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Abstract

Representing the semantics of words is a fundamental task in
text processing. Several research studies have shown that text
and knowledge bases (KBs) are complementary sources for
word embedding learning. Most existing methods only con-
sider relationships within word-pairs in the usage of KBs. We
argue that the structural information of well-organized words
within the KBs is able to convey more effective and stable
knowledge in capturing semantics of words. In this paper, we
propose a semantic structure-based word embedding method,
and introduce concept convergence and word divergence to
reveal semantic structures in the word embedding learning
process. To assess the effectiveness of our method, we use
WordNet for training and conduct extensive experiments on
word similarity, word analogy, text classification and query
expansion. The experimental results show that our method
outperforms state-of-the-art methods, including the methods
trained solely on the corpus, and others trained on the corpus
and the KBs.

Introduction

Understanding and representing the sense of text is a fun-
damental task in both information retrieval (IR) and natural
language processing (NLP). Previous research has expended
great effort on constructing distributed representations of
words (also known as word embedding) as the atomic com-
ponents of text by embedding the semantic and syntactic
properties of the surface text into low-dimensional dense
vectors. Trained word embeddings have achieved over-
whelming success in various real-world applications, e.g.,
document retrieval (Bengio, Courville, and Vincent 2013;
Passalis and Tefas 2016; Roy et al. 2016), text classification
(Lampos, Zou, and Cox 2017), question answering (Shen et
al. 2017), and sentiment classification (Bollegala, Mu, and
Goulermas 2016).

Most of the research directs attention entirely towards
learning word representation methods from a large un-
labeled corpus, such as prediction-based methods (Col-
lobert et al. 2011; Mikolov et al. 2013b; 2013a; Cao
and Lu 2017) which learn word representation by predict-
ing the co-occurrence of words in the given context, and
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Figure 1: We mark two types of words in the sentences with
blue color and red color, respectively. The underlined words
are their context in the corpus. The graphs in the right are
their semantic structures generated from WordNet.

counting-based methods (Pennington, Socher, and Manning
2014) which learn word representations through global ma-
trix factorization based on a count of co-occurring words.
These corpus-based methods mainly consider a word’s co-
occurrence information and, therefore, generally learn simi-
lar embeddings for words with similar contexts.

In the past few years, some efforts have focused on learn-
ing word representation beyond the corpus, and considered
external knowledge bases constructed by human experts,
such as semantic lexicons and concept graphs (Ponzetto
and Navigli 2010; Bollegala, Maehara, and Kawarabayashi
2015; Liu et al. 2015a; Bollegala et al. 2016; Goikoetxea,
Agirre, and Soroa 2016). Most previously proposed meth-
ods simply use relations within word-pairs, e.g., constrain-
ing words belonging to one semantic category (Yu and
Dredze 2014), or constructing a regularizer to model words
in particular semantic relations (Bollegala et al. 2016). As
such, this work did not fully explore the comprehensive
structures in the KBs.

In this paper, we argue that effective word embeddings
should contain the semantic structures within the knowledge
base. We illustrate how the semantic structures can be a
complementary source for word embeddings in Fig.1. As
shown in the sentences, football, basketball, trainer, coach
usually share similar context, and tend to have similar repre-
sentations in the corpus-based methods. While the semantic
structures in the right side clearly define these words with
different semantic granularities and abstractions, i.e., these
four words are located in two different subgraphs, showing
that they belong to different concepts; football and basket-
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ball are not directly linked in the subgraph, showing that
they hold different attributes. On the other hand, compared
with relations in word-pairs, comprehensively modeling a
word’s structural features with its directly linked and indi-
rectly linked words in the KBs could be more stable and
reliable(Xuan et al. 2016; 2017).

To this end, we propose a semantic structure-based word
embedding method called SENSE. Moreover, we introduce
concept convergence and word divergence to implement se-
mantic structure modeling in the word embedding learn-
ing process. The basic idea can be intuitively explained
as football and basketball are related to ball (concept con-
vergence), but they also hold different attributes since they
are indirectly linked in the graph (word divergence). We
evaluate our word embedding method using extensive in-
trinsic and extrinsic evaluations. The experimental results
show that modeling semantic structures in the knowledge
base by incorporating concept convergence and word diver-
gence makes embeddings significantly more powerful, and
results in consistent performance improvement across real-
world applications.

This paper departs from previous work in that it explores
global structural information of words in the usage of knowl-
edge base, not the local relations that exist between two
words. The main contributions can be summarized as fol-
lows:
• We design a novel approach for learning word embed-

ding that considers relatively stable and reliable semantic
structures within the KBs.

• We design the principle of preserving semantic structures
by converging words to their concept on the upper level
and diverging words on the same sense level. We show
that this principle is effective and easy to implement into
the word embedding training process.

• To validate this method, we conducted extensive exper-
iments on semantic property testing, document retrieval,
and text classification. The experiment results show that
the proposed method significantly outperforms the state-
of-the-art methods.

Related Work

Word representation aims to learn a transformation of each
word from raw text data to a representation that is mathemat-
ically and computationally convenient to process in text pro-
cessing tasks. The last few years have seen the development
of distributed word representation learning methods purely
based on the co-occurrence information in a corpus (Bengio
et al. 2003; Mnih and Hinton 2008; Collobert et al. 2011;
Mikolov et al. 2013b; 2013a; Mnih and Kavukcuoglu 2013;
Lebret and Collobert 2014; Pennington, Socher, and Man-
ning 2014; Barkan 2017; Cao and Lu 2017). Some recent
studies throw light on the semantic knowledge stored in the
KBs, showing that the KBs can potentially assist the word
embedding learning process.

Several studies use combined methods to fit pre-trained
word embeddings with the given external resource, mak-
ing no assumptions about how the input embeddings were
constructed. For example, the Retrofit method (Faruqui et

al. 2015) refines word representations using relational in-
formation from semantic lexicons. The method encourages
linked words to have similar vector representations which
are then embedded in a semantic network that consists of
linked word senses in a continuous-vector word space. Jo-
hansson et al.(2015) presented a method to embed a seman-
tic network into a pre-trained word embedding, considering
that vectors for polysemous words can be decomposed into
a convex combination of sense vectors and the vector for a
sense is kept similar to those of its neighbors in the network.
Goikoetxea et al.(2016) learned word representations from
text and WordNet independently, and then explored both
simple and sophisticated methods to combine them, showing
that a simple concatenation of independently learned embed-
dings outperforms more complex combination techniques in
word similarity and relatedness datasets.

In contrast to the combined methods, several studies have
jointly leveraged semantic lexicons and corpus-based meth-
ods. The RCM method (Yu and Dredze 2014) is a rela-
tion constrained model which introduces a training objec-
tive that incorporates both a neural language model objective
and a semantic knowledge objective. In the RCM method,
the knowledge base functions as word similarity informa-
tion to improve the performance of word embedding. Xu et
al.(2014) leveraged both relational and categorical knowl-
edge to produce word representation (RC-NET), combin-
ing this with the Skip-gram method. Liu et al.(2015a) rep-
resents semantic knowledge as a number of ordinal simi-
larity inequalities of related word pairs to learn semantic
word embedding (SWE). Bollegala et al.(2015) proposed a
method that considers semantic relations in which they co-
occur to learn word representations. And they (Bollegala et
al. 2016) also proposed a joint word representation learn-
ing method that simultaneously predicts the co-occurrences
of two words in a sentence, subject to the relational con-
straints given by a semantic lexicon . Although these studies
consider the semantic information from an external knowl-
edge base in the learning process, they do not leverage high-
quality semantic structures to improve word embeddings.

Our work in this paper can be categorized as a joint learn-
ing method that incorporates both co-occurrence informa-
tion and semantic structures. In contrast to the aforemen-
tioned research, we leverage the semantic structure infor-
mation in the KBs. In our method, we construct multi-
level structures from the knowledge base to express semantic
granularity and abstraction. Moreover, we design principles
of concept convergence and word divergence to implement
semantic structures into the word embedding learning pro-
cess.

Semantic Structure-based Word Embedding

The Basic Idea

Given a corpus C and a knowledge base G as input, the
SENSE method learns a d dimensional vector xw ∈ R

d

for each word w in the corpus. Any KB that captures the
relationships between words in a hierarchically-organized
manner could be used to generate semantic structures, such
as WordNet (Miller 1995; Fellbaum 1998), Freebase (Bol-
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Figure 2: An example of the three-level semantic structures
of the word dog in WordNet.

lacker et al. 2008), and PPDB (Ganitkevitch, Durme, and
Callison-Burch 2013). In this paper, we use WordNet to de-
scribe the method and conduct the experiments.

The KB is defined as a directed graph G = (V,E), where
the set of vertices V denotes words, and the set of edges
E denotes the semantic relations between the pairs of ver-
tices. Intuitively, a vertex’s structure information in a di-
rected graph can be covered by exploiting its parent ver-
tices, brother vertices, and child vertices. Fig. 2 visualizes
the structures of the word dog in WordNet. Our ideas for
modeling the structures were inspired by the observations in
the nature language.

First, words directly linked in semantic structures share
the same attributes. For example, canine is the parent of
dog and wolf, and canine can be regarded as a concept that
represents the common attributes of a dog and a wolf. These
directly linked words tend to converge, and the child words
tend to be close to the parent word. Thus, we assume that:

Assumption 1 Concept convergence: The upper level is re-
garded as the concept of its lower level. The center of all
words in the lower level tends to converge to their upper-
level word.

Second, brother words in semantic structures are indi-
rectly linked and are located in the same level. They tend to
be diverged, giving the areas of different words a distinct po-
sitioning for different attributes. For example, wolf and dog
are close to canine as they share the same attribute, but they
should be separated from each other since they also hold sig-
nificantly different attributes. Thus, we assume that:

Assumption 2 Word divergence: Words in the same level
hold distinctive attributes, and they tend to be diverged.

The Proposed Method

A variety of corpus-based methods have been proposed to
learn word representations by optimizing the prediction abil-
ity between words and contexts. We follow the Word2Vec
method, which uses extremely computationally efficient log-
linear models to produce high-quality word embeddings.
The Word2Vec method applies a sliding window moving on
the corpus, and the central word is the target word and the
others are context words. There are two models: the CBOW
model uses the average/sum of context words as input to pre-
dict the target; the Skip-gram model uses the target word as
input to predict each context word. To simplify, we represent

the objective of each prediction as

Lcontext = Pr(w|c) = exp(xw · c)∑
w′∈V exp(xw′ · c) , (1)

where w is the predicted word, c is the vector of input
word/words, xw′ ∈ R

d is the vector representation of the
word w′ in the vocabulary V .

The objective of the SENSE method is to train word rep-
resentations that are not only good at predicting its context
words, but are also good at modeling concept convergence
and word divergence. Let w represent the predicted word in
each prediction task. We detail how to represent structural
information of word w in G.

Specially, we define G using WordNet, where words
are grouped into sets of cognitive synonyms (denoted as
synsets), and synsets are interlinked by hyponym-hypernym
relations (i.e., general terms and specific kinds). We observe
that WordNet is a complex hierarchical graph of synsets:
(1) each word points to at least one synset. Hence, there
is a many-to-many relationship between synsets and words;
(2) the synset would have more than one parent in Word-
Net. In our method, we model the semantic structures on
the granularity of synsets. Formally, given a word, we de-
note its synset collection as S = {w1, . . . , wk}, where
wi(1 ≤ i ≤ k) represents one synset of the word, denoted
as w for brevity. Then for each synset of word w, we ex-
ploit the following three-level features that capture varying
granularity semantic structures:

• Let P (w) = {p1, . . . , p|P |} represent the collection of
words on the upper level of word w, where pi ∈ V , and
the edge < pi, w > exists in E.

• Words on the same level of w are divided into |P (w)|
subsets regarding different parent words. Each subset is
denoted as D(pi, w) = {u1, . . . , u|D|}, where u ∈ V ,
and the edge < pi, u > exists in E.

• Words on the lower level are specific terms of w, denoted
as C(w) = {v1, . . . v|C|}, where v ∈ V , and the edge
< w, v > exists in E.

Based on the concept convergence assumption described
above, we assume that w should be close to the center of
words on the lower level of w (i.e., words in C(w)). The
training objective is defined to maximize the following func-
tion:

Lc =
∑

S(w)

cos(xw,
1

|C|
∑

v∈C(w)

xv), (2)

where |C| is the size of collection C(w). Here cos(·, ·) rep-
resents the similarity measure function. Following the rec-
ommendations in prior work on word similarity measure-
ment, we apply the cosine similarity of a pair of words
wa, wb by computing

cos(xwa
,xwb

) =
xT
wa

· xwb

|xwa
| · |xwb

| . (3)

The word divergence assumption is defined as enlarging
the distance between w and words in the same level with
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w (i.e., words in D(·, w)), and the training objective is to
minimize the following function:

Ld =
∑

S(w)

∑

pi∈P (w)

∑

u∈D(pi,w)

cos(xw,xu), (4)

where P (w) is the collection of w’s upper level. Because
some words have many brother words in KBs, we randomly
select several words in the training step. We find that se-
lecting five words is an acceptable trade-off between the
method’s performance and training speed.

As mentioned before, we integrate the context informa-
tion and the semantic structure information into a unified
framework. Then the new optimization objective is

L = max
Θ

(Lcontext + αLc − βLd), (5)

where Θ is a set of all the parameters related to this task, α
and β are hyper-parameters, which control the contributions
of semantic structures in word embedding learning.

Using the optimization method in (Mikolov et al. 2013b),
we apply negative sampling to solve the context prediction
function. If the predicted word w has semantic structures in
the KB, the corresponding optimization process for model-
ing the semantic structures will be activated. The optimiza-
tion is as follows:

∂L
∂xw

= α
∂Lc

∂xw
− β

∂Ld

∂xw
=

∑

S(w)

(α
∂cos(xw,x)

∂xw

− β
∑

pi∈P (w)

∑

u∈D(pi,w)

∂cos(xw,xu)

∂xw
),

∂L
∂xv

= α
∂Lc

∂xv
=

∑

S(w)

α
∂cos(xw,x)

∂x
,

∂L
∂xu

= −β
∂Ld

∂xu

=
∑

S(w)

∑

pi∈P (w)

∑

u∈D(pi,w)

−β
∂cos(xw,xu)

∂xu
,

(6)

where w is the predicted word, u is the word in D(·, w), v
is the word in C(w), and x is the average vector of words
in C(w). Since we apply the cosine distance to compute
the similarity between two words, the optimization can be
derived as follows:

∂cos(xi,xj)

∂xi
= −Sij · xi

|xi|2 +
xj

|xi| · |xj | , (7)

where Si,j =
xT
i ·xj

|xi|·|xj | .
In our implementation, the optimization process is con-

ducted through SGD in a mini-batch mode, with a compu-
tational complexity comparable to the optimization process
in the Word2Vec method. The pseudo code for our word
embedding learning method is shown in Algorithm.1.

Experiments and Results

In this section, we first evaluate the SENSE method’s ability
to capture semantic and syntactic properties of words. Then,

Algorithm 1 SENSE method.

Require: WordNet G, Corpus C, dimensionality d of the
word embeddings, word vocabulary V

Ensure: Embeddings xw ∈ Rd of all words in the vocabu-
lary V .

1: Initialization: randomly set xw ∈ Rd for all words
w ∈ V; generate the semantic structures of each word in
G; constructing T prediction tasks using a sliding win-
dow.

2: for t = 1, 2, . . . , T do
3: optimizing Lcontext using negative sample method

introduced in (Mikolov et al. 2013b)
4: if w in G then
5: use Eq.(6) to update xw, xu, xv .
6: end if
7: end for
8: return xw for all words w ∈ V .
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Figure 3: Performance of the SENSE method with varying
parameters of α and β.

we conduct experiments on the text classification task and
the query expansion task, showing that the proposed method
boosts performance in real-world applications. The source
code of our method is available in the GitHub1.

Initialization and Parameters

We utilize WordNet (version 3.0) as the KB and use the se-
mantic structure information when words are linked using
hypernym-hyponym relation. Since only nouns and verbs
hold a hypernym-hyponym relation in WordNet, we extract
all the nouns and verbs in WordNet to construct the graph
G, resulting in 66,765 nouns with 82,115 synsets and 7,440
verbs with 13,767 synsets.

There are two hyper-parameters in the SENSE method,
i.e. α and β in Eq.(5), which control the contributions of the
semantic structures to the joint learning process. We care-
fully tune these parameters by fixing one and varying the
other. The parameters corresponding to the best word sim-
ilarity metric value (detailed in next subsection) are used to
report the final settings. As shown in Fig. 3a and Fig. 3b,
the SENSE method reaches optimal performance when α
= 0.002 and β = 0.8. We follow the optimal settings in this
work, with recommended settings of α ∈ (0.001, 0.003) and
β ∈ (0.7, 0.9).

For a fair comparison, all word embeddings adhere to the

1https://github.com/qianliu0708/SENSE
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Figure 4: Performance over varying parameters on the
WordSim 353 dataset.

following settings: the dimensionality of vectors is 300, the
size of the context window is 5, the number of negative sam-
ples is 5, and all KB-enhanced methods are trained using
WordNet. Specially, to understand the robustness of our
method, we explore the relation between the performance of
our method on the word similarity task with varying number
of dimensions and negative samples. As shown in Fig.4, we
observe that our method is stable when the dimension is set
to a value between 100 and 300. The best performance can
be obtained when the dimension is set to 300. Regarding
the size of negative samples, our method obtains optimal re-
sults when the number of negative samples is set to 5, and
the performance of our method degrades when the number
of negative samples is too large.

Word Similarity and Word Analogy

Baselines We compare the SENSE method against two
classes of baselines:
(1) The corpus-based methods which train word embed-
dings solely on the corpus. We use the current state-of-the-
art methods, including:

• CBOW2(Mikolov et al. 2013b) is a neural network lan-
guage model which learns word embeddings by maximiz-
ing the conditional probability of a target word given the
context.

• Skip-gram3(Mikolov et al. 2013b) is a neural network lan-
guage model which learns word embeddings by maximiz-
ing the conditional probability of a context word given the
target word.

• GloVe4 (Pennington, Socher, and Manning 2014) is a
state-of-the-art matrix factorization method. It leverages
global count information aggregated from the entire cor-
pus as word-word occurrence matrix to learn word em-
beddings.

(2) The KB-enhanced methods which train word embed-
dings both on the corpus and the KBs. To make a com-
prehensive comparison, we compare the SENSE method
against popular and powerful methods which also use the
external KBs, including:

2http://code.google.com/p/word2vec
3http://code.google.com/p/word2vec
4http://nlp.stanford.edu/projects/glove/

• RCM5(Yu and Dredze 2014) is a relational constrained
word embedding method. It incorporates both the objec-
tive of context prediction (following CBOW method and
Skip-gram method) and the objective which constrained
the relations from the KBs.

• Retrofit6 (Faruqui et al. 2015) is a popular method that
refines pre-trained word embeddings using relational in-
formation from the KBs.

• Jointreps7 (Bollegala et al. 2016) is a method jointly
trained on a word co-occurrence matrix from the cor-
pus (following the GloVe method) and semantic relations
from KBs.

Datesets and Settings We intrinsically evaluate our
method on two standard tasks: the word similarity task by
predicting the semantic similarity between words, and the
word analogy task by predicting proportional analogies con-
sisting of two pairs of words. The training corpus for all
methods is a subset of the Wikipedia corpus, which contains
16 million words and 71,291 distinct words.

We conduct the word similarity task using the follow-
ing benchmark datasets: MC (30 word-pairs) (Miller and
Charles 1991), MEN (3000 word-pairs) (Bruni et al. 2012),
RG (65 word-pairs) (Luong, Socher, and Manning 2013),
VERB (143 word-pairs) (Baker, Reichart, and Korhonen
2014), WS (353 word-pairs), and its similarity subset (WS-
sim) and relatedness subset (WS-rel) (Agirre et al. 2009).
Each word-pair in these benchmark datasets has a human-
assigned similarity score. We calculate cosine similarity be-
tween the vectors of two words forming a test item, and
report Spearmans rank correlation coefficient (Spearman
1904) between the rankings produced by the word embed-
ding methods against the human rankings.

To assess the methods ability to perform semantic deduc-
tion, we evaluate word embedding methods using a word
analogy task introduced by Mikolove (2013b). The task de-
fines a comprehensive test that contains 19,544 questions di-
vided into a semantic subset and a syntactic subset. The se-
mantic subset contains five types of analogy questions about
people or places, such as “America is to New York as Aus-
tralia is to ?”. The syntactic subset contains nine types of
analogy questions regarding verb tenses or forms of adjec-
tives, such as “good is to better as bad is to ?”.

For each question, given w1, w2, w3, it requires a fourth
word w4 to be generated to satisfy the question “w1 is to
w2 that is similar to w3 is to w4”. The method we use to
answer the question is by finding the optimal word using the
following function:

v∗ = argmax
v

cos(v, v2)− cos(v, v1) + cos(v, v3), (8)

where v1, v2, and v3 are the embeddings of word w1, w2,
w3, and cos(·, ·) is the cosine similarity function. The best
embedding of v∗ is regarded as the answer.

5https://github.com/Gorov/JointRCM
6https://github.com/mfaruqui/retrofitting
7https://github.com/Bollegala/jointreps
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Word Similarity Word Analogy
Methods MC MEN RG VERB WS WS-rel WS-sim Sem Syn Tot

GloVe 0.459 0.506 0.374 0.293 0.509 0.546 0.538 63.5 33.3 56.8
Retrofit-GloVe 0.566 0.526 0.469 0.225 0.539 0.517 0.599 45.3 24.1 42.2
Jointreps 0.394 0.429 0.340 0.308 0.465 0.384 0.534 11.5 6.9 8.8
CBOW 0.641 0.658 0.654 0.402 0.638 0.615 0.708 48.2 41.6 48.7
RCM-CBOW 0.492 0.411 0.448 0.247 0.496 0.399 0.569 21.9 11.5 15.1
Retrofit-CBOW 0.677 0.654 0.673 0.365 0.639 0.612 0.711 36.5 38.5 39.1
SENSE-CBOW 0.692 0.665 0.685 0.402 0.688 0.657 0.719 49.9 42.2 49.9

Skip-gram 0.640 0.676 0.682 0.343 0.631 0.621 0.695 62.4 33.6 56.0
RCM-Skipgram 0.478 0.416 0.418 0.261 0.481 0.393 0.544 21.8 10.9 14.7
Retrofit-Skipgram 0.599 0.576 0.622 0.134 0.569 0.467 0.637 34.9 25.4 35.6
SENSE-Skipgram 0.678 0.678 0.686 0.374 0.694 0.674 0.733 63.9 33.8 57.2

Table 1: Results on the word similarity task and the word analogy task. The word embedding methods are divided into three
groups. Bold scores are the best within the groups. Underlined scores are the best overall.

Results Table 1 shows the evaluation results for both the
word similarity task and the word analogy task. From the
results, we observe that:

(1) We observe that most KB-enhanced methods perform
better compared to their baseline methods (e.g., Retrofit-
CBOW v.s. CBOW), while the RCM method and the Join-
treps method do not perform better than their corresponding
baseline methods. This observation demonstrates that exter-
nal KBs can boost the performance of word embeddings, but
the methods of how to extract and model the semantic infor-
mation may directly affect the performances. Our SENSE
method significantly outperforms over all the baseline meth-
ods, which means that modeling semantic structures by con-
cept convergence and word divergence is reasonable and ef-
fective.

(2) The SENSE method reports the best results in seven
word similarity datasets and the word analogy dataset. In
particular, the improvements reported by the SENSE method
are statistically significant on MC, RG, WS, WS-rel, and
WS-sim. We attribute the success of our method to its power
in modeling structural information in the word embedding
learning process.

(3) For the task of word analogy, the GloVe method is a
much stronger baseline than the others. It is fair to say that
the global counting information is more accurate for seman-
tic deduction compared to local co-occurrence information.
The SENSE-Skipgram model still performs better than the
GloVe method, demonstrating the generality and effective-
ness of our method. It also implies that semantic structures
are more reliable and stable knowledge than the relationship
between word-pairs, and structural information can capture
a word’s latent relation in a global view.

Text Classification

We investigate the effectiveness of the SENSE method for
text classification. The experiment is conducted on the
20NewsGroup8 dataset. We use the bydate version which
contains 18,846 documents from 20 different newsgroups.

8http://qwone.com/ jason/20Newsgroups/.

Methods Acc. Prec. Rec. F1

LDA 72.2 70.8 70.7 70.0
BOW 79.7 79.5 79.0 79.0
PV-DM 72.4 72.1 71.5 71.5
PV-DBOW 75.4 74.9 74.3 74.3
TWE 71.7 70.9 70.4 69.7
GloVe 62.3 61.2 61.1 60.5
CBOW 78.1 77.4 77.1 77.0
Skip-gram 80.2 79.6 79.1 79.0
Retrofit-CBOW 75.6 75.9 73.5 72.1
Retrofit-Skipgram 77.4 77.9 75.5 74.3
SENSE-CBOW 81.4 80.8 80.3 80.2
SENSE-Skipgram 81.7 81.2 80.6 80.6

Table 2: Evaluation results of multi-class text classification.
Bold scores denote the SENSE method outperforms the cor-
responding baseline methods. Underlined scores are the best
overall.

The dataset is separated into a training set of 11,314 docu-
ments and a test set of 7,532 documents. All documents are
joined together as a corpus for training word embeddings.
We tokenize the corpus with the Stanford Tokenizer9 and
convert it to lower case, then removed the stop words. The
corpus is 30.4M and contains 6.3 million words.

We consider the following baselines, BOW, LDA, TWE
(Liu et al. 2015b), GloVe, Word2Vec, Retrofit and PV (Le
and Mikolov 2014). The BOW method represents each doc-
ument as a bag of words and the weighting scheme is TFIDF
(the top 50,000 words are selected). The LDA represents
each document as its inferred topic distribution. We set the
number of topics as 80. The PV method is an unsupervised
learning algorithm that learns vector representations for doc-
uments by predicting words in the document, including dis-
tributed memory model (PV-DM) and the distributed bag-
of-words model (PV-DBOW). For word embedding meth-
ods, we construct document embeddings d by simply av-
eraging all word embeddings in the given document, i.e.,

9https://nlp.stanford.edu/software/tokenizer.shtml
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d =
∑

w∈d xw, where w is a word in document d, and xw

is the word embedding of word w. We regard document
embedding vectors as a document feature and train a linear
classifier using Liblinear10 (Fan et al. 2008), since the fea-
ture size (d = 300) is large, and the Liblinear can quickly
train the linear classifier with high dimension features. The
classifier is then used to predict the class labels of documents
in the testing set. We report the macro-averaging accuracy,
precision, recall, and F1−measure for comparison.

Table 2 shows the evaluation results of text classification.
We observe that the SENSE-Skipgram method significantly
outperforms all baseline methods, showing that our method
better captures the semantic information of documents. Both
SENSE-CBOW and SENSE-Skipgram outperform their ba-
sic methods, especially SENSE-CBOW achieves a 3.3% im-
provement over the CBOW method. Whereas two Retrofit
methods do not perform as well as the basic Word2Vec
method. This observation shows the superiority and general-
ity of our SENSE method with modeling semantic structures
in the word embedding learning process.

Query Expansion

We evaluate the performance of the SENSE method in query
expansion for the information retrieval task. The experi-
ment is conducted on the Reuters Corpus Volume 1 (RCV1)
dataset, which contains 806,791 documents. We combine
the title and text parts of all documents to construct a train-
ing corpus, and then tokenized the training corpus with the
help of the Stanford Tokenizer tool and convert every word
to lower case. The corpus totals 16 million words.

The documents are divided into 50 collections, and each
collection contains a training set and a test set. We imple-
ment the query expansion as follows: (1) we generated orig-
inal queries by selecting the top 10 words in each collec-
tion, using the weighting scheme BM25; (2) then for each
query q, we use word embeddings to select the top 5 most
similar words with cosine similarity as its expansion words;
(3) each expansion word w is associated with a weight as
w(q) ∗ cos(q,w), where w(q) is the weight (BM25 score)
of the original query, and cos(q,w) is the cosine similar-
ity of the embeddings of the query and the expansion word.
Finally, we construct an expanded query set Q∗ which con-
tains original queries and expanded words. Each query q in
Q∗ is associated with a weight, denoted as w(q).

We retrieve the documents using the set Q∗. For each doc-
ument d, its relevance score s to the query set is computed
as s =

∑
q∈Q∗ f(q) ∗ w(q), if q ∈ d, f(q) = 1; otherwise

f(q) = 0. We report four standard evaluation metrics: the
average precision of the top 10 documents (P@10) and top
20 documents (P@20), the mean average precision (MAP ),
and the F1−measure.

Table 3 reports the results achieved by the proposed
method and the baselines. We observe that all the query
expansion methods significantly outperform the BM25
method, which indicates the effectiveness of employing
word embeddings for query expansion. According to the
table, the SENSE-CBOW method consistently outperforms

10https://www.csie.ntu.edu.tw/ cjlin/liblinear/

Methods P@10 P@20 MAP F1

BM25 44.6 44.1 40.8 41.5
TWE 55.4 49.5 44.2 43.5
GloVe 56.4 50.0 44.3 43.7
CBOW 56.4 49.1 44.3 43.8
Skip-gram 55.6 50.0 44.8 43.9
Jointreps 55.6 51.5 44.2 43.5
Retrofit-CBOW 57.6 50.8 44.3 43.6
Retrofit-Skipgram 56.6 50.4 44.8 43.8
SENSE-CBOW 58.4 51.9 45.1 44.2
SENSE-Skipgram 58.2 50.6 45.0 44.1

Table 3: Performance of different methods for query ex-
pansion on the RCV1 dataset. Bold scores denote that
the SENSE method outperforms the corresponding baseline
methods. Underlined scores are the best overall.

all compared methods, and our methods significantly out-
perform their corresponding baseline methods. While other
KB-enhanced method, i.e. Jointreps and Retrofit, perform
slightly better than their baseline methods. Moreover, com-
pared to the GloVe method and the TWE method, the
SENSE method achieves remarkable improvements. This
observation also indicates that semantic structures are more
effective in capturing semantic features than collecting topi-
cal information and global co-occurrence information.

Conclusion and Future Work

In this paper, we proposed a novel approach for learning
semantic structure-based word embedding, called SENSE.
The proposed method is a jointly word embedding learn-
ing method, incorporating the corpus and the knowledge
base into capturing semantics of words. Our method dif-
fers from recent related work by constructing three-level se-
mantic structures from the KBs, and by revealing concept
convergence and word divergence to unit word’s semantic
granularity and abstraction. Experiment results with differ-
ent datasets show that the proposed method outperforms the
existing state-of-the-art word embedding learning methods
on various tasks.

In the future, we will study how to incorporate seman-
tic structure information into the matrix factorization meth-
ods. We are also interested in investigating methods for ef-
fectively constructing the stable and transferable semantic
structures knowledge for learning word embeddings across
domains.
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