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Abstract 
Current semantic parsers either compute shallow representa-
tions over a wide range of input, or deeper representations 
in very limited domains. We describe a system that provides 
broad-coverage, deep semantic parsing designed to work in 
any domain using a core domain-general lexicon, ontology 
and grammar. This paper discusses how this core system 
can be customized for a particularly challenging domain, 
namely reading research papers in biology. We evaluate 
these customizations with some ablation experiments.  

 Introduction: Broad, Deep Semantic Parsing   
Representing the underlying meaning of language has been 
of interest to computational linguistics for a long time. 
Recently there has been a renewed interest in developing 
effective parsers that can generate deep semantic represen-
tations. This endeavor is complicated by the fact that the 
search space for semantic parsers is far greater than that for 
syntactic parsers. Specifically, context-free syntactic 
parsers can take advantage of the fact that one only needs 
to consider a single constituent of any syntactic type (e.g., 
NP, S) between any two positions in the sentence. This 
property enables effective parsing algorithms such as the 
Earley algorithm (Earley, 1970) and various Chart-based 
parsing strategies. Semantic parsers, on the other hand, 
cannot make this assumption. A single noun phrase might 
have many different semantic meanings due to word sense 
ambiguity as well as attachment ambiguity within the noun 
phrase. Thus a key problem for semantic parsers is how to 
manage this larger search space. 
 Researchers have dealt with this problem in different 
ways by limiting the scope and/or depth of the representa-
tions produced. Broad-coverage semantic dependency 
parsers such as those developed and tested in SemEval 
series (Oepen et al., 2014) generate a shallow and partial 
semantic representation. Some other semantic parsing 
aproaches such as Das (2014), essentially tag the words 
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that evoke FrameNet (Johnson and Fillmore, 2000) frames, 
and identify the word sequences that act as arguments to 
the identified frame elements, which is by no means a de-
tailed enough representation to support significant reason-
ing or inference. On the other hand, semantic parsers that 
are trained to produce AMR representations (Banarescu et 
al, 2013) produce a richer semantic representation that 
identifies the full predicate argument structures in the sen-
tence. However, AMR representations typically only as-
sign word senses to the words denoting events, tagging 
them with senses from PropBank (Palmer et al, 2005). The 
rest of the sentence, including most nouns, adjectives and 
adverbs remain as lexical items not tagged with senses.  
 Deep semantic parsers can be found for some specific 
domains, where the parser learns to map language input 
into an executable meaning representation. Many of these 
involve generating queries to databases (Branavan et al, 
2010; Chen et al, 2011, 2013; Berant et al, 2013, Zhong et 
al, 2017; Pasupat, 2015) or generating a sequence of com-
mands to a robot (Matuszek, et al, 2012; Tellex et al, 
2013). The representations produced, however, are highly 
specific to the domain and are not transferable to other 
domains. Because of the high domain specificity, limited 
inventory of word senses, and relatively simple sentences, 
they do not hit significant search issues when parsing. 

Unlike the previous work, the goal of the TRIPS parser 
(Allen & Teng, 2017) is to produce a semantic parser that 
is 1) broad-coverage, 2) domain-generic, and 3) deep1. We 
define broad-coverage to mean that the parser produces a 
semantic representation for any given English sentence. 
Domain-generic means the parser is usable for input text or 
ASR output in any domain, and deep means that it gener-
ates a representation of the meaning of the sentence that 
                                                
1 Currently, the TRIPS parser, using the same grammar, lexicon and on-
tology, is in active use in many domains, including the following: reading 
research papers in biology to extract information about causal models of 
biological pathways (Allen et al, 2015); understanding text-based conver-
sation with teens about managing asthma (Rhee et al, 2014); understand-
ing human/system dialog to collaboratively plan and build structures in a 
physical blocks world (Perera et al, 2017); understanding dialog about 
music for collaborative music composition (Quick & Morrison, 2017). 
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has a semantics clear and comprehensive enough to sup-
port automated reasoning (such as deduction and intention 
recognition, among others). The advantage of such a sys-
tem is that it provides a generic semantic parser that can be 
used in a wide range of domains and applications, much 
like the various syntactic parsers, such as the Stanford 
CoreNLP parser (Manning et al, 2014) which is now used 
“off the shelf” for many tasks2. 

This paper describes how the TRIPS parser is custom-
ized to operate effectively in a specific domain, namely 
reading research papers in biology. We have shown that 
this system can identify and extract relevant biological 
events at a level comparable with human performance on 
the same task (Allen et al, 2015). Here we explore which 
of the customizations enable this performance.  

We start by providing a quick overview of the TRIPS 
parser, the meaning representation it produces, the ontolo-
gy, grammar, lexicon and the general operation of the par-
ser.  We then describe various customization options that 
can be used to attain good performance. We will discuss 
problems of attaining broad lexical coverage (i.e., attaining 
the extent of WordNet (Fellbaum et al, 1998)), of focusing 
search when dealing with complex sentences, and of add-
ing domain specific information (both relevant named enti-
ties and relevant word senses). We then explore issues in 
extracting relevant knowledge into a desired domain-
specific representation. The key enabling mechanism for 
almost all these extensions is the TRIPS ontology. As we 
show in the next section, it provides the link between the 
parser and the domain-specific customizations. We end 
with a series of ablation experiments, where we ablate var-
ious aspects of the system and show how each affects the 
overall performance.  

A Quick Overview of the TRIPS Parser 
The TRIPS parser produces a semantic representation that 
formally is an underspecified scoped modal logic that sub-
sumes prior representations such as MRS (Copestake et al, 
2005) and Hole Semantics (Blackburn and Bos, 2005) 
(Manshadi et al, to appear). While it can be written in sev-
eral equivalent formats, the most readable for humans is 
the graphical representation, where each node is a dis-
course entity labeled with its ontology type and quantifier 
information, and the links indicate argument relationships 
(semantic roles) and scoping/modification constraints. As a 
very simple example, Figure 1 shows the semantic graph 
for the sentence He tried to buy the square pizza, identify-
ing the speech act, word senses, semantic roles, modifica-
tion relationships, quantification and more. One might note 
the structural similarity to the AMR representation. Some 
                                                
2 A range of parsers customized to different domains can be found at 
http://trips.ihmc.us/parser. 

of the key differences are that the TRIPS LF includes sense 
labeling for every word, the presence of quantifier infor-
mation, a richer semantics of predicates from adjectives 
and prepositions, and analysis of the surface speech act. 
Particularly important is the fact that all the senses are 
drawn from an extensive ontology (namely, the TRIPS 
ontology), whereas AMR only tags the words denoting 
events using PropBank verb senses. This difference can be 
illustrated by considering the lexical entries for two verbs: 
buy and purchase. In the TRIPS ontology, as in WordNet, 
these two words share a sense in common 
(ONT::PURCHASE). In the AMR representation, these 
items have senses buy.01 and purchase.01 respectively 
which are not connected in any systematic way. 
 Key to linking all the word senses is the TRIPS ontolo-
gy, which provides an upper ontology for English words. 
The event ontology is organized by the temporal/causal 
properties of the events. The top distinction is between 
events involving change and events of state (corresponding 
to the active vs. stative distinction made in linguistics). The 
ontology also is strongly interlinked with the semantic 
roles associated with each class. It defines an inheritance 
hierarchy of semantic roles. For instance, all events that 
require an AFFECTED role (the object undergoing some 
force or change) are under ONT::EVENT-OF-CHANGE,  
while all events involving the EXPERIENCER role (for 
entities in cognitive/perceptual states) are under 
ONT::EVENT-OF-EXPERIENCE. As one moves down 
the hierarchy we find events that correspond roughly to 
many of the frames in FrameNet or the classes of VerbNet 
(Kipper et al, 2008), although the TRIPS ontology often 
divides the lexical items into finer grained classes due to its 
emphasis on organizing the ontology based on both lin-
guistic realization and temporal/causal entailments. The 
ontology of non-events, such as physical and abstract ob-
jects, to a very rough approximation resembles an abstrac-
tion of the noun hierarchy in WordNet. The ontology of 
properties (adjectives and adverbs) is organized around 
scales/domains (e.g., the property Low is defined in terms 

 
Figure 1: The meaning representation of “He tried to buy the 

square pizza” 
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of the Height scale). 
 The information in the ontology is 
key to the word sense disambiguation 
performed by the parser. Each ontolo-
gy type can specify semantic prefer-
ences on the objects that can fill its 
argument roles. When parsing, the 
system attempts to identify combina-
tions of word senses that violate the 
fewest preferences. More precisely, 
the parser is a chart-parser using a 
best-first search strategy. Each gram-
matical rule and lexical entry used 
incurs a small cost, and semantic pref-
erence violations incur additional cost. 
The parser searches until a specified 
number of spanning interpretations are 
found. These are guaranteed to be the least-cost interpreta-
tions.   

Expanding the Vocabulary via WordNet 
The fact that the lexicon is organized via the ontology al-
lows for automatic extension of the lexicon to attain nearly 
full coverage of WordNet. This is enabled by a hand-built 
mapping from WordNet senses to TRIPS ontology types3. 
Complete coverage of WordNet senses is feasible due to 
the hypernym hierarchy that allows one to define mappings 
at the right level of abstraction for the TRIPS Ontology. 
Using the mapping, the system can determine the ontology 
type for a given word. The challenge then is to determine 
the appropriate argument structures and semantic prefer-
ences for the arguments. This is done by gathering up the 
argument structures for existing lexical items associated 
with the ontology type and using these as candidate struc-
tures for the new target word. For instance, the word atten-
uate is not in the TRIPS lexicon. One of its WordNet 
synsets, attenuate%2:30:00, has a hypernym de-
crease%2:30:00, which maps to ONT::DECREASE.  
Words in the TRIPS lexicon of this ontology type include 
decrease, constrict and compress. All the argument struc-
tures for these words are then used to build lexical entries 
for attenuate.  For more details, see Allen & Teng (2017).  

Constituent Advice 
A key form of preprocessing provides advice on constitu-
ent boundaries to the parser. One or more statistical syntac-
tic parsers are used to identify likely syntactic boundaries 
of the major constituents (e.g., S, VP, NP, ADJP and 
ADVP). This analysis produces a constituent bracketing of 
the sentence that is used to influence the semantic parse in 

                                                
3 The native lexicon and the ontology with the WordNet mappings are at  
www.cs.rochester.edu/research/trips/lexicon/browse-ont-lex.html 

two ways: first, constituent hypotheses proposed by the 
semantic parser that cross the brackets in the advice can be 
penalized; second, semantic constituents that exactly match 
the syntactic analysis can be boosted. By varying these 
penalties and boosts we can guide the search of the seman-
tic parsing, yet still allow semantic issues to determine the 
final analysis. We will evaluate below the tradeoffs in the-
se parameter settings. 

Domain Customization of the Parser 
Figure 2 shows the overall architecture of the DRUM sys-
tem, which is the TRIPS parser customized for reading 
research papers in biology. 

Front End Components 
DRUM includes a number of domain-specific prepro-
cessing components, including several off-the-shelf tools 
such as the Shlomo Yona sentencizer, the Stanford part-of-
speech tagger (Toutanova and Manning, 2000), the Stan-
ford named-entity recognizer (NER) (Finkel et al., 2005) 
and the Stanford Parser (Klein and Manning, 2003), the 
Enju parser (Hara et al., 2005), trained specifically with the 
GENIA corpus (Kim et al., 2003), and many ontologies 
and other lists of terms in the biomedical domain4.  

Genre Specialization 
The chart produced by the parser is searched using a dy-
namic programming algorithm to find the least cost se-
quence of constituents according to a cost table that can be 
varied by genre. For instance, in dialogue systems speech 
acts such as GREET (e.g., hello) are expected. For papers 

                                                
4 Named entities used in other domains include geographic names 
(geonames.usgs.gov/domestic/index.html), and personal names 
(www.ssa.gov/oact/babynames/limits.html). 

 
Figure 2: Customizing the TRIPS parser for the biology domain 
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in the biomedical domain, such speech acts almost never 
occur and thus are discounted in favor of TELL statements. 
Similarly, in dialogue systems utterances are expected to 
be fairly short and colloquial, whereas in scientific text the 
sentence structures are expected to be much more formal 
and involved. The parameters for parsing and the cost table 
are set accordingly. 

Named Entity Recognition  
The named entity tagger takes its data from many external 
ontology and vocabulary resources. These are merged into 
one table with information on each term, which concepts it 
may represent in the external ontologies, and the term's 
status in relation to the concept (e.g. preferred name vs. 
synonym). For resources that have hierarchies for these 
concepts, the tagger also saves the hierarchy in a common 
format, and uses it to help map each term to one of the 
TRIPS ontology types.  It maintains a relatively small set 
of mappings from high-level concepts in the external on-
tologies to a few of the TRIPS ontology types, and it fol-
lows is-a relationships up from a matched term, through its 
ontology, through one or more of these mappings, to the 
TRIPS ontology. Resources without hierarchies are gener-
ally mapped to a single ontology type. To deal with multi-
ple conflicting matches, the matches are scored based on 
the term status and on differences in capitalization and 
punctuation. The TRIPS parser uses these scores to guide 
its search. 
 Within the same tagger, there is some specialized code 
for specific kinds of biology-related terms, including micro 
RNAs, amino acids, molecular sites, mutations, and modi-
fications. The post-translational modifications are derived 
from part of the Gene Ontology, but the others are tagged 
according to relatively formulaic naming conventions. This 
code also produces some domain-specific information for 
these terms (for example, the site of a mutation, whether it 
is an insertion, deletion, or substitution, and which amino 
acids are involved), which is passed on to the parser in the 
same way as the concept IDs from the external resources. 

Event Extraction (Content Extractor) 
In the biology domain, as well as in other applications, we 
often aren’t interested in the full logical form, but desire a 
more focused representation of specific content. Specifical-
ly, in DRUM we are interested in biological entities, bio-
logical events and event relationships. Because much of 
the variation in sentence constructions is handled by the 
extended TRIPS system, we are able to use a relatively 
compact and easy-to-maintain specification for extracting 
such events and relationships from the logical form, while 
coping with fairly complex and nested formulations. 

Instead of having to write one rule to match each key-
word/phrase that could signify an event, many of these 

words/phrases have already been systematically mapped to 
a few types in the TRIPS ontology, using a combination of 
the TRIPS internal lexicon and the extension from Word-
Net. For instance, accumulate, gain, amplify, multiply, 
boost, double all map to the TRIPS ontology type 
ONT::INCREASE. 

In addition, the parser handles various surface structures, 
and the logical form contains normalized semantic roles. 
For example, RAS activates RAF, RAF is activated by RAS, 
The activation of RAF by RAS, Activated RAF, RAF activa-
tion all are parsed into the same basic logical form with the 
semantic roles AFFECTED: RAF and, where applicable, 
AGENT: RAS. Thus, very few (often only one) extraction 
rule specifications are needed for each event type, covering 
a wide range of words and syntactic patterns.  

As an example, consider the sentence "RAS activation 
regulates ASPP2 phosphorylation."  There are three events 
in this sentence: the central regulation event and two nest-
ed events, activation and phosphorylation. The extractions 
of the three events are shown in Figure 3, together with the 
two terms, RAS and ASPP2.  Note that the word “activa-
tion” is mapped to the TRIPS ontology type 
ONT::START.  It is this ontology type that triggers the 
following extraction rule for an ACTIVATE event: 

rule-activate (40): ACTIVATE(AGENT, AFFECTED)  
← ONT::start (AGENT, AFFECTED) 

Similar rules extract the regulation and phosphorylation 
event as well. 

The Extraction Knowledge Base 
The extracted content is assembled into a graph-based rep-
resentation, called the Extraction Knowledge Base (EKB). 
Typically, there is a single EKB for the full textual input 
(e.g., from reading a full paper). In this evaluation exercise, 
however, we build one for each sentence. The EKB is seri-
alized into an XML-based format, which can be used by 
various reasoners. For example, there are inference rules to 
infer that a phosphorylation event changes the state of the 
substrate from an unphosphorylated state to a phosphory-

(EVENT V31830 ONT::REGULATE :AGENT V826 :AFFECTED V848) 
(EVENT V826 ONT::ACTIVATE :AFFECTED V318) 

(EVENT V848 ONT::PHOSPHORYLATION :AFFECTED V845 
:DRUM ((:DRUM :ID GO::|0016310| :NAME "phosphorylation))) 

(TERM V318 ONT::PROTEIN-FAMILY :NAME W::RAS :DRUM 
((:DRUM :MEMBER-TYPE PROTEIN :MEMBERS (HRAS NRAS 
KRAS))) 

(TERM V845 ONT::PROTEIN :NAME W::ASPP-2 :DRUM ((:DRUM 
:ID UP::Q13625))) 

Figure 3: Extracted events and terms from “RAS activation 
regulates ASPP2 phosphorylation” 
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lated state. Gyori et al. (2017) show how dynamic molecu-
lar models can be built from the EKB derived from text 
describing molecular mechanisms, using additional sources 
of information.  

While the EKB is meant primarily as a knowledge rep-
resentation, it includes information about textual prove-
nance, so its serialization can also serve as an annotation 
format. Thus, it is possible to convert from this format to 
any number of existing event annotation formats used in 
the literature, such as the PubAnnotation JSON format 
(Kim and Wang, 2012), the standard BioNLP-ST standoff 
format. Generally, though, these conversions are lossy, due 
to the fact that TRIPS uses a richer ontology for events, 
entity types, modality, and causal relations compared to the 
ones typically used in the community. 

Evaluation 
We use as experimental data 60 sentences extracted from 
various systems biology papers obtained from PubMed 
Central. In general, these sentences were deemed (by us or 
by a third party) as containing useful information about 
biomolecular mechanisms. In some cases we retain only 
one meaningful clause from a longer sentence. The average 
sentence length is 12.5 words. Here are a few examples:  

Protein kinase A inhibits ERK1/2 by interfering with the 
activation of Raf-1 by Ras. 
Ack1-mediated AKT Tyr176-phosphorylation resulted in 
translocation of Ack1/AKT complex to the nucleus. 
Sorafenib induces apoptosis in AML cells through Bim. 

 
For evaluating parsing performance, we constructed a set 
of gold annotations for the test set. Four researchers post-
edited the semantic representations produced by TRIPS. 
The annotations were carried out via an interactive graph-
based annotation tool (Bakhshandeh et al., 2016). This tool 
set up the data collection as a two-step annotation process: 
(1) For each given sentence, one annotator annotated the 
sentence, and (2) another annotator reviewed the annota-
tion and either returned the annotation with feedback to the 
first annotator or marked it as gold. We iterated over the 
sentences until getting 100% inter-annotator agreement.  

Reference EKBs were curated by one of the authors fa-
miliar with both the system and the domain, and then re-
viewed by a second researcher for accuracy. 

Given the gold annotated logical form graphs, we com-
puted the accuracy of the semantic representations pro-
duced by the system using the Smatch metric (Cai and 
Knight, 2013), developed for comparing AMR representa-
tions. We use Smatch to compute the accuracy of the sen-
tences parsed with various ablations with respect to the 
gold standard. We report the precision, recall and F1 
scores. 

Knowledge extraction performance is measured by 
computing precision and recall at the level of EKB asser-
tions (entities, events, causal relations). That is, a hypothe-
sized assertion matches the reference assertion if and only 
if its type, all attributes and all entities or events that have 
some role in that assertion (e.g., participants in an event, or 
attributes of an entity that reference another entity) match 
with an identical role.  Note that this is a fairly strict crite-
rion.  Any one mismatch of the items in the EKB assertion 
would result in its being marked as incorrect. 

Results 
Figure 4 shows the results of the ablation experiment, in 
which one aspect of the system is deleted in each row. The 
first row gives the performance of the full system and 
shows the precision, recall and F1 scores of the EKB score 
(i.e., how many extractions we got exactly correct) and the 
Smatch precision, recall and F1 scores on the parser out-
put. Thus, the full system has an EKB F1 score of 83.28% 
associated with a parser F1 score of 87.63%. The next 
three rows show the effect of ablating advice from the sta-
tistical parsers. If we use just the CoreNLP parser for ad-
vice (i.e., ablate the Enju parser), we see a slight drop in 
the EKB score to 82.21%, with a parser Smatch score of 
86.27%. If on the other hand, we only use Enju for advice 
(and ablate the CoreNLP parser), performance drops to 
79.75% EKB score with a slight decrease in Smatch score. 
Finally, with no statistical parsing advice at all (but with 
named entity recognition and WordNet) we get an EKB 
score of 69.75% – a relative performance degradation of 
over 16%! – from semantic representations with a Smatch 
score of 78.92%. In summary, the advice from the syntac-

Ablated Feature 
EKB Score Smatch Score 

Precision Recall F1 Precision Recall F1 
Full (no ablation) 84.60% 82.00% 83.28% 86.62% 90.07% 87.63% 
- Enju 82.46% 80.78% 82.21% 85.65% 88.27% 86.27% 
- CoreNLP 80.58% 78.94% 79.75% 86.00% 86.67% 86.02% 
- Stat. Parsers 71.71% 67.89% 69.75% 78.57% 81.45% 78.92% 
- WordNet 83.69% 80.78% 82.21% 86.38% 87.52% 86.53% 
- NER 20.48% 8.79% 12.30% 67.47% 69.30% 67.82% 
Bare 26.15% 6.95% 10.99% 58.02% 54.95% 55.52% 

 
Figure 4: Results of the ablation experiment 
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tic parsers clearly make a significant improvement in per-
formance, and combining the advice from the two parsers 
(eliminating any disagreements) provides better advice 
than using either alone.  

The fifth row gives the performance if we ablate the ca-
pability to generate new lexical entries based on WordNet. 
Here we see only a minor effect of about 1%, presumably 
reflecting the nature of the corpus where there is a signifi-
cant amount of technical vocabulary that is handled by the 
named entity recognizer. In other domains, we have found 
WordNet lookup to be very useful. In the biology domain, 
it provides only incremental benefit. 
 The sixth row shows what happens if we ablate named 
entity recognition. We see a dramatic decline in perfor-
mance with an F1 EKB score of only 12.30%, reflecting 
the fact that sentences that describe molecular mechanisms 
use many names (genes, proteins, etc.), as can be seen from 
the examples provided above. Clearly named entity recog-
nition is essential in the biomedical domain. The parser 
Smatch F1 score, however, remains quite respectable at 
67.82%, which we note is about the level of performance 
of the best current AMR parsers. This is the result of a 
NER backoff strategy in the core parser in which unknown 
words are mapped to semantically underspecified nouns. 
Thus, the parser still can build much of the right semantic 
information around these unrecognized names. 

 Finally, as a point of reference, in the last line we 
report the performance of the core parsing system with no 
preprocessing or extensions (i.e., everything ablated). As 
expected, we see a dramatic decrease in performance, with 
only a 10.99% F1 score on the EKB extractions, even as 
the parses get a moderate F1 score of 55.52%. 

While there is a high correlation (0.95) between the par-
ser and EKB scores, there is significant difference between 
the actual scores attained by each for the individual abla-
tion conditions. For example, as we discussed above, with-
out NER we still get respectable parses but almost no usa-
ble EKB information.   

Discussion 
It is not surprising that named entity recognition is such a 
critical component of a system reading biology papers. The 

text is full of technical jargon and a vast number of named 
entities (not only protein and cell names, but biological 
processes, binding sites, genes, and more). By integrating 
named entity taggers so that these domain specific entities 
are classified into the TRIPS ontology, these terms can 
participate fully in the semantic parsing. It is also not sur-
prising that the WordNet lookup has only a small effect. 
WordNet is a substantial resource of general everyday 
English but has scant coverage of the specialized biomedi-
cal vocabulary.   

Perhaps the most complex interaction is that between the 
advice generated by the statistical parsers and the TRIPS 
semantic parser.  First note that one cannot avoid the need 
for deep semantic parsing. The statistical parsers generate 
only syntactic information and so do not produce the in-
formation needed to build the EKB. On the other hand, just 
using the semantic parser with no guidance about the syn-
tactic structure leads to a significant decline in perfor-
mance. As described above, we use two different methods 
to control the influence of the syntactic parsers on the 
search. First, the bracket crossing penalty penalizes con-
stituents produced by the semantic parser that are incon-
sistent with the syntactic structure. The effect of the brack-
et crossing penalty is determined by a parameter that varies 
from 0 to 1. When a violation occurs, the score of the con-
stituent is modified multiplicatively. So, if the parameter is 
set to 0, then any inconsistent constituent is immediately 
eliminated from future consideration. If the parameter’s 
value is 1, then inconsistent constituents are not penalized, 
or equivalently, the advice is ignored. For values between 
0 and 1, the semantic coherence of an interpretation can 
override the advice from the syntactic parsers, but with 
varying penalties. 

Second, the constituent boost reinforces constituents 
produced by the semantic parser whose boundaries exactly 
agree with the syntactic constituents.  This parameter var-
ies between 0 and 1, denoting the percentage of the differ-
ence of the current score and 1.0 that should be added to 
the constituent score. For example, with a boosting factor 
of 0.2, a constituent with a score of 0.9 would be boosted 
to a score of 0.92. 
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All the ablation tests in Figure 4 were performed with a 

bracket crossing penalty of 0.99 and a boosting parameter 
of 0.2. We explored the effect of changing these parame-
ters. In Figures 5 we plotted both the EKB and Smatch 
scores. The first graph shows how these scores vary for a 
range of bracket crossing penalties with the boosting factor 
locked at 0.2.  Here we see the complex effect in balancing 
the advice. At the lower values (higher penalties), the par-
ser is essentially forced to follow the syntactic advice even 
if it is semantically less preferable. As the parameter ap-
proaches 1, and thus the bracket crossing penalty becomes 
less onerous, it becomes possible that semantic considera-
tions can overcome the penalty, producing improved per-
formance. If the parameter is set to 1, this results in a drop 
in the performance as the parser is only using its semanti-
cally driven preferences and ignores advice from the syn-
tactic parsers. Thus, only the smallest nudge from the 
bracket crossing penalty is needed for best performance. 

Likewise, if we lock the bracket crossing penalty at 0.99 
and vary the boosting factor we see a similar phenomenon, 
but most likely for different reasons (rightmost graph in 
Figure 5). The boosting factor increases the score of con-
stituents that exactly match the constituent advice provided 
by the statistical parsers. Assuming such constituents are 
more likely to contribute to the final interpretation if they 
match the syntactic predictions, this can help focus the 
search in more promising areas. The down side of higher 
boosting factors, however, is that boosting adds a slight 
chaotic element to the best-first search. For example, sup-
pose we have two possible noun phrases that span the same 
section of a sentence and have the same score based on 
semantic plausibility, but differ on semantic grounds (e.g., 
different senses or semantic roles). The order in which the-
se constituents are processed is arbitrary, but the first one 
selected receives a significant boost in its score due to 
matching the syntactic advice. The difference in score be-
tween the two might become so great that the second pos-

sibility essentially does not receive any further attention in 
the search. By keeping the boosting factor low, the chance 
of this happening is reduced. We believe this is the phe-
nomenon that is driving the curve in Figure 5.  

Conclusion 
We have shown how a generic semantic parser can deliver 
both broad coverage and deep representations in complex 
domains such as reading biology papers. To attain such 
high performance, the basic system is augmented with an 
extensive named entity recognition component and provid-
ed with advice about the constituent structure generated by 
statistical syntactic parsers. While there is not the space to 
demonstrate this here, the same parsing system, with iden-
tical grammar, lexicon and ontology, performs equally well 
in many different domains, including dialogs involving 
collaborative planning in a blocks world, texting with teens 
about their asthma, and reading simple short stories about 
everyday events.   

We studied the effect of the various components and pa-
rameters in the ablation experiments. Note that because of 
the way the test set was constructed, both parsing and 
knowledge extraction performance (Smatch and EKB 
scores) reported here are not indicative of the performance 
of the system in the wild (e.g., for reading full papers). 
Rather the goal of this work was to understand how the 
different extensions and customizations of the parser af-
fected performance. Good parses, and even more so good 
EKBs, which provides the base for further reasoning (e.g., 
Gyori et al., 2017), are enabled by good customizations. 
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Figure 5: The effect of parsing parameters on the EKB F1 score (blue lines) and the Smatch F1 score (red lines). The chart on the left 
shows the scores for different values of the bracket crossing penalty when the boosting factor is 0.2 (note: the X axis is not to scale). 

The chart on the right shows the effect of varying the boosting factor when the bracket crossing penalty is 0.99. 
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