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Abstract

Text matching is a core issue for question answering (QA),
information retrieval (IR) and many other fields. We pro-
pose to reformulate the original text, i.e., generating a new
text that is semantically equivalent to original text, to im-
prove text matching degree. Intuitively, the generated text im-
proves mutual information between two text sequences. We
employ the generative adversarial network as the reformula-
tion model where there is a discriminator to guide the text
generating process. In this work, we focus on matching ques-
tion and answers. The task is to rank answers based on QA
matching degree. We first reformulate the original question
without changing the asker’s intent, then compute a relevance
score for each answer. To evaluate the method, we collected
questions and answers from Zhihu. In addition, we also con-
duct substantial experiments on public data such as SemEval
and WikiQA to compare our method with existing methods.
Experimental results demonstrate that after adding the refor-
mulated question, the ranking performance across different
matching models can be improved consistently, indicating
that the reformulated question has enhanced mutual informa-
tion and effectively bridged the semantic gap between QA.

1 Introduction

Text matching is of great importance for many applications.
The matching methods vary from traditional words match-
ing to modern semantic matching . Various deep match-
ing models (Severyn and Moschitti 2015; Tymoshenko and
Moschitti 2015; Bogdanova et al. 2017; Yang et al. 2016)
have been proposed in recent years. Those models can be di-
vided into representation-focused methods and interaction-
focused methods. The representation-focused methods (Hu
et al. 2014; Jansen, Surdeanu, and Clark 2014; Tan et al.
2016) aim to learn a good latent representation for a text
sequence and then conduct matching between the two repre-
sentations. The interaction-focused (Bogdanova et al. 2017;
Wang and Jiang 2017) methods could account for lexical in-
teractions while learning text representations, a typical in-
stance is the attention mechanism (Bahdanau, Cho, and Ben-
gio 2015). In the view of information theory, those match-
ing models can be regarded as a kind of information channel
between question answering (QA). For QA that has close
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relationship, they share more mutual information. A better
matching model means a better information channel, thus
uncovering more mutual information between QA. Most
prior work (Tan et al. 2016; Wang and Jiang 2017) tries to
build a better matching model to enhance mutual informa-
tion. We, instead, enhance mutual information by generat-
ing extra text, i.e., reformulating the original text in another
expression.

To be specific, we focus on matching QA and adopt the
generative adversarial network (GAN) (Goodfellow et al.
2014) framework to rewrite questions in an unsupervised
way. In the GAN framework, a generator consisting of re-
current neural networks (RNN) is used to generate new
question. Meanwhile, a discriminator is trained to force the
new question to be semantically close to original question
in embedding space. The rewriting process is similar to
monolingual machine translation where the rewriting ques-
tion is translated from original question. A main problem
for the generator is the non-differentiability of discrete text.
Since each word of the generated question is derived from
the argmax (non-differentiable) operation on the probabil-
ity distribution over vocabulary, the predicted word is non-
differentiable w.r.t. generator parameters. Thus, the gener-
ator parameters cannot be updated in back propagation. To
address this issue, we adopt the policy gradients (Williams
1992; Sutton et al. 1999), which is usually used in teaching
machine playing games. We use policy gradients from the
discriminator to guide the updation of generator parameters
so that the generator can generate more plausible samples.
Experiments are conducted on Zhihu, WikiQA and SemEval
datasets and the results demonstrate that the rewriting mod-
ule improves ranking performance consistently.

2 Related Work

Deep Matching Models. In recent years, neural networks
have shown great superiority in learning sequences’ seman-
tic representation and have achieved a great success in a va-
riety of NLP tasks as well as computer vision and speech
recognition tasks. In the QA matching domain, (Wang
and Nyberg 2015) explores a stacked bidirectional LSTM
(Hochreiter and Schmidhuber 1997) to capture context in-
formation for the current representation of words. In par-
allel with recurrent neural networks, convolutional neural
networks (CNNs) are also used to learn representations of
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sequence (Yu et al. 2014). Many studies have shown that
CNNs are significantly faster than RNNs due to the parallel
execution architecture of GPU. To utilize the merits of both
RNNs and CNNs, (Tan et al. 2016) investigates various com-
bination of CNNs and LSTM architectures. (Yin et al. 2016)
further introduces the attention mechanism (Bahdanau, Cho,
and Bengio 2015) into CNNs to learn to emphasis on differ-
ent words in sequence. (Wang and Jiang 2017) proposes to
perform word-level matching and aggregate the word-level
similarities using various distance functions for classifica-
tion.

GAN. GAN (Goodfellow et al. 2014) is a popular gen-
erative model that has been successfully applied in vari-
ous computer vision tasks and it can generate high-quality
plausible pictures. Some work (Reed et al. 2016; Zhang
et al. 2016) has used GAN to generate picture from text,
while using GAN to generate text is less explored due to
the non-differentiability of discrete words. Recently, (Yu et
al. 2017) has adopted GAN to generate poems and music,
which sounds intersting. In each time step, they apply Monte
Carlo search to restrain the next generating action.

3 Proposed Approach

3.1 Question Rewriting

We propose to rewrite question via adversarial training. In
particular, a generator G is responsible for generating text
and tries to confuse a discriminator D which is trained to
distinguish whether the input is real or synthetic. In adver-
sarial training, the discriminator and generator compete with
each other, the discriminator D force the generator G to pro-
duce question that is indistinguishable to the real question in
embedding space. D accomplishes that by propagating pol-
icy gradients back to G.

Preliminary GAN was first introduced by (Goodfellow et
al. 2014) to generate plausible images. GAN consists of a
generator G (x; θg) and a discriminator D (y; θd). The goal
is to train an unsupervised deep generative model that can
generate samples y(the distribution denoted as Pθg ) that are
as real as the true samples x(the distribution denoted as
Pdata). After many training iterations, G and D reach an
equilibrium state where G can successfully (by generating
plausible samples) fool D and D can’t distinguish whether
a sample is real or fake. The training process is a minimax
game with the value function V (D,G):

min
G

max
D

V (D,G) =Ex∼Pdata
[logD (x)]

+ Ey∼Pθg
[log(1−D (y))]

(1)

where y = G (x; θg) is the generating samples of G condi-
tioned on x. In Eq. 1, we want to classify x and y as positive
(real) and negative (fake) respectively. For image generat-
ing task, y is always generated from a random noise variable
z ∈ R

d. In this work, y is generated from x and the genera-
tor employs the encoder-decoder (Sutskever, Vinyals, and Le
2014) architecture, G first encodes x and uses it to predict
each word of the rewriting question. The training objective
for G is to maximize the probability of D making a mistake
while D tries its best to correctly classify the inputs. More

specifically, G wants to fool D so G wants D to classify gen-
erated samples y to be real, i.e., D(y) approaches to 1(real).
On the other side, D tries its best to correctly classify sam-
ples, i.e., D(y) approaches to 0(fake) and D(x) approaches
to 1. According to above rules, the parameters θg and θd are
updated by two optimizers as following:

θg ← θg − α∇θgEy∼Pθg
log(1−D(y)) (2)

θd ← θd + α∇θdEx∼Pdata
logD(x)

+ α∇θdEy∼Pθg
log(1−D(y)) (3)

where α is the learning rate. It is worth noting that θg can
also be updated by θg ← θg + α∇θgEy∼Pθg

logD(y). For
image generation, y is a picture and y is differentiable w.r.t.
θg . For text generation, however, y consists of discrete words
and is no more differentiable w.r.t. θg since y is the outcome
of argmax function, which is non-differentiable.

Generating Model The question generating architecture
is shown in Fig. 1. In the forward pass, G first encodes the
question into m hidden states where m is the length of ques-
tion. When predicting a word, the system learns a distinct
representation of input question using attention mechanism
(Bahdanau, Cho, and Bengio 2015).

The input question is encoded using bidirectional RNNs
(Schuster and Paliwal 1997) that compose of a forward
RNN and a backward RNN. The forward RNN reads ques-
tion in normal order (x1, x2, ...xm) and outputs hidden
states

(−→
h1,

−→
h2, ...

−→
hm

)
. The backward RNN reads question

in reverse order (xm, ...x2, x1) and outputs hidden states(←−
hm,

←−−−
hm−1...

←−
h1

)
. The final outputs are concatenations of

forward and backward states, i.e., hi =
[−→
hi ,

←−
hi

]
, 1 ≤ i ≤

m. Thus, each hidden state hi contains context information
of both preceding words and succeeding words information
with a focus on the i-th word.

In generating phase, a decoder RNNdec is responsible to
estimate the joint probability over predicted words:

G(y|x) =
m′∏
t=1

p(yt|y<t, x) (4)

For each predicted word yt, RNNdec outputs a probability
distribution pt ∈ R

V (V is the vocabulary size) over the vo-
cabulary:

st = RNNdec (st−1, yt−1, ct) (5)
p (yt|y<t, x) = softmax (Ust + b) (6)

yt = argmax (p (yt|y<t, x)) (7)

where st is hidden state of RNNdec at time step t. ct is a
distinct representation of source input computed specifically
for yt:

ct =
∑m

i=1
αt,ihi

αt,i = exp
(
hT
i Wst−1

)
/
∑m

j=1
exp

(
hT
j Wst−1

)
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Figure 1: The question generating architecture. D is a regular CNN model, its inputs include generated question qr and the
original question qo (not show in the picture). G employs the encoder-decoder architecture, but it is different from monolingual
machine translation or autoencoder, since there is no target sequence in training phase. Instead, the generating direction is
guided by the policy gradients from D.

Policy Gradients Training Though p (yt|y<t, x) is differ-
entiable w.r.t. generator parameters θg , after the argmax op-
eration, yt is no longer differentiable w.r.t. θg . The gradients
w.r.t. θg in Eq. 2 would be zero and θg will not be updated.
To address this problem, we leverage the policy gradients
(Williams 1992; Sutton et al. 1999) that are commonly used
in reinforcement learning tasks such as games. Here, we re-
gard G as a policy network whose expected reward(loss) is:

L = Ey∼Pθg
[R (y|x)] =

∑
y∈Pθg

Q (y)G (y|x) (8)

where Q(y) is action-value function, i.e., the reward for gen-
erating sequence y. G(y|x) is the estimated probability of
generating sequence y condictioned on x by the policy net-
work. Since G wants to fool D, i.e., maximize D(y). We
convert the problem into minimizing L and define the re-
ward Q (y) = log (1−D (y)). Noticing y is independent of
θg , so ∇θgQ(y) = ∇θg log(1−D(y)) = 0. We have:

∇θgL =
∑

y∈Pθg

[∇θgQ (y) ·G(y|x) +Q(y)·∇θgG(y|x)]

=
∑

y∈Pθg

Q(y)·∇θgG(y|x)

=
∑

y∈Pθg

Q(y)·G(y|x)·∇θg logG(y|x)

= Ey∼Pθg
[log(1−D(y))·∇θg logG(y|x)] (9)

Since G wants to maximize D(y) or minimize L, the gener-
ator parameters θg are updated by:

θg ← θg − α∇θgL (10)

Eq. 10 and Eq. 8 denote how we should change the policy
network G’s predictions(through its parameters θg) to min-

imize the loss and how its actions (generating proper words
of y) affect the reward.

Augmented Mutual Information A potential interpreta-
tion for the rewriting question is that it enhances mutual in-
formation between QA. In information theory, mutual infor-
mation between Q and A, I(Q,A), measures the amount of
information learned from each other. I(Q,A) is the differ-
ence of two entropies:

I(Q,A) = H(A)−H(A|Q) = H(Q)−H(Q|A)
H(A) denotes information entropy of answer, H(A|Q) de-
notes uncertainty about A given Q. It has an intuitive inter-
pretation: if Q and A are determinately related(A = f(Q)),
then the uncertainty H(A|Q) = H(Q|A) = 0 and I(Q,A)
is maximized; if Q and A are independent, then H(A|Q) =
H(A) and H(Q|A) = H(Q), I(Q,A) is zero. For a pair
of QA, if the question could be inferred from the answer or
vice versa, then they get the maximized mutual information.
A good matching model should reveal as much mutual in-
formation as possible. Given a fixed matching model, if we
can generate a new question Q2, then the uncertainty about
A is decreased: H(A|Q1, Q2) < H(A|Q1). Therefore, we
have:

I(Q1, Q2, A) = H(A)−H(A|Q1, Q2)

> H(A)−H(A|Q1) = I(Q1, A)

Hence, the mutual information is enhanced after we rewrite a
new question. Since we measure an answer in the embedding
space instead of traditional word-matching perspective, the
question qo might have little intersection with the content-
rich answer in high dimensional manifolds. If we only use
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the original question qo to perform matching, only limited
information about answer can be uncovered. If we reformu-
late the asker’s intent in another expression qr, the mutual
information can be further enhanced on basis of qo. As a
result, more aspects of the answer could be uncovered.

3.2 Matching Model

For each question qo, the model first generates a rewriting
question qr, then encodes qo, qr and answer into hidden
states. To merge the mutual information of qo, qr and the
answer, we blend the question (qo or qr) and answer into a
fusion matrix derived from bilinear transformation of their
hidden states, then use a convolutional feature extractor to
extract relevance information and flatten it to a dense vector.
We concatenate the dense vectors for qo and qr, then feed
it to multilayer perceptron to compute a relevance score for
each answer.

Encoding and Matching. Due to the ambiguity of lan-
guage, a word in different context will have different mean-
ing. Therefore, when learning representation of a word in
a sentence, its context information must be taken into con-
sideration. Bidirectional recurrent neural networks (Graves
and Schmidhuber 2005) have been proven to be effective in
utilizing context information. Hence, we use bidirectional
GRU (Cho et al. 2014) networks to learn the latent repre-
sentation of each word. The encoding module has two bidi-
rectional RNNs to learn QA’s hidden representations. qo and
qr share the same encoder BiGRU1 and answers share the
same encoder BiGRU2. All words are projected into vec-
tors using Glove1 embedding. Then question and answer are
fed to BiGRU1 and BiGRU2 respectively. The encoder reads
sequence in normal and reverse order, the forward and back-
ward hidden states are concatenated in the same way as the
question rewriting module. Each hidden state ht of BiGRU
at time step t is computed with its context words as follow-
ing:

−→
ht =

−−−→
GRU(

−−→
ht−1, wt)

←−
ht =

←−−−
GRU(

←−−
ht+1, wt)

(11)

where hidden state ht ∈ R
l, l denotes the size of state

after concatenating the forward output and backward out-
put: ht = [

−→
ht ,

←−
ht ]. We pack the concatenated states

(h1, h2, ...hm) to form a 2D matrix, i.e., for question, the
matrix Q ∈ R

m×l; for answer, the matrix A ∈ R
n×l, where

m,n denote length of question and answer. We merge ques-
tion and answer into fusion matrix using bilinear transfor-
mation of their representations:

F = tanh(QWAT ) (12)

where W ∈ R
l×l is learnable parameter. Without tanh op-

eration, each element Fij is a weighted multiplication of Qi,:

and Aj,::

Fij =
l∑

p=1

l∑
q=1

QiqWqpAjp (13)

1http://nlp.stanford.edu/projects/glove

This is a soft alignment of Qi,: and Aj,: with learnable coef-
ficients. From Eq. 13, we can see cosine function is a special
case of the bilinear transformation. Noticing both Qi,: and
Aj,: contain the context information, this comparison can
learn far more complicated relations between QA than sim-
ply squashing question and answer into document vectors.

Since our goal is to compute a relevance score for each an-
swer, we need to summarize the fusion matrix into a scalar.
We use a CNN model for that because CNN is well known
for its ability to extract important features from target pic-
ture(fusion matrix here). Empirically, we choose 2 × 2 and
3×3 convolutional kernels as feature extractors, respectively
corresponding to 2-gram and 3-gram alignments of two se-
quences. We get feature maps from the convolutional extrac-
tor and flatten them to a dense vector do which contains mu-
tual information I(qo, A). For the rewriting question qr, we
can similarly get another dense vector dr. We concatenate
do and dr to form d = [do, dr] and feed d to a multi-layer
perceptron for final score. d contains the mutual information
I(qo, qr, A). For a list of answers, we can compute a list a
scores s1, s2, ..., sM (M is the number of answers) follow-
ing above process.

3.3 Ranking Function

The predicted order o1, o2, ..., oM is derived from the rel-
evance scores s1, s2, ..., sM . For example, if M = 5 and
the ground truth order(l1, l2, ..., lM ) is (2, 5, 1, 3, 4), the
predicted scores are (0.3, 0.6, 0.4, 0.2, 0.7), then the pre-
dicted order(larger is better) is (2, 4, 3, 1, 5). We need to alter
the mutual relations of scores(through model parameters) to
make them fit for the ground truth order. To accomplish this
objective, we need a listwise ranking loss as the training ob-
jective. We use LambdaRank (Burges, Ragno, and Le 2006)
to compute the ranking loss, where the probability that an-
swer Ai is permuted ahead of answer Aj is defined as:

Pij = σ(si − sj) =
1

1 + e−(si−sj)
(14)

Since the sigmoid function σ is monotonic increasing about
si − sj , which denotes that the larger si is to sj , the more
likely that the i-th answer is able to permute ahead of the
j-th answer. Loss function for Ai and Aj is defined as:

Lij = −Pij logPij − (1− Pij)log(1− Pij) (15)

where Pij = 1, if li > lj else Pij = 0. Substitute the Pij

with Eq. 14, then the loss for all answer pairs becomes:

L =
∑

1≤i,j≤M

log(1 + e−Sij∗(si−sj)) (16)
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where Sij = sign(li − lj). Assuming θ is model parameter,
noticing ∂Lij

∂si
= −∂Lij

∂sj
, then the gradient of L is:

∂L

∂θ
=

∑
1≤i,j≤M

∂Lij

∂si

∂si
∂θ

+
∂Lij

∂sj

∂sj
∂θ

(17)

=
M∑
i=1

M∑
j=1

λij

(
∂si
∂θ

− ∂sj
∂θ

)
(18)

=
M∑
i=1

λi
∂si
∂θ

(19)

where λij =
∂Lij

∂si
= −Sij/(1 + eSij∗(si−sj)) and the Sij is

the same as Eq. 16. The λi is synthesized from other lamb-
das:

λi =

M∑
j=1

(λij − λji) (20)

Noticing in the process of back propagation, only gradi-
ents of loss are needed. Based on this observation, we only
need to compute the gradients in Eq. 19 without computing
the actual loss in Eq. 16 whose computation complexity is
O(M2). This is of great importance because the back prop-
agation is calculationally expensive.

4 Experiments

In this section, we describe our experiments on answer se-
lection tasks and the end-to-end ranking experiment on Zhi-
huRank data.

4.1 Answer Selection

Datasets and Experimental Settings The answer selec-
tion (AS) task is a special case of ranking where answers
are binary annotated. The goal of AS task is to rank relevant
answers ahead of those irrelevant ones. We conduct AS ex-
periments on SemEval 2016 task 3 subtask A2 dataset and
the WikiQA3(Yang, Yih, and Meek 2015) dataset. The Se-
mEval QA dataset is released by QCRI (Qatar computing
research institute) and is popularly used to evaluate a sys-
tem’s capability in answer selection. WikiQA is another AS
dataset whose questions are sampled from Bing query logs,
answers are extracted from Wikipedia based on users clicks.

We use Adam optimizer with learning rate 0.001 to up-
date parameters, learning rate will be de decayed if results
have no improvement in valid data. The batch size is 20 and
word embeddings are initialized using 100 dimensions glove
embedding. For the generating module, hidden state size of
the decoder RNN is 256. The discriminator is a regular CNN
model with convolutional kernel heights being 2 and 3, the
width equals word embedding size. For the fusion matching
module, both BiGRU1 and BiGRU2 have 512 hidden units
and initial states are zero. The batch size is 20. L2 regular-
ization is used to prevent model from overfitting. The feature
extractor CNN consists of convolution and pooling layers

2http://alt.qcri.org/semeval2016/task3
3http://aka.ms/WikiQA

and a dense layer, with 3 × 3 kernel size and 2 × 2 pool-
ing window size. Dropout is employed to the hidden outputs
with probability 40% during training phase.

Results The evaluate metrics for AS task are mean av-
erage precision (MAP) and mean reciprocal rank (MRR).
From Table 1 and Table 2, it can be seen that rewriting ques-
tion has improved the ranking performance when compared
with models without rewriting question, which verifies the
hypothesis that rewriting question provides extra informa-
tion for the matching. We have also investigated the impact
of ranking versus classification. The classification methods
categorize each answer singly while ranking methods han-
dle all the answers simultaneously. The ranking methods
have achieved better performance than classification meth-
ods, which indicates that we should rank the answers once
and for all, instead of categorizing each answer one by one.

Table 1: Results on SemEval.

System MAP MRR

Tranlation-model(Guzman et al. 2016) 78.20 86.93
Structural-KeLP(Filice et al. 2016) 79.19 86.42
Non-rewrite + Classify 75.86 84.23
Rewrite + Classify 77.62 86.14
Non-rewrite + Rank 78.03 86.53
Rewrite + Rank 80.36 87.64

Table 2: Results on WikiQA.

System MAP MRR

CNN-Cnt(Yang, Yih, and Meek 2015) 65.20 66.52
Attention-based CNN(Yin et al. 2016) 69.21 71.08
NoiseContrastive(Rao and He 2016) 70.10 71.80
KeyValue Network(Miller et al. 2016) 70.69 72.65
Pairwise Interaction(He and Lin 2016) 70.90 72.34
Attentive Pool(Yin and Schutze 2017) 71.24 72.37
Non-rewrite + Classify 69.92 70.18
Rewrite + Classify 71.83 72.56
Non-rewrite + Rank 72.16 73.22
Rewrite + Rank 73.48 74.30

4.2 Multi-level Answers Ranking

Datasets For the multi-level answers ranking task, we
built a new dataset, ZhihuRank, collected from Zhihu4, a
professional Chinese QA community that has millions of
active users daily. In real scenario, it is unreasonable for an-
swers to have only two kinds of relation(relevant or irrele-
vant) to question. Different from answers selection datasets
where answers are binary annotated, answers in ZhihuRank
have multi-grade relevance to question. In ZhihuRank, an-
swers are five-level annotated according to their thumb-up
numbers generated by user clicks. In total, there are tens of

4https://www.zhihu.com
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millions of questions and around forty million answers in
Zhihu. We make ZhihuRank public available5 for research
community. We select 20,000 “useable” questions and their
answers from the data warehouse of Zhihu to train and test
our model.

Baseline Systems We have investigated different match-
ing models to fully demonstrate the performance of question
rewriting.
ARC (Hu et al. 2014): includes ARC-I and ARC-II. ARC-I
learns representations of two sequences using CNNs. ARC-
II focuses on learning hierarchical patterns from interaction
space of two sequences and computes similarity using MLP.
Attentive LSTM (Tan et al. 2016): learns question and
answer representations using LSTM with attention mecha-
nism(Bahdanau, Cho, and Bengio 2015).
ABCNN (Yin et al. 2016): This approach introduces atten-
tion mechanism into CNNs. It learns sentence vectors us-
ing CNNs and utilizes mutual information between sentence
pair.
Skip-Thought Vectors (Kiros et al. 2015): This is an exten-
sion of word2vec that extends skip-gram model to sentence
level and can learn sentence vector.
Compare-Aggregate Model (Wang and Jiang 2017): This
method uses various comparison functions to match two
sequences and has achieved promising performance on se-
quences matching tasks.

Evaluation Metrics Since answers in ZhihuRank are
multi-level annotated, we need to evaluate the ranking per-
formance using IR metrics. We evaluate the ranking re-
sults using normalized discounted cumulative gain (NDCG)
and expected reciprocal rank (ERR) metrics, which are de-
signed specially for graded relevance and both are com-
monly used in information retrieval. NDCG is defined as
NDCG = DCG/iDCG, where DCG is:

DCG =

M∑
i=1

2oi − 1

log(1 + i)
(21)

o1,..M is the predicted order. iDCG is the ideal DCG
computed from ground truth order(l1, l2, ..., lM ). In Eq. 21,
DCG assumes document at position i is independent of pre-
vious documents. In fact, studies (Clarke et al. 2008) have
shown the likelihood a user looks through the i-th docu-
ment depends on how satisfied the user was with previous
observed documents. Hence, a ranking metric must be capa-
ble of utilizing relations of the whole list. NDCG doesn’t
take this into consideration while ERR does. Therefore, we
also report ERR results in this work. ERR is defined as:

ERR =

M∑
r=1

Rr

r

r−1∏
i=1

(1−Ri), Ri =
2oi − 1

2om
(22)

where om is the maximum label value(om is 4 here). From
Eq. 22, we can see that the gain in position r is affected
by its previous documents: if previous documents are high-
quality(with large oi), then the gain at position r would be
decreased.

5https://goo.gl/zFhS2i

Table 3: Results on ZhihuRank.

System NDCG ERR

Random 0.4168 0.3027
ARC-I 0.6435 0.5643
ARC-II 0.6847 0.5876
Skip-Thoughts 0.6912 0.6007
Attentive LSTM 0.7135 0.6112
ABCNN 0.7246 0.6198
Compare-Aggregate 0.7475 0.6316
Non-rewrite+Classify 0.7028 0.6031
Rewrite+Classify 0.7451 0.6277
Non-rewrite+Rank 0.7357 0.6345
Rewrite+Rank 0.7723 0.6502
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Figure 2: Visualization of the fusion matrix. The heatmap
represents a soft alignment between question(left) and its
best answer. Deeper color means a better soft alignment.

Results The results are shown in Table 3. For both clas-
sification and ranking methods, rewriting question improves
test NDCG and ERR compared with models that use only
original question. This agrees with our intuition that rewrit-
ing question provides extra information and explains origi-
nal question in another expression, thus matching question
and answer more comprehensively. On the other hand, per-
formance of ranking is better than classification. This can
be explained that listwise ranking methods are capable of
utilizing relationships among different answers and evaluat-
ing their relevance to question from global scope, especially
when answers have multi-level relevance with question. For
classification methods, however, answers are independent
from each other and are matched with question singly.

4.3 Visualization

To better understand the matching process, we visualize the
fusion matrix of a question and its gold answer. Fig. 2 shows
the heatmap of the fusion matrix, which has displayed the
matching degrees of different word alignments between QA.
From the heatmap, similar word pair obtains a deeper color,
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Figure 3: Comparisons of rewrite versus non-rewrite, ranking versus classification on SemEval, WikiQA and ZhihuRank
datasets.

which means better alignment of words would acquire more
attention. It is worth noting that Qi contains context infor-
mation around the i-th word, so is Ai. For example, the
word “face” appears two times in the answer, but the inner-
sentence “face” A10 obtains more attention than the tail
“face” A17, because the hidden representation learned from
BiGRU has summarized both preceding words and succeed-
ing words information with a focus on current word. From
the heatmap, we also observe that some columns and rows
have very shallow colors, the reason may be that those words
appear less frequent than other words and have not been
trained sufficiently.

4.4 The Impact of Rewriting and Ranking

We have compared rewriting versus non-rewriting, ranking
versus classification to understand their impact on perfor-
mance. Fig. 3 shows the comparison results on SemEval,
WikiQA and ZhihuRank.

Firstly, we observe that models with rewriting question
outperform consistently models with only the original ques-
tion, when other parts keep the same. It corroborates our hy-
pothesis that rewriting question does produce positive im-
pact for the matching model. In other words, the extra ex-
pression implicitly enhanced information channels between
question and answer, thus more interactions can be captured
and more aspects of answer can be revealed.

Secondly, we also notice that ranking loss function per-
forms better than classification loss function(cross entropy
as the loss). Different from sentiment analysis where the
model only needs to categorize each text independently, for
ranking task, there exists partial order relationships among

different answer pairs. It would be better to rank the candi-
date answers as a whole instead of categorizing each answer
singly. It is worth noting that the goal is to permutate good
answers ahead of bad ones. A system is effective as long as
it computes a higher score for gold answer than those bad
ones, even if the gold answer obtains a low score. It is im-
portant for a model to correctly catch the partial order rela-
tions of answers while the actual score value is unimportant.
Therefore, a comparing-based loss function such as Lamb-
daRank would be more appropriate than classification loss.

5 Conclusion

In this work, we present that text matching performance
can be improved by enhancing mutual information of two
sequences. We proposed to generate new text using GAN
framework and address the non-differentiability of dis-
crete text by policy gradients. To evaluate the method, we
have constructed a multi-level dataset collected from Zhihu.
Substantial contrastive experiments have been conducted
to investigate various influence factors, including different
matching models, ranking versus classification, rewriting
versus non-rewriting. We have also visualized the matching
process in heatmap. Experimental results have demonstrated
that the rewriting question is capable of enhancing mutual
information and improving the matching degree. Consider-
ing the universal application of text matching, the reformu-
lating mechanism proposed in this work is also promising
for many other text matching scenarios, such as paraphrase
identification, textual entailment, etc.
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