets do better than email only
(E), the IRC dataset is much more helpful than Reddit. This
resonates with our initial findings in section 2.4 that the IRC
dataset is more similar to emails. We note that all the F1
scores are low. Nonetheless we find it encouraging that out-
of-domain data is able to help learn a better representation in
this extremely resource-scarce setting.

5 Related Work
There has been a lot of work on multidomain/task learning
with shared representation as we described in section 1. Our
work is also closely related to work on email speech act
modeling and recognition (Cohen, Carvalho, and Mitchell
2004; Lampert et al. 2008; Jeong, Lin, andLee 2009;DeFelice

5120 splits with a ratio of (0.67, 0.33)
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and Deane 2012). The idea of model reparametrization for
domain adaption is abundant in the literature of hierarchical
Bayesian modeling, such as Finkel and Manning; Eisenstein,
Ahmed, and Xing (2009; 2011).
Within the deep learning literature, our work is also re-

lated to work on DNN reparametrization for multitask learn-
ing, such as Spieckermann, Udluft, and Runkler; Yang and
Hospedales (2014; 2016). Our work shows the reparametriza-
tion approach also works for domain adaptation. Finally we
would like to point out that Ha, Dai, and Le (2016) introduces
an alternative and much more sophisticated reparametriza-
tion of RNNs. An interesting future direction of our work
is to follow this work by reparametrizing networks as hy-
pernetworks that take a task embedding as an input. In that
case, using the terminology introduced in this paper, we will
be feature-reparametrizing the hypernetwork; which in turn
model-reparametrizes an RNN.

6 Conclusion
In this paper, we have introduced an email recipient action
annotation scheme, and a dataset annotated according to this
scheme. By annotating the recipient action rather than the
sender’s intent, our taxonomy is agnostic to specific speech act
theories, and arguably more suitable for training systems that
suggest such actions. We have curated an annotated dataset,
which achieved good inter-annotator agreement levels. We
have also introduced a hierarchical threaded message model
Rainbow to model such emails. To cope the problem of
data scarcity, we have introduced RNN reparametrization as
an approach to domain adaptation, and applied it onto the
problem of email recipient action modeling. It is competitive
against common feature-reparametrized neural models when
trained in an end-to-end fashion. We also show that while it
is not explicitly designed to encode a shared representation
across tasks and domains, it learns to generalize in aminimally
supervised scenario. There aremany possible future directions
of our work. For example, with appropriate software, we can
obtain more annotation automatically, and possibly learn the
taxonomy along. Also our reparametrization framework is
quite extensible. For instance, user-specific parameters for
each user can be learned for personalized models, as in Li et
al. (2016).
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