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Abstract

Representing the semantics of words is a long-standing prob-
lem for the natural language processing community. Most
methods compute word semantics given their textual context
in large corpora. More recently, researchers attempted to inte-
grate perceptual and visual features. Most of these works con-
sider the visual appearance of objects to enhance word repre-
sentations but they ignore the visual environment and context
in which objects appear. We propose to unify text-based tech-
niques with vision-based techniques by simultaneously lever-
aging textual and visual context to learn multimodal word
embeddings. We explore various choices for what can serve
as a visual context and present an end-to-end method to in-
tegrate visual context elements in a multimodal skip-gram
model. We provide experiments and extensive analysis of the
obtained results.

1 Introduction

Representing word semantics is a long-standing problem
that conditions major applications such as automatic transla-
tion (Bahdanau, Cho, and Bengio 2015), sentiment analysis
(Maas et al. 2011), and text summarization (Rush, Chopra,
and Weston 2015). Distributional Semantic Models (DSMs)
leverage large text corpora under the Distributional Hypoth-
esis (Harris 1954), a strong assumption which states that
words that occur in similar contexts should have similar
meanings, to produce fixed-length vectorial representation
for words based on their co-occurrences in text corpora.

To further improve the quality of word representation,
leveraging multimodal information is crucial. Indeed, psy-
chological studies have given pieces of evidence that the
meaning of words is grounded in perception (Glenberg and
Kaschak 2002; Barsalou 2008) and Gordon and Van Durme
(2013) report a bias between what is said in texts and what
can be seen in images. These observations outline the com-
plementary roles of images and texts and bring new per-
spectives to multimodal approaches bridging textual infor-
mation with visual ones to improve natural language pro-
cessing tasks (Hill and Korhonen 2014; Lazaridou, Pham,
and Baroni 2015). Besides, it is worth mentioning that this
has become possible thanks to the exploitation of signifi-
cant advances in computer vision offering efficient tools for
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Figure 1: Illustration of our approach and underlying re-
search questions: RQ1 concerns using visual contexts for
the visual part of the model, RQ2 is about the integration
of the visual part with the text model and RQ3 deals with
the evaluation of the embeddings.

semantic extraction in images (Krizhevsky, Sutskever, and
Hinton 2012; Xu et al. 2015).

In this context, multimodal representation learning mod-
els have been proposed to enhance word representations us-
ing either sequential (Kiela et al. 2014; Bruni, Tran, and Ba-
roni 2014) or joint fusion techniques (Hill and Korhonen
2014; Lazaridou, Pham, and Baroni 2015). However, most
of these works ignore the visual context of objects. We posit
that learning representations of contexts in different modal-
ities should be a key component of multimodal DSMs. The
importance of context is illustrated in a simple example (Fig-
ure 1). From an image of an apple on a black background,
we can see its color, its texture and shape. From its context,
e.g., growing on a tree, we can infer the relative size of ap-
ples with respect to the tree leaves, and that apples are fruits
that grow on trees. If there is someone that is eating the ap-
ple, we can infer that apples are edible, and so on. From
this example, we understand why exploiting the visual sur-
roundings and context of objects might be useful to grasp
the semantics of words.

In this work, we propose a multimodal model for learning
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Figure 2: Overview of early fusion, middle fusion, and late fusion techniques. Round-corner rectangles denote word embed-
dings. Green is related to images and blue to text, orange round-corner rectangles are multimodal embeddings built from textual
and visual resources. “sim” stands for an example of an evaluation task, namely word similarity.

word representation, leveraging contexts in different modal-
ities, namely texts and images. Our contribution is threefold:
• We propose and experiment with various definitions of

what visual context is (Section 4.1) – this has never been
taken into account to the best of our knowledge in such
models;

• We propose a multimodal context-driven model to jointly
learn representations from textual and visual modalities,
where both modalities influence media-independent word
embeddings (Section 4.2). One further strength of the
model is that it does not require aligned images and text
(i.e. images with captions);

• We present a thorough analysis of the obtained results
to determine the influence of the visual modality on the
learned multimodal embeddings (Sections 5 and 6) by ex-
perimenting with a set of word classification tasks.

2 Related Work

Learning word representation from textual resources.
Distributional Semantic Models (DSMs) are implicitly or
explicitly based on a factorization of a co-occurrence matrix
to compute the representation of words. Well-known mod-
els are GloVe (Pennington, Socher, and Manning 2014) and
Word2Vec (Mikolov et al. 2013) on which we are based.
In the latter, words are either predicted given their context
(Continuous Bag Of Word model) or vice-versa (Skip-Gram
model). In both cases, a representation is learned for both
words and their context. Several modifications and improve-
ments have been proposed to the Skip-Gram model, such as
using Gaussian embeddings to account for the variance of
the meaning of words (Vilnis and McCallum 2014) and us-
ing extra information provided by Knowledge Bases (Tian
et al. 2016).

Learning word representations from textual and visual
resources. Recent studies motivate the construction of
general-purpose word embeddings with both language and
perceptual inputs such as images. More precisely, psycho-
logical studies reveal that the meaning of words is grounded
in perception (Glenberg and Kaschak 2002; Barsalou 2008).

Moreover, Gordon and Van Durme (2013) highlight the
complementarity of language and images. In particular, the
Human Reporting Bias states that the frequency with which
people refer to things or actions in language does not corre-
late with real world frequencies. People usually do not men-
tion common things, and rather talk and write about surpris-
ing events. This systematic bias with respect to real-world
frequencies motivates researchers to exploit visual informa-
tion to learn word representation, leading to multimodal ap-
proaches.

With this in mind, two main lines of multimodal DSM
approaches have been proposed: sequential models and joint
models, as illustrated in Figure 2.

Sequential methods separately construct visual and tex-
tual word representations, and then combine them using dif-
ferent techniques, i.e. through middle fusion or late fusion.
Given separately learned representations in each modality,
middle fusion consists in merging them to form a multi-
modal vector (see Figure 2 (b)). Several aggregation meth-
ods have been considered such as Concatenation (Kiela and
Bottou 2014), Singular Value Decomposition (SVD) (Bruni
et al. 2012), Canonical Correlation Analysis (CCA) (Sil-
berer and Lapata 2012), Weighted Gram Matrix Combina-
tion (Hill, Reichart, and Korhonen 2014) or the task-driven
cross-modal mapping (Collell, Zhang, and Moens 2017). In
late fusion (see Figure 2 (c)), word representations are com-
puted for each modality. Their multimodal interactions oc-
cur downstream in the task, as done in (Bruni, Tran, and
Baroni 2014) who use a simple linear combination of sim-
ilarity scores respectively obtained from textual and visual
data. In most of the sequential models cited above, textual
representations are pre-trained Glove (Pennington, Socher,
and Manning 2014) or Word2Vec (Mikolov et al. 2013) em-
beddings and the visual embeddings are built from the ag-
gregation (e.g. average or pooling) of activations obtained
with a pre-trained CNN forwarded on images.

While middle and late fusion prevent potentially ben-
eficial interactions during training between the different
modalities, joint models directly learn a joint representa-
tion from textual and visual inputs (Figure 2 (a)). This idea
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is close to the way humans learn grounded meaning in se-
mantics as observed in (Glenberg and Kaschak 2002) and
(Barsalou 2008). Some joint models require aligned texts
and images. For example (Roller and Schulte im Walde
2013) use a Bayesian modeling approach based on the as-
sumption that text and associated images are generated us-
ing a shared set of underlying latent topics and (Kottur et al.
2016) ground word representations into vision by trying to
predict the abstract scene associated to a given sentence. Our
model follows an early fusion strategy but does not require
aligned text and images.

Closer to our work, extensions of the Word2Vec skip-gram
were proposed. For example, (Hill and Korhonen 2014) base
their model on the assumption that the frequency of appear-
ance of concrete concepts correlates with the likelihood of
“experiencing” it in the world. Perceptual information for
concrete concepts is then introduced to the model whenever
that concept is encountered in the textual modality. Repre-
sentations of concrete words are trained to predict surround-
ing words (as in the classical skip-gram model) and the per-
ceptual features – feature-norms defined in (McRae et al.
2005) that describe objects as a set of features (typical color,
usage, etc.). This work was later followed by (Lazaridou,
Pham, and Baroni 2015) whose method is designed to use
natural images instead of the feature-norms which are con-
structed by hand. They force the representation of words
for which they have images to be close to their visual (pre-
trained) representation. Our work further exploit this line of
research, but focuses on exploiting the visual context, which
has not been done to the best of our knowledge.

Using and modeling visual contexts. Several of the
works presented above use the visual modality to constrain
the textual representation to be close to the visual representa-
tion of the object. Such a strategy has two drawbacks. First,
there is an asymmetry in the consideration of the modali-
ties: text defines a semantic context for each word – its sur-
rounding words – while images are used to have visual in-
formation about the object. Second, it does not use the fact
that the context in which objects appear is informative and
complementary to textual inputs to improve word represen-
tation. Indeed, this fact is supported by several works such
as (Bruni et al. 2012) who propose a middle fusion approach
where a visual embedding is built by counting the number
of visual words in images. This is the first attempt to apply
the distributional hypothesis to images: Semantically simi-
lar objects will tend to occur in similar environments in im-
ages. Through their experiments, they come to the conclu-
sion that the appearance of the context (surrounding of ob-
jects) is more informative for semantics than the appearance
of the object itself. In comparison to our model, their work
does not propose to jointly learn embeddings from both vi-
sual and textual context.

This statement is strengthened with observations in
(Roller and Schulte im Walde 2013) and (Bruni, Tran, and
Baroni 2014). The former proposes a Latent Dirichlet Allo-
cation (LDA) model. The latter uses a count-based technique
to learn multimodal word embedding by leveraging both
visual and textual contexts. First, they build target-context

count matrices for text (count of co-occurrence patterns with
contexts) and images, using bag-of-visual words to represent
images. They concatenate both matrices and perform rank
reduction with SVD. They then split matrices (smoothed text
and smoothed image matrices) and consider fusion at the
feature level or scoring level. However, they use a “count-
base” method which does not learn representation for con-
texts and performs poorly on semantic tasks, moreover, their
approach uses bags of visual words representation for im-
ages.

In addition to the identification of entities in their context,
rich spatial information is present if objects can be located
in the image. (Bruni, Tran, and Baroni 2014) propose to use
this intrinsic spatial information for contexts by dividing the
image in 4x4 bins and considering visual words separately
for each region. However, when it comes to learning repre-
sentations for words, exploiting spatiality is challenging and
still largely under-explored.

3 Research Questions

From reviewing the literature, we observe three main issues
with current multimodal DSM for which there are no con-
sensus answers:

• Text and images are very different by nature (Gordon and
Van Durme 2013). A sentence has a linear structure with
a list of tokens (words) while an image has spatially-
organized quantifiable information (pixel values). In the
skip-gram model, choosing surrounding words to be the
context is a natural choice for a text, however, in images, it
is not clear what should be used as context to learn seman-
tically rich representations for objects (Roller and Schulte
im Walde 2013; Bruni, Tran, and Baroni 2014)).

• Several multimodal fusion methods exist, but none of the
models presented above is significantly better than the
others, and the question to know how to build a multi-
modal framework has no obvious answer, especially when
the alignment between texts and images is missing.

• Evaluation tasks to assess the quality of word embeddings
are inherently biased (Faruqui et al. 2016), and it is hard
to examine in depth the contribution brought by the visual
modality (Collell and Moens 2016).

In contrast to other works in learning multimodal word
representations, we posit that exploiting the visual context
enhances the learned representation of words. This assump-
tion makes us consider images of complex scenes containing
many objects. Indeed, images of a single object give very lit-
tle information about the object, how it is used for, where it
can be found and so on. On the contrary, an image show-
ing an object in its environment, being used or interacting
with other objects, is much more informative thanks to the
surrounding context. Accordingly, we address the following
research questions, also illustrated in Figure 1: (RQ1) In im-
ages, what can be used to learn semantic representations for
objects? In particular, does context can capture some of the
semantic of a word/entity? Note that in this work, we con-
sider that the set of entities is the subset of the set of words
that correspond to objects in images. (RQ2) How can we
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naturally integrate a visual model with a text-based model
to form a multimodal DSM? (RQ3) How can we evaluate
and examine the contribution given by the visual modality
in the final word embeddings?

4 Model: Learning Multi-Modal

Context-Driven Word Representations

We present here a multimodal DSM model leveraging both
visual and textual contexts of words in order to fulfill the
distributional hypothesis. To do so, we first formalize a def-
inition of visual context and propose experiments to select
appropriate visual context elements (RQ1).

We then introduce our multimodal joint model based on
the skip-gram framework (Mikolov et al. 2013) (RQ2). The
textual and visual parts of the model share the same word
embeddings which are updated from both textual and visual
inputs, but contexts are modality specific. One strength of
our model relies on the fact that it does not require aligned
data. Since this is not the focus of the paper, we assume that
objects are already detected in images.

4.1 Representation learning with visual contexts

In this section, we formalize what we name visual contexts
and detail the choice of modeling that we propose.

Formalization. Based on the original Word2Vec skip-
gram algorithm that considers entities e (words) and their
contexts Ce = {c1, ..., cn} (n surrounding words within a
window centered on the entity), we translate in what follows
the distributional hypothesis for images to a concrete model.

In our case, the contexts are visual contexts that we define
latter. The choice for visual context elements c ∈ Ce does not
need to correspond to a list of semantic entities (Levy and
Goldberg 2014). For instance, visual context elements can
be the surrounding objects, low-level features such as the
visual appearance, or also the localization of the surrounding
objects with respect to the considered entity.

With this in mind, we define a function fθ, parametrized
by θ (learned), such that for any entity e and visual context
element c ∈ Ce, fθ(c) is a vector of Rd. These representa-
tions are then used in the negative-sampling loss:

Li = −
∑
e∈D

∑
c∈Ce

[
log σ(fθ(c)

�te)

+
∑
c−

log σ(−fθ(c
−)�te)

]
(1)

where D is the set of entities, te is the embedding associated
to the entity/word e (learned), c− is a negative context, and
σ is the sigmoid function. This loss formulation is very close
to the original skip-gram loss but integrates the learning of
fθ which shares parameters (θ) for the computation of every
context element.

Choice of modeling. Given an entity e, we propose differ-
ent ways of modeling an instance of visual context elements
c ∈ Ce and we detail how to build and parametrize fθ.

High-level context (surrounding objects). An image I
can be seen as a bag of objects: I = {o1, o2, ...}. This
simple view gives high-level information about the environ-
ment in which objects occur. Given an entity e = oi (for
some i) in an image, we define Ce = {oj , j �= i} as the set
of all other objects that appear in the image. Then, a context
c = oj ∈ Ce is a surrounding object. We define fθ(c) = Vc

where V ∈ R
M×d is a simple lookup table of embeddings

for M objects, d the dimension of the representation space,
and Vc is the cth row of this matrix.

Low-level context (image patches). At a coarser level,
the set Ce of all visual context elements can be seen as im-
age patches from the full image where entity e is masked
out with black pixels. We call this low-level context since
it directly uses pixel values from the surroundings of en-
tities. Using low-level context is interesting because some
objects can be left unidentified in images by current models.
However, this requires a bigger and more complex model
and it is more difficult to extract meaningful information
from pixel values. We suggest two possible choices to se-
lect c ∈ Ce: (1) The instance c is the full image where the
entity is masked out by replacing RGB values with zeros;
(2) c is a small image patch randomly chosen around the
entity. In practice, there are several choices for c such that
c ∈ Ce = {c1, c2, ...}.

In both cases, the image patch c is forwarded in a
CNN, parametrized by θ1, to form an activation vector
uc = CNNθ1(c) ∈ R

B (where B is the size of the last
CNN filter, and equals 2048 in our experiments) obtained
at the last layer of the network. The visual context vector
fθ(c) = Nuc is then formed with the projection of uc to
the dimension d with a matrix N ∈ R

d×B . Parameters to
be learned are θ = {θ1, N}.

Enhancing context with spatial information. When a
dataset provides localization information for entities (i.e.
bounding boxes or segmentation masks), we wish to use
these annotations as it gives additional spatial information.
For example, by looking at the position of a cup in an im-
age with respect to a table or the hand of a person, one can
infer that cups lie on tables and that they can be handed by
people. We wish to enhance the visual contexts presented
above with spatial information. We consider two methods to
model what we name visual spatiality to compute a vector
s(e,c) representing the visual relationships between e and c,
and two models to integrate it with a visual context element
c as fsp

θ (c, s(e,c)) ∈ R
d.

The first method considers low-level features, and corre-
sponds to a 4-d spatial vector whose components are the
relative positions on the x and y axes of the two bounding
boxes of e and c (denoted δx and δy), and the ratio of width
and height between the two bounding boxes of e and c (δwidth
and δheight). The second method is a high-level features vec-
tor, and corresponds to a 4-d spatial vector whose compo-
nents are four indicator functions denoting whether the con-
text c is below, beside, above, or bigger than the entity e (1 if
true, 0 otherwise). Following (Ludwig et al. 2016), the con-
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text is said to be “below” its entity if |δx| ≤ δy , “above” its
entity if |δx| ≤ −δy and “beside” otherwise. A context is
said to be bigger than its entity if δwidthδheight ≥ 1.

Once the spatial vector s(e,c) is built, it is integrated
with the visual context embedding vc = fθ(c), to form a
spatially-informed visual context vspc = fsp

θ (c, s(e,c)) that is
used in the skip-gram equations instead of fθ(c). Again,
two variants are considered: (1) a linear combination of
the visual context vc with the spatial vector s(e,v), i.e.
fsp
θ (c, s(e,c)) = M.(vc ⊕ s(e,c)) where M ∈ R

d×(d+4) and
⊕ denotes the concatenation operator; (2) a bilinear interac-
tion fsp

θ (c, s(e,c)) = s(e,c)Mvc where M ∈ R
4×d×d. This

model has more free parameters but considers a bilinear in-
teraction between the spatial vector s(e,c) and the visual con-
text vc.

4.2 Integration in a multimodal model

We now present our multimodal representation learning
model that integrates the previously presented visual module
with the textual skip-gram. The main idea is that while word
embeddings should be shared across modalities, context is
media-specific. The contribution of each modality is con-
trolled by a linear combination (hyper-parameter α, deter-
mined by cross-validation) of modality-specific costs, which
gives the following global loss function:

L(T, U, θ) = Lt(T, U) + αLi(T, θ) (2)
where T (resp. U ) denotes the textual entity (resp. context)
lookup table and Lt(T, U) is the Word2Vec loss function
(Mikolov et al. 2013).

A crucial point is that this model does not require aligned
texts and images to train the model, or extra pre-trained
representations on external datasets – we only require that
entities identified in images to be associated with a unique
word of the vocabulary. Besides, we justify the use of a joint
model as we think it is important that representations are
learned both for entities and for contexts. Indeed, as the enti-
ties embeddings are affected by both modalities, the context
representations should change and be updated by transitivity
between modalities through the shared embeddings.

5 Evaluation protocol

In this section, we evaluate word embeddings on different
tasks. In particular, we measure the performance of word
embeddings built from visual data (RQ1) and multimodal
data (RQ2).

5.1 Data

We use a large collection of English texts, a dump of the
Wikipedia database (http://dumps.wikimedia.org/enwiki),
cleaned and tokenized with the Gensim software (Řehůřek
and Sojka ). This provides us with 4.2 million articles, and a
vocabulary of 2.1 million unique words. For visual data, we
use the Visual Genome dataset (Krishna et al. 2017) as it is a
large image collection (108k images) with a large number of
different objects (4842 unique entities with more than 10 oc-
currences) in rich and complex scenes (31 object instances
per image on average).

5.2 Scenarios and Baselines

Scenarios. To evaluate the different components of our
model, we evaluate different scenarios. In particular, we
train the model that uses other objects as visual contexts
(noted O), the model that uses image patches (P) and the
model that uses full images (Pfull).

Models that use spatial context information are also eval-
uated and are denoted Sp(., ., .) where the first argument de-
notes the visual context type (O, P or Pfull), the second the
spatial context features (δ or c), and the third the integra-
tion (⊕ for concatenation and b for bilinear product integra-
tion). For instance, Sp(P, δ, b) corresponds to using image
patches, with low-level visual features and bilinear product.

All combinations of those models with the skip-gram text-
only model (T) are trained and evaluated to get multimodal
word representations, with the method explained in section
4.2.

Baselines Our baseline (L) is inspired by the state-of-the-
art model of (Lazaridou, Pham, and Baroni 2015), since they
use visual features from objects themselves to learn word
representations in contrast to the visual context features we
use in our model. For any visual entity e, they assume that a
visual vector ve representing the entity is available. During
training, along with the text-only skip-gram loss, the sim-
ilarity between the embedding of the entity and its visual
appearance is maximized in a max-margin framework:

Lobject =
∑
e∈D

∑
v−

max(0, γ − cos(te, ve) + cos(te, v
−))

where γ is the margin and v− is the visual appearance of a
“negative” object (random). For an object e, ve is kept fixed
and visual information is incorporated each time the entity
is encountered in text. We note this model L + T where L
corresponds to the visual loss and T the text-only skip-gram
loss.

To evaluate our visual context-driven multimodal repre-
sentation learning model (RQ2), we also evaluate: 1) the
skip-gram text only model (noted T), and 2) a sequential
model, noted O⊕T, where embeddings of model T are con-
catenated with embeddings obtained from O and then pro-
jected in a lower-dimensional space with PCA. This serves
as a comparison point between our joint approach and a se-
quential one.

5.3 Tasks

Similarly to previous work (Lazaridou, Pham, and Baroni
2015; Collell, Zhang, and Moens 2017), we evaluate our
model on three different semantic tasks, namely word simi-
larity and relatedness, feature norm prediction, and abstract-
ness/concreteness prediction. Each task serves as a biased
indicator of the quality of the embeddings. We present these
evaluation benchmarks in what follows.

Word similarity and relatedness benchmarks. Seman-
tic relatedness (resp. similarity) evaluates the similarity
(resp. relatedness) degree of word pairs. We use several
benchmarks which provide gold labels (i.e. human judg-
ment scores) for word pairs: WordSim353 (Finkelstein et
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Similarity Evaluation Feature-norm Prediction Task
Baseline L 43 45 16 22 17 56 49 36 76 56 17 41 60 58
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Objects O 43 54 31 64 27 48 46 35 62 48 03 21 43 36

Patches P 28 35 17 35 22 30 51 23 48 37 04 24 38 30
Pfull 35 42 19 43 28 30 48 30 46 35 06 23 35 27

Spatial

Sp(O, δ,⊕) 48 57 32 58 27 40 55 28 54 50 06 24 44 37
Sp(O, c,⊕) 48 58 30 58 25 40 60 33 54 50 11 25 41 34
Sp(O, δ, b) 46 56 35 54 28 37 57 27 50 50 15 24 38 32
Sp(O, c, b) 51 61 33 62 30 38 58 27 58 47 10 22 43 34

Ensemble L + O 45 57 33 66 34 58 52 42 74 56 02 27 53 53

Table 1: RQ1 results. The columns on the left part of the table are the Spearman correlations (multiplied by 100) on the word
similarity benchmarks (only word pairs with visual entities are evaluated). The columns on the right side are the f1-scores
(multiplied by 100) at the feature-norm prediction task (grouped by feature category as proposed in (Collell and Moens 2016)).

al. 2002), MEN (Bruni, Tran, and Baroni 2014), SimLex-
999 (Hill, Reichart, and Korhonen 2015), SemSim and Vis-
Sim (Silberer and Lapata 2014). The spearman correlation is
computed between the list of similarity scores given by the
model (cosine-similarity between multimodal vectors) and
the gold labels. The higher the correlation is, the more se-
mantic is captured in the embeddings. While word similarity
benchmarks are widely used for intrinsic embedding evalu-
ation, they are biased in the sense that good intrinsic evalua-
tion scores do not imply useful embeddings for downstream
tasks as shown by (Faruqui et al. 2016).

Feature norm prediction. Collell and Moens (2016) use
the task of predicting features norms (e.g. ‘is red’, ‘can fly’)
of objects given word representation to evaluate visual or
textual-based representations. We consider this task to eval-
uate our word embeddings and use the same setup for eval-
uation. The evaluation dataset is an extract of the McRae
dataset (McRae et al. 2005). There is a total of 43 charac-
teristics grouped into 9 categories for 417 entities. A linear
SVM classifier is trained and 5-fold validation scores are re-
ported.

Abstractness / Concreteness prediction. The USF norms
(Nelson, McEvoy, and Schreiber 2004) give concreteness
ratings for 3260 English words. With a multimodal word
representation, we wish to know if it contains information
that can be used to predict the concreteness rating of the as-
sociated word. In practice, we train an SVM with a RBF ker-
nel to predict the gold concreteness rating from word embed-
dings. Note that this task is only used to evaluate multimodal
representations since visual-based ones cover too small a vo-
cabulary.

5.4 Implementation details

Experiments use python and Tensorflow (Abadi et al. 2016).
Images are upscaled to the shape 598 × 598 and passed
through a pre-trained Inception-V3 CNN (Szegedy et al.
2016) to give spatial visual tensor of shape 17× 17× 2048
(before the ReLU at the “Mixed 7c” layer). One slice of the

tensor with a shape 1 × 1 × 2048 corresponds to the ac-
tivation of a region of the original image. We use 5 nega-
tive examples per entity, and our models are trained with
stochastic gradient descent with learning rate lr = 10−3 and
mini-batches of size 64. N and M are regularized with a
L2-penalty respectively weighted by scalars λ and μ. The
values of hyperparameters were found with cross-validation:
λ = 0.1, μ = 0.1, γ = 0.5, α = 0.2.

6 Experiments and Results

RQ1: Evaluating visual context-driven semantic repre-
sentations of words. Table 1 reports the results of the ex-
periments for RQ1 discussing what kind of visual informa-
tion can be useful.

The first conclusion we draw is that surroundings of enti-
ties are more informative than the visual appearance of ob-
jects for the evaluation on all of the word similarity bench-
marks. Indeed, results of the word similarity task highlight
that our model scenarios generally overpass baselines. For
instance, results of our model Pfull is on average 29% higher
than those of the baseline L. However, on the feature-norm
prediction task, direct visual features from objects (model
L) are better suited for the categories that describe visually
the objects (e.g. is red in ‘Color’ category or is round in the
‘Shape’ category) but not for the other non visual categories
such as ‘Encyclopedic’, ‘Taste’ and ‘Sound’.

To measure the complementarity of the features from ob-
jects and from their surroundings, we also evaluated an en-
semble model that combines the baseline L and the O model
(L + O) where ’+’ denotes the summation of the loss func-
tions when the embeddings are shared. Interestingly, com-
bining visual contexts and direct features (L + O) results in
a model that has a very good average performance, show-
ing the complementarity of visual contexts with visual entity
representations.

Our second observation shows that using spatial informa-
tion is useful: performance is better on the word similarity
benchmarks (+9% improvement on average for Sp(O, c, b)
w.r.t. O) and the feature-norm prediction task (+20%). Both
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Similarity Evaluation Feature-norm Prediction Task Conc.

B
a

se
l. Text T 48 60 33 69 63 58 52 44 79 62 11 32 54 60 42.1

Sequential O ⊕ T 49 62 33 71 64 63 55 40 72 59 12 35 54 58 43.7
Joint L + T 52 65 34 71 65 61 55 42 80 59 11 31 54 62 43.4

O
u

r
m

o
d

el
s

Objects O + T 53 66 35 75 67 62 55 46 82 61 13 33 55 61 42.9

Patches P + T 53 65 35 72 67 60 56 49 82 60 12 32 55 61 43.1
Pfull + T 53 65 34 73 65 60 55 44 82 63 14 32 55 59 43.2

Spatial

Sp(O, δ,⊕) + T 52 66 36 73 64 64 59 46 81 62 06 31 57 63 42.5
Sp(O, c,⊕) + T 54 66 35 72 64 62 56 52 80 61 13 34 57 58 43.7
Sp(O, δ, b) + T 54 68 38 73 66 63 56 48 81 60 13 32 56 63 42.5
Sp(O, c, b) + T 55 67 34 75 64 61 58 46 80 63 15 34 57 62 44.4

Ensemble L + O + T 54 66 35 75 65 63 55 50 82 60 10 33 55 59 43.9

Table 2: RQ2 experimental results on word similarity evaluation benchmarks, feature-norm prediction task, concreteness pre-
diction task (Conc.). Concreteness measures are coefficients of determination (R2) multiplied by 100.

high and low-level spatial features lead similar results. This
reinforces our intuition that visual context, and more partic-
ularly spatial information, are promising for learning word
representation and reducing the Human Reporting Bias af-
fecting texts and images.

The third conclusion we draw is that high-level contexts
(in O) yield better scores (+31%) than low-level contexts
(P or Pfull). Using low-level visual features is a challenging
problem. However, they are promising since they are cheap
to collect, do not require context annotations, and contain
rich information if handled correctly. The difficulty lies in
the natural noise in the surroundings of objects and the need
for visual modules that automatically extract high-level in-
formation from raw pixel values.

RQ2/RQ3: Evaluating our multimodal context-driven
multimodal representation learning model / analysis.
Table 2 reports the results on RQ2 and RQ3. Embeddings
are initialized with pre-trained embeddings obtained from
the text-only baseline.

Results highlight that all of the trained multimodal out-
perform the text-only baseline for all evaluation tasks. For
instance, O + T shows an average improvement of 9% over
T. This is in-line with the conclusions of related works (Hill,
Reichart, and Korhonen 2014). Besides, a joint model (e.g.
O + T) compares favorably to a sequential model (O ⊕ T)
built from embeddings obtained from O and T as we note
a 5% relative improvement, showing that embeddings com-
puted using multiple modalities at once are beneficial. Like
we did for RQ1, we also evaluated an ensemble model
(L + O + T) to measure the complementarity of visual fea-
tures in the multimodal model. Again, we generally notice a
slight improvement over both O + T and L + T. This opens
perspectives for formalizing and leveraging visual informa-
tion from both entities and their context.

The obtained results are consistent with the conclusions
drawn above on the RQ1 analysis: visual surroundings of
entities are more useful than direct features on the evaluated

tasks (3.2% improvement); the combination of both mod-
els shows the complementarity of the approaches, adding a
spatial term for visual context significantly increases per-
formances (6% improv.); finally, higher-level contexts are
slightly easier to use than lower-level contexts (1% improv.).

To get a deeper insight into learned embeddings, we aim
at explaining the impact of the visual modality on the multi-
modal word representation. To do so, we estimate the corre-
lation between the shift measured on the embedding and the
concreteness degree of a word. The result outlines a corre-
lation of ρSpearman = 0.33, showing that visual and concrete
words see their embeddings being more changed than other
non visual and abstract words. This was to be expected be-
cause the visual part only adds information to visual entities.

7 Conclusion and Future Work

In this work, we proposed a multimodal (text and image)
context-based approach to learn word embeddings. Through
extensive experiments, and in line with related work, we
observed the complementarity of visual and textual data
to learn word representations. More importantly, we have
shown that visual surroundings of objects and their relative
localization are very informative to build word representa-
tions – actually, more than, but complementary to, the visual
appearance of the objects themselves as exploited in previ-
ous works.

In future work, we will explore the use of downstream
tasks to evaluate multimodal word embeddings as it might
give finer insights on the way the visual part of the model
contributes to learning representations. Orthogonally, we
will focus on contexts and their learned representations. In
particular, we would like to see if aligned and consistent
multimodal representations are learned with weak supervi-
sion provided by the entities. Also, we will extend our work
to learn relation representations between objects based on
multimodal representations and the exploitation of existing
knowledge bases.
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