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Abstract

We present a new algorithm that significantly improves the
efficiency of exploration for deep Q-learning agents in dia-
logue systems. Our agents explore via Thompson sampling,
drawing Monte Carlo samples from a Bayes-by-Backprop neu-
ral network. Our algorithm learns much faster than common
exploration strategies such as ε-greedy, Boltzmann, bootstrap-
ping, and intrinsic-reward-based ones. Additionally, we show
that spiking the replay buffer with experiences from just a
few successful episodes can make Q-learning feasible when it
might otherwise fail.

Introduction
Increasingly, we interact with computers via natural-language
dialogue interfaces. Simple question answering (QA) bots
already serve millions of users through Amazon’s Alexa, Ap-
ple’s Siri, Google’s Now, and Microsoft’s Cortana. These bots
typically carry out single-exchange conversations, but we as-
pire to develop more general dialogue agents, approaching
the breadth of capabilities exhibited by human interlocutors.
In this work, we consider task-oriented bots (Williams and
Young 2004), agents charged with conducting a multi-turn
dialogue to achieve some task-specific goal. In our case, we
attempt to assist a user to book movie tickets.

For complex dialogue systems, it is often impossible to
specify a good policy a priori and the dynamics of an en-
vironment may change over time. Thus, learning policies
online and interactively via reinforcement learning (RL)
has emerged as a popular approach (Singh et al. 2000;
Gašić et al. 2010; Fatemi et al. 2016). Inspired by RL
breakthroughs on Atari and board games (Mnih et al. 2015;
Silver et al. 2016), we employ deep reinforcement learn-
ing (DRL) to learn policies for dialogue systems. Deep Q-
network (DQN) agents typically explore via the ε-greedy
heuristic, but when rewards are sparse and action spaces
are large (as in dialogue systems), this strategy tends to fail.
In our experiments, a randomly exploring Q-learner never
experiences success in thousands of episodes.

We offer a new, efficient solution to improve the explo-
ration of Q-learners. We propose a Bayesian exploration strat-
egy that encourages a dialogue agent to explore state-action
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regions in which the agent is relatively uncertain in action
selection. Our algorithm, the Bayes-by-Backprop Q-network
(BBQN), explores via Thompson sampling, drawing Monte
Carlo samples from a Bayesian neural network (Blundell et
al. 2015). In order to produce the temporal difference targets
for Q-learning, we must generate predictions from a frozen
target network (Mnih et al. 2015). We show that using the
maximum a posteriori (MAP) assignments to generate targets
results in better performance (in addition to being computa-
tionally efficient). We also demonstrate the effectiveness of
replay buffer spiking (RBS), a simple technique in which we
pre-fill the experience replay buffer with a small set of tran-
sitions harvested from a naı̈ve, but occasionally successful,
rule-based agent. This technique proves essential for both
BBQNs and standard DQNs.

We evaluate our dialogue agents on two variants of a
movie-booking task. Our agent interacts with a user to book
a movie. Success is determined at the end of the dialogue if a
movie has been booked that satisfies the user. We benchmark
our algorithm and baselines using an agenda-based user simu-
lator similar to Schatzmann, Thomson, and Young (2007). To
make the task plausibly challenging, our simulator introduces
random mistakes to account for the effects of speech recogni-
tion and language understanding errors. In the first variant,
our environment remains fixed for all rounds of training. In
the second variant, we consider a non-stationary, domain-
extension environment. In this setting, new attributes of films
become available over time, increasing the diversity of dia-
logue actions available to both the user and the agent. Our
experiments on both the stationary and domain-extension
environments demonstrate that BBQNs outperform DQNs
using either ε-greedy exploration, Boltzmann exploration, or
the bootstrap approach introduced by Osband et al. (2016).
Furthermore, the real user evaluation results consolidate the
effectiveness of our approach that BBQNs are more effective
than DQNs in exploration. Besides, we also show that all
agents only work given replay buffer spiking, although the
number of pre-filled dialogues can be small.

Task-Oriented dialogue systems

In this paper, we consider goal-oriented dialogue agents,
specifically one that aims to help users to book movie tick-
ets. Over the course of several exchanges, the agent gathers
information such as movie name, theater and number of tick-
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Figure 1: Components of a dialogue system

ets, and ultimately completes a booking. A typical dialogue
pipeline is shown in Figure 1. In every turn of a conversation,
the language understanding module converts raw text into
structured semantic representations known as dialog-acts,
which pass through the state-tracker to maintain a record
of information accumulated from previous utterances. The
dialogue policy then selects an action (to be defined later)
which is transformed to a natural language form by a genera-
tion module. The conversation continues until the dialogue
terminates. A numerical reward signal is used to measure the
utility of the conversation. Details of this process are given
below.

Dialog-acts Following Schatzmann, Thomson, and
Young (2007), we represent utterances as dialog-acts,
consisting of a single act and a (possibly empty) collection of
(slot=value) pairs, some of which are informed while others
are requested (value omitted). For example, the utterance,
“I’d like to see Our Kind of Traitor tonight in Seattle” maps
to the structured semantic representation request(ticket,
moviename=Our Kind of Traitor, starttime=tonight,
city=Seattle).

State tracker Other than information inferred from pre-
vious utterances, the state-tracker may also interact with
a database, providing the policy with information such as
how many movies match the current constraints. It then de-
lexicalizes the dialog-act, allowing the dialogue policy to act
upon more generic states. The tracked state of the dialogue,
consisting of a representation of the conversation history and
several database features, is passed on to the policy to select
actions.

Actions Each action is a de-lexicalized dialog-act. In the
movie-booking task, we consider a set of 39 actions. These
include basic actions such as greeting(), thanks(), deny(),
confirm question(), confirm answer(), closing(). Addition-
ally, we add two actions for each slot: one to inform its value
and the other to request it. The pipeline then flows back to
the user. Any slots informed by the policy are then filled in
by the state tracker. This yields a structured representation
such as inform(theater=Cinemark Lincoln Square), which is
then mapped by a natural language generation module to a
textual utterance, such as “This movie is playing tonight at
Cinemark Lincoln Square.”

The conversation process above can be naturally mapped
to the reinforcement learning (RL) framework, as fol-
lows (Levin, Pieraccini, and Eckert 1997). The RL agent

navigates a Markov decision process (MDP), interacting with
its environment over a sequence of discrete steps (Sutton and
Barto 1998). At step t ∈ {1, 2, . . .}, the agent observes the
current state st, and chooses some action at according to a
policy π. The agent then receives reward rt and observes new
state st+1, continuing the cycle until the episode terminates.
In this work, we assume that the set of actions, denoted A,
is finite. In our dialogue scenario, the state-tracker produces
states, actions are the de-lexicalized dialog-acts described
earlier, state transitions are governed by the dynamics of the
conversation, and a properly defined reward function is used
to measure the degree of success of a dialogue. In our exper-
iment, for example, success corresponds to a reward of 40,
failure to a reward of −10, and we apply a per-turn penalty
of -1 to encourage pithy exchanges.

The goal of RL is to find an optimal policy to maxi-
mize long-term reward. The Q-function measures, for ev-
ery state-action pair (s, a), the maximum expected cumu-
lative discounted reward achieved by choosing a in s and
then following an optimal policy thereafter: Q∗(s, a) =
maxπ π

[∑∞
i=0 γ

irt+i | st = s, at = a
]
, where γ ∈ (0, 1)

is a discount factor. Owing to large state spaces, most prac-
tical reinforcement learners approximate the Q-function by
some parameterized model Q(s, a; θ). An example, as we
used in this paper, is a neural network, where θ represents
the set of weights to be learned. Once a good estimate of
θ is found so that Q(·, ·; θ) is a good approximation of
Q(·, ·), the greedy policy, π(s; θ) = argmaxa Q(s, a; θ),
is a near-optimal policy (Sutton and Barto 1998). A popular
way to learn a neural-network-based Q-function is known as
DQN (Mnih et al. 2015); see the appendix for more details.

Bayes-by-Backprop

Bayes-by-Backprop (Blundell et al. 2015) captures uncer-
tainty information from neural networks by maintaining a
probability distribution over the weights in the network. For
simplicity, we explain the idea for multilayer perceptrons
(MLPs). An L-layer MLP for model P (y|x,w) is parame-
terized by weights w = {Wl, bl}Ll=1: ŷ = WL · φ(WL−1 ·
... · φ(W1 · x + b1) + ... + bL−1) + bL , where φ is an ac-
tivation function such as sigmoid, tanh, or rectified linear
unit (ReLU). In standard neural network training, weights
are optimized by SGD to minimize a loss function such as
squared error.

With Bayes-by-Backprop, we impose a prior distribution
over the weights, p(w), and learn the full posterior distri-
bution, p(w|D) ∝ p(w)p(D|w), given training data D =
{xi,yi}Ni=1. In practice, however, computing an arbitrary
posterior distribution can be intractable. So, we instead ap-
proximate the posterior by a variational distribution, q(w|θ).
In this work, we choose q to be a Gaussian with diagonal co-
variance, i.e., each weight wi is sampled from N (μi, σ

2
i ). To

ensure that all σi remain strictly positive, we parameterize σi

by the softplus function σi = log(1 + exp(ρi)), giving vari-
ational parameters θ = {(μi, ρi)}Di=1 for a D-dimensional
weight vector w.

We learn these parameters by minimizing variational free
energy (Hinton and Van Camp 1993), the KL-divergence be-
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tween the variational approximation q(w|θ) and the posterior
p(w|D):

θ
∗

= argminθKL[q(w|θ)||p(w|D)]

= argminθ
{

KL[q(w|θ)||p(w)] −�q(w|θ)[log p(D|w)]
}
.

When w is sampled from q, the above objective func-
tion can be estimated by its empirical version: f(D, θ) =
log q(w|θ) − log p(w) − log p(D|w). It can be minimized
by SGVB, using the reparametrization trick popularized
by Kingma and Welling (2013). See appendix for more de-
tails.

BBQ-networks

We are now ready to introduce BBQN, our algorithm for
learning dialogue policies with deep learning models. BBQN
builds upon the deep Q-network, or DQN (Mnih et al. 2015),
and uses a Bayesian neural network to approximate the Q-
function and the uncertainty in its approximation. Since we
work with fixed-length representations of dialogues, we use
an MLP, but extending our methodology to recurrent or con-
volutional neural networks is straightforward.

Action selection A distinct feature of BBQN is that it ex-
plicitly quantifies uncertainty in the Q-function estimate,
which can be used to guide exploration. In DQN, the Q-
function is represented by a network with parameter w.
BBQN, in contrast, maintains a distribution q over w.
As described in the previous section, q is a multivariante
Gaussian with diagonal covariance, parameterized by θ =
{(μi, ρi)}Di=1. In other words, a weight wi has a posterior dis-
tribution q that is N (μi, σ

2
i ) where σi = log(1 + exp(ρi)).

Given a posterior distribution q over w, a natural and
effective approach to exploration is posterior sampling, or
Thompson Sampling (Thompson 1933; Chapelle and Li 2011;
Osband, Russo, and Roy 2013), in which actions are sampled
according to the posterior probability that they are optimal
in the current state. Formally, given a state st and network
parameter θt in step t, an action a is selected to be at with
the probability Pr(at = a|st, θt) =
∫
w

1{ Q(st, a;w) > Q(s, a′;w), ∀a′ �= a} · dq(w|θt) . (1)

Computing these probabilities is usually difficult, but fortu-
nately all we need is a sample of an action from the corre-
sponding multinomial distribution. To do so, we first draw
wt ∼ q(·|θt), then set at = argmaxa Q(st, a;wt). It can be
verified that this process samples actions with the same prob-
abilities given in the Equation 1. We have also considered
integrating the ε-greedy approach, exploring by Thompson
sampling with probability 1−ε and uniformly at random with
probability ε. But empirically, uniform random exploration
confers no supplementary benefit for our task.

BBQN The BBQN is initialized by a prior distribution p
over w. It consists of an isotropic Gaussian whose variance
σ2
p is a single hyper-parameter introduced by our model. We

initialize the variational parameters to match the prior. So
μ is initialized to the zero vector 0 and the variational stan-
dard deviation σ matches the prior σp for each weight. Note
that unlike conventional neural networks, we need not assign
the weights randomly because sampling breaks symmetry.
As a consequence of this initialization, from the outset, the
agent explores uniformly at random. Over the course of train-
ing, as the experience buffer fills, the mean squared error
starts to dominate the objective function and the variational
distribution moves further from the prior.

Given experiences of the form T = {(s, a, r, s′)} con-
sisting of transitions collected so far, we apply a Q-learning
approach to optimize the network parameter, in a way sim-
ilar to DQN (Mnih et al. 2015). To do so, we maintain a
frozen, but periodically updated, copy of the same BBQN,
whose parameter is denoted by θ̃ = {(μ̃i, ρ̃i)}Di=1. For any
transition (s, a, r, s′) ∈ T , this network is used to compute
a target value y for Q(s, a; θ), resulting in a regression data
set D = {(x, y)}, for x = (s, a). We then apply the Bayes-
by-backprop method described in the previous section to
optimize θ, until it converges when θ̃ is replaced by θ. There
are two ways to generate the target value y.

The first uses a Monte Carlo sample from the frozen
network, w̃ ∼ q(·|θ̃), to compute the target y: y = r +
γmaxa′ Q(s′, a′; w̃). To speed up training, for each mini-
batch, we draw one sample of w̃ for target generation, and
one sample of w for sample-based variational inference (see
previous section). With this implementation, the training
speeds of BBQN and DQN are roughly equivalent.

The second uses maximum a posterior (MAP) estimate
to compute y: y = r + γmaxa′ Q(s′, a′; μ̃). This compu-
tationally more efficient choice is motivated by the obser-
vation that, since we only require the uncertainty estimates
for exploration, it may not be necessary to sample from the
frozen network for synthesizing targets. Furthermore, early
in training, the predictive distribution of the networks has
high variance, resulting in a large amount of noise in target
values that can slow down training.

BBQN with intrinsic reward Variational Information
Maximizing Exploration (VIME) (Houthooft et al. 2016a)
introduces an exploration strategy based on maximizing the
information gain about the agent’s belief of environment dy-
namics. It adds an intrinsic reward bonus to the reward func-
tion, which quantifies the agent’s surprise: r′(st, at, st+1) =
r(st, at) + ηDKL[p(θ|ξt, at, st+1)||p(θ|ξt)], (where ξt is
defined as the history of the agent up until time step t:
ξt = {s1, a1, ..., st}), and has demonstrated strong empirical
performance. We explore a version of BBQNs that incorpo-
rates the intrinsic reward from VIME, terming the approach
BBQN-VIME-MC/MAP. The BBQN-VIME variations en-
courage the agents to explore the state-action regions that
are relatively unexplored and in which BBQN is relatively
uncertain in action selection. In our full-domain experiment,
both BBQN and BBQN-VIME variations achieve similar
performance with no significant difference, but in domain-
extension experiments, we observe that BBQN-VIME-MC
slightly outperforms BBQN-MAP.
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Replay buffer spiking In reinforcement learning, there are
multiple sources of uncertainty. These include uncertainty
over the parameters of our model and uncertainty over un-
seen parts of the environment. BBQN addresses parameter
uncertainty but it can struggle given extreme reward sparsity.
Researchers use various techniques to accelerate learning in
these settings. One approach is to leverage prior knowledge,
as by reward shaping or imitation learning. Our approach
falls into this category. Fortunately, in our setting, it’s easy to
produce a few successful dialogues manually. Even though
the manual dialogues do not follow an optimal policy, they
contain some successful movie bookings, so they indicate
the existence of the large (+40) reward signal. Pre-filling
the replay buffer with these experiences dramatically im-
proves performance (Figure 3). For these experiments, we
construct a simple rule-based agent that, while sub-optimal
(18.3% success rate), achieves success sometimes. In each
experiment, we harvest 100 dialogues of experiences from
the rule-based agent, adding them to the replay buffer. We
find that, in on our task, RBS is essential for both BBQN
and DQN approaches. Interestingly, performance does not
strictly improve with the number pre-filled dialogues (Figure
3). Note that replay buffer spiking is different from imitation
learning. RBS works well with even a small number of warm-
start dialogues, suggesting that it is helpful to communicate
even the very existence of a big reward. We find that even one
example of a successful dialogue in the replay buffer could
successfully jump-start a Q-learner.

Experiments

We evaluate our methods on two variants of the movie-
booking task. In our experiments, we adapt the publicly
available1 simulator described in Li et al. (2016). In the first,
the agent interacts with the user simulator over 400 rounds.
Each round consists of 50 simulated dialogues, followed by
2 epochs of training. All slots are available starting from the
very first episode. In the second, we test each model’s ability
to adapt to domain extension by periodically introducing new
slots. Each time we add a new slot, we augment both the state
space and action space. We start out with only the essential
slots: [date, ticket, city, theater, starttime, moviename, num-
berofpeople, taskcomplete] and train for 40 training rounds
up front. Then, every 10 rounds, we introduce a new slot in
a fixed order. For each added slot, the state space and action
space grow accordingly. This experiment terminates after 200
rounds. In both experiments, quantifying uncertainty in the
network weights is important to guide effective exploration.

To represent the state of the dialogue at each turn, we
construct a 268 dimensional feature vector, consisting of
the following: (i) one-hot representations of the act and slot
corresponding to the current user action, with separate com-
ponents for requested and informed slots; (ii) corresponding
representations of the act and slot corresponding to the last
agent action; (iii) a bag of slots corresponding to all previ-
ously filled slots over the course of the dialog history; (iv)
both a scalar and one-hot representation of the current turn
count; and (v) counts representing the number of results

1https://github.com/MiuLab/UserSimulator

Agents
Full Domain Domain Extension

Success Rate Reward Success Rate Reward

BBQN-VIME-MAP 0.4856 9.8623 0.6813 15.8223
BBQN-VIME-MC 0.4941 10.4268 0.7120 17.6261

BBQN-MAP 0.5031 10.7093 0.6852 17.3230
BBQN-MC 0.4877 9.9840 0.6722 16.1320

DQN-VIME-MAP 0.3893 5.8616 0.3751 4.9223
DQN-VIME-MC 0.3700 4.9990 0.3675 4.8270
DQN-Bootstrap 0.2516 -0.1300 0.3170 -0.6820
DQN-Boltzmann 0.2658 0.4180 0.2435 -3.4640

DQN 0.2693 0.8660 0.3503 4.7560

Table 1: Final performance of trained agents on 10k simulated
dialogues, averaged over 5 runs.

from the knowledge base that match each presently filled-in
constraint (informed slot) as well as the intersection of all
filled-in constraints. For domain-extension experiments, fea-
tures corresponding to unseen slots take value 0 until they
are seen. When domain is extended, we add features and
corresponding weights to input layer, initializing the new
weights to 0 (or μi = 0, σi = σprior for BBQN), a trick due
to Lipton, Vikram, and McAuley (2015).

Training details For training, we first use a naive but oc-
casionally successful rule-based agent for RBS. All experi-
ments use 100 dialogues to spike the replay buffer. We note
that experiments showed models to be insensitive to the pre-
cise number. After each round of 50 simulated dialogues,
the agent freezes the target network parameters θ−, and then
updates the Q- function, training for 2 epochs, then re-freezes
and trains for another 2 epochs. There are two reasons for
proceeding in 50-dialog spurts, rather than updating one mini-
batch per turn. First, in a deployed system, real-time updates
might not be realistic. Second, we train for more batches per
new turn than is customary in DQN literatures owing to the
economic considerations: computational costs are negligi-
ble, while failed dialogues either consume human labor (in
testing) or confer opportunity costs (in the wild).

Baseline methods To demonstrate the efficacy of BBQN,
we compare against ε-greedy in a standard DQN. Addition-
ally, we compare against Boltzmann exploration, an approach
in which the probability of selecting any action in a given
state is determined by a softmax function applied to the
predicted Q-values. Here, affinity for exploration is parame-
terized by the Boltzmann temperature. We also compare to
the bootstrapping method of Osband et al. (2016). For the
bootstrap experiments, we use 10 bootstrap heads, and assign
each data point to each head with probability 0.5. We evalu-
ate all four methods on both the full domain (static) learning
problem and on the domain extension problem.

We also tried comparing against Gaussian processes (GP)
based approaches. However, in our setting, due to the high-
dimensional inputs and large number of time steps, we were
unable to get good results. In our experiments, the com-
putation and memory requirement grow quadratically over
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(a) Full domain (success rate) (b) Domain extension (success rate)

(c) Full domain (reward) (d) Domain extension (reward)

Figure 2: Training plots with confidence intervals for the full domain (all slots available from start) and domain extension
problems (slots added every 10 rounds).

time, and memory starts to explode at the 10th (simulation)
round. Limiting data size for GP was not helpful. Further-
more, in contrast to Gašić et al. (2010) where the state is
3-dimensional, our experiments have 268-dimensional states,
making scalability an even bigger challenge. A recent pa-
per (Fatemi et al. 2016) compares deep RL (both policy
gradient and Q-learning) to GP-SARSA (Engel, Mannor, and
Meir 2005) on a simpler dialogue policy learning problem. In
order to make Gaussian processes computationally tractable,
they rely on sparsification methods (Engel, Mannor, and Meir
2005), gaining computation efficiency at the expense of ac-
curacy. Despite this undertaking to make GPs feasible and
competitive, they found that deep RL approaches outperform
GP-SARSA with respect to final performance, regret, and
computational expense (by wall-clock). While we consider
Gaussian processes to be an evolving area, it is worthwhile
to try the Gaussian processes with sparsification methods to
compare with deep RL approaches as future work.

Architecture details All models are MLPs with ReLU
activations. Each network has 2 hidden layers with 256
hidden nodes each. We optimize over parameters using
Adam (Kingma and Ba 2015) with a batch size of 32 and
initial learning rate of 0.001, determined by a grid search.

To avoid biasing the experiments towards our methods, we
determine common hyper-parameters using standard DQN.
Because BBQN confers regularization, we equip DQN mod-
els with dropout regularization of 0.5, shown by Blundell et
al. (2015) to confer comparable predictive performance on
holdout data.

Each model has additional hyper-parameters. For exam-
ple, ε-greedy exploration requires an initial value of ε and
an attenuation schedule. Boltzmann exploration requires a
temperature. The bootstrapping-based method of Osband et
al. (2016) requires both a number of bootstrap heads and
the probability that each data point is assigned to each head.
Our BBQN requires that we determine the variance of the
Gaussian prior distribution and the variance of the Gaussian
error distribution.

Simulation results As shown in Figure 2, BBQN variants
perform better than the baselines. In particular, BBQN-MAP
performs the best on the full domain setting, BBQN-VIME-
MC achieves the best performance on the domain extension
setting, with respect to cumulative successes during training
and final performance of the trained models (Table 1). Note
that the domain extension problem becomes more difficult
every 10 epochs, so sustained performance corresponds to

5241



getting better, while declining performance does not imply
the policy becomes worse. On both problems, no method
achieves a single success absent RBS. Evaluating our best
algorithm (BBQN-MAP) using 0, 100, and 1000 RBS dia-
logues (Figure 3), we find that using 1000 (as compared to
100) dialogues, our agents learn quickly but that their long-
term performance is worse. One heuristic to try in the future
may be to discard pre-filled experiences after meeting some
performance threshold.

Figure 3: RBS with 100 dialogues improves both success rate
(top) and reward (bottom).

We also considered that perhaps some promising trajecto-
ries might never be sampled by the BBQN. Thus, we con-
structed an experiment exploring via a hybridization of the
BBQN’s Thompson sampling with the ε-greedy approach.
With probability 1− ε, the agent selects an action by Thomp-
son sampling given one Monte Carlo sample from the BBQN
and with probability ε the agent selects an action uniformly at
random. However, the uniformly random exploration confers
no additional benefit.

Human evaluation We evaluate the agents trained using
simulated users against real users, recruited from the au-
thors’ affiliation. We conducted the study using the DQN and
BBQN-MAP agents. In the full-domain setting, the agents
were trained with all the slots. In the domain-extension set-
ting, we first picked DQN (b-DQN) and BBQN (b-BBQN)

agents before the domain extension at training epoch 40
and the performance of these two agents is tied, nearly 45%
success rate. From training epoch 40, we started to intro-
duce new slots, and we selected another two agents (a-DQN
and a-BBQN) at training epoch 200. In total, we compare
three agent pairs: {DQN, BBQN} for full domain, {b-DQN,
b-BBQN} from before domain extension, and {a-DQN, a-
BBQN} from after domain extension. In the real user study,
for each dialogue session, we select one of six agents ran-
domly to converse with a user. We present the user with a
user goal sampled from our corpus. At the end of each dia-
logue session, the user was asked to give a rating on a scale
from 1 to 5 based on the naturalness, coherence, and task-
completion capability of the agent (1 is the worst rating, 5 is
the best). In total, we collected 398 dialogue sessions. Figure
4a presents the performance of these agents against real users
in terms of success rate. Figure 4b shows the comparison in
user ratings. In the full-domain setting, the BBQN agent is
significantly better than the DQN agent in terms of success
rate and user rating. In the domain-extension setting, before
domain extension, the performance of both agents (b-DQN
and b-BBQN) is tied; after domain extension, the BBQN (a-
BBQN) agent significantly outperforms the DQN (a-DQN)
in terms of success rate and user rating.

Related work

Our paper touches several areas of research, namely Bayesian
neural networks, reinforcement learning with deep Q-
networks, Thompson Sampling, and dialogue systems. This
work employs Q-learning (Watkins and Dayan 1992), a pop-
ular method for model-free RL. For a broad resource on
RL, we point to Sutton and Barto (1998). Recently, Mnih
et al. (2015) achieved super-human performance on Atari
games using deep Q-learning and incorporating techniques
such as experience replay (Lin 1992).

Efficient exploration remains one of the defining chal-
lenges in RL. While provably efficient exploration strate-
gies are known for problems with finite states/actions or
problems with nice structures (Kakade 2003; Asmuth et
al. 2009; Jaksch, Ortner, and Auer 2010; Li et al. 2011;
Osband, Russo, and Roy 2013), less is known for the gen-
eral case, especially when general nonlinear function ap-
proximation is used. The first DQN papers relied upon the
ε-greedy exploration heuristic (Mnih et al. 2015). More re-
cently, Stadie, Levine, and Abbeel (2015) and Houthooft
et al. (2016a; 2016b) introduced approaches to encourage
exploration by perturbing the reward function. Osband et
al. (2016) attempts to mine uncertainty information by train-
ing a neural network with multiple output heads. Each head
is associated with a distinct subset of the data. This works
for some Atari games, but does not confer a benefit for
us. Chapelle and Li (2011) empirically examine Thompson
sampling, one of the oldest exploration heuristics (Thomp-
son 1933), for contextual bandits, which is later shown
to be effective for solving finite-state MDPs (Strens 2000;
Osband, Russo, and Roy 2013).

We build on the Bayes-by-backprop method of Blun-
dell et al. (2015), employing the reparameterization trick
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(a) Distribution of Success Rate

(b) Distribution of User Ratings

Figure 4: Performance of BBQN agent versus DQN agent
tested with real users, number of tested dialogues and p-
values are indicated on each bar (difference in mean is signif-
icant with p < 0.05).

popularized by Kingma and Welling (2013), and follow-
ing a long history of variational treatments of neural net-
works (Hinton and Van Camp 1993; Graves 2011). After
we completed this work, Kirkpatrick et al. (2017) inde-
pendently investigated parameter uncertainty for deep Q-
networks to mitigate catastrophic forgetting issues. Blun-
dell et al. (2015) consider Thompson sampling for con-
textual bandits, but do not consider the more challenging
case of MDPs. Our paper also builds on prior work in
task-oriented dialogue systems (Williams and Young 2004;
Gašić et al. 2010; Wen et al. 2016) and RL for learning di-
alogue policies (Levin, Pieraccini, and Eckert 2000; Singh
et al. 2000; Williams and Young 2007; Gašić et al. 2010;
Fatemi et al. 2016). Our domain-extension experiments take
inspiration from Gašic et al. (2014) and our user simulator is
modeled on Schatzmann, Thomson, and Young (2007).

Conclusions

For learning dialogue policies, BBQNs explore with greater
efficiency than traditional approaches. The results are sim-

ilarly strong for both static and domain extension experi-
ments in simulation and real human evaluation. Addition-
ally, we showed that we can benefit from combining BBQ-
learning with other, orthogonal approaches to exploration,
such as those work by perturbing the reward function to
add a bonus for uncovering surprising transitions, i.e., state
transitions given low probability by a dynamics model, or pre-
viously rarely seen states (Stadie, Levine, and Abbeel 2015;
Houthooft et al. 2016a; 2016b; Bellemare et al. 2016). Our
BBQN addresses uncertainty in the Q-value given the cur-
rent policy, whereas curiosity addresses uncertainty of the
dynamics of under-explored parts of the environment. Thus
there is a synergistic effect of combining the approaches.
On the domain extension task, BBQN-VIME proved espe-
cially promising, outperforming all other methods. We see
several promising paths for future work. Notably, given the
substantial improvements of BBQNs over other exploration
strategies, we would like to extend this work to popular deep
reinforcement learning benchmark tasks (Atari, etc.) and
other domains, like robotics, where the cost of exploration is
high, to see if it confers a comparably dramatic improvement.
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