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Abstract

Long text brings a big challenge to neural network based text
matching approaches due to their complicated structures. To
tackle the challenge, we propose a knowledge enhanced hy-
brid neural network (KEHNN) that leverages prior knowl-
edge to identify useful information and filter out noise in
long text and performs matching from multiple perspectives.
The model fuses prior knowledge into word representations
by knowledge gates and establishes three matching channels
with words, sequential structures of text given by Gated Re-
current Units (GRUs), and knowledge enhanced representa-
tions. The three channels are processed by a convolutional
neural network to generate high level features for matching,
and the features are synthesized as a matching score by a
multilayer perceptron. In this paper, we focus on exploring
the use of taxonomy knowledge for text matching. Evalua-
tion results from extensive experiments on public data sets
of question answering and conversation show that KEHNN
can significantly outperform state-of-the-art matching mod-
els and particularly improve matching accuracy on pairs with
long text.

Introduction

Text matching is a fundamental problem in many NLP
tasks such as question answering (QA) (Voorhees and others
1999), retrieval based conversation (Wang et al. 2013), and
paraphrase identification (Dolan, Quirk, and Brockett 2004).

The challenge of text matching lies in semantic gaps be-
tween text pairs. State-of-the-art methods tackle the chal-
lenge by representing text pairs or their semantic relations
from different levels of abstractions with neural networks
(Hu et al. 2014). The problem is that when text becomes
long, which often happens in many applications, the perfor-
mance of these methods drops dramatically. For example,
in a public QA data set where we select a positive answer
for a question according to their matching degree, the state-
of-the-art model only achieves 70.6% matching accuracy on
pairs longer than 30 words (Q+A) compared to its perfor-
mance 78.8% on pairs shorter than 30 words. Similarly, in a
public dialog corpus where we select a proper response for a
message based on their matching degree, the state-of-the-art
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Question : Which school is better Voltaire or Bonaparte?
Tag from the asker: Family
An appropriate answer : Both are good schools but Bonaparte
will teach your kids to become a good leader but they concen-
trate mainly on outdoor physical activities, manoeuvers, strate-
gies. Horse riding and lances swords are their speciality....
On the other hand Voltaire will make your child more of
a philosopher! They encourage independent thinking...and
mainly concentrates on indoor activities! They inculcate good
moral values in the child and he will surely grow up to be a
thinking person!

Table 1: An example from CQA

model achieves 38.7% R10@1 (recall at position 1 in 10 can-
didates) on pairs longer than 20 words (M+R) compared to
41.1% R10@1 on pairs shorter than 20 words. These num-
bers indicate that long text raises a new challenge for text
matching and influence the neural network performance.

The reason state-of-the-art matching models perform
badly on long text is that long text often has complicated
structures which might hinder the models from accurately
capturing semantic relations of the text pairs. For example,
semantics of long text may reside in words, phrases, clauses
and sentences. More seriously, much information in long
text is often useless or even noise to matching. Table 1 shows
an example from community question answering (CQA) to
illustrate the challenge. The answer is very long1 and con-
tains a lot of information that well compare the two schools
but semantically far from the question (e.g., horse riding and
lances swords). The information makes the answer a high
quality one, but interferes the existing models in question-
answer matching.

We aim to improve matching accuracy on long text. Our
idea is that we introduce prior knowledge into matching
and perform matching from multiple perspectives including
words, local structures of text such as phrases and clauses,
and global context of text. The global context is represented
by the prior knowledge which could be topics, tags, and enti-
ties related to the text pair and obtained elsewhere. In match-
ing, the representation of text is constructed under the su-
pervision of the prior knowledge, and thus important parts

1The original answer has 149 words.
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in text can be highlighted and noise can be filtered out. For
instance, in CQA (e.g., Yahoo! Answers and Quora), askers
are required to assign tags to their questions as a summa-
rization of their semantics. The question in Table 1 was as-
signed a tag ”Family” by the asker, and we can use it as
prior knowledge to enhance the matching between the ques-
tion and the answer. “Family” reflects the global semantics
of the question. It can help strengthen the effect of its se-
mantically similar words like “kids”,“child” and “activity”
in QA matching, and at the same time reduce the influence
of “horse riding” and “lances swords” to matching. With the
tag as a bridge, the semantic relation between the question
and the answer can be identified, which is difficult to achieve
only by themselves.

Unlike the existing work (Severyn and Moschitti 2015)
where prior knowledge is used as an extra feature of neu-
ral networks and absent from matching until the last step,
we propose a method that lets prior knowledge operate on
representations directly and affect matching from the begin-
ning, namely knowledge enhanced hybrid neural network
(KEHNN). KEHNN exploits a knowledge gate to fuse the
semantic information carried by the prior knowledge into
each word representation. The knowledge gate is a non-
linear unit and controls how much information from the
word is kept in the new representation and how much in-
formation from the prior knowledge flows to the represen-
tation. By this means, noise from the irrelevant words is fil-
tered out, and useful information from the relevant words is
highlighted. The model then forms three channels to perform
matching from multiple perspectives. Each channel models
the interaction of two pieces of text in a pair by a similarity
matrix. The first channel matches text pairs on words. It cal-
culates the similarity matrix by word embeddings. The sec-
ond channel conducts matching on local structures of text. It
captures sequential structures of text in the pair and mod-
els dependencies among words by a Bidirectional Recur-
rent Neural Network with Gated Recurrent Units (BiGRU)
(Cho et al. 2014), and constructs the similarity matrix with
the hidden vectors given by BiGRU. In the last channel, the
knowledge enhanced representations, after processed by an-
other BiGRU, are utilized to construct the similarity matrix.
Since the prior knowledge represents global semantics of the
text pair, the channel performs matching from a global con-
text perspective. The three channels then exploit a convo-
lutional neural network (CNN) to extract compositional re-
lations of the matching elements as high level features for
matching. The features are finally synthesized as a matching
score by a multilayer perceptron (MLP).

We conduct experiments on public data sets of CQA
and conversation. Evaluation results show that KEHNN can
significantly outperform state-of-the-art matching methods,
and particularly improve the matching accuracy on long text.

Our contributions in this paper are three-folds: 1) proposal
of improving matching accuracy on long text; 2) proposal
of a knowledge enhanced hybrid neural network which is a
principled approach to leveraging prior knowledge and mul-
tiple levels of semantics of text in matching; 3) empirical
verification of the effectiveness of the proposed method on
two public data sets.

Related Work

Neural networks have proven effective on capturing seman-
tic relations of text pairs. Existing work can be categorized
into three groups. The first group follows a paradigm that
text pairs are first individually represented by neural net-
works, and then the matching score is computed by the rep-
resentations. Typical models in this group include DSSM
(Huang et al. 2013), NTN (Socher et al. 2013), CDSSM
(Shen et al. 2014), Arc1 (Hu et al. 2014), CNTN (Qiu and
Huang 2015), and LSTM (Lowe et al. 2015) etc. The second
group applies attention mechanisms to text matching. Repre-
sentative models in this group include Match-LSTM (Wang
and Jiang 2015), Inner-Attention (Wang, Liu, and Zhao
2016) and Attention LSTM (Tan, Xiang, and Zhou 2015;
Rocktäschel et al. 2015) etc. The third group matches text
pairs by their interaction matrices. For example, MV-LSTM
(Wan et al. 2015) generates the matrix by LSTMs and neu-
ral tensors, and then uses k-max pooling and a multi-layer
perceptron to compute a matching score. MultiGranCNN
(Yin and Schütze 2015) constructs an interaction matrix
with different length of text chunks, and employs a CNN
to extract matching features. More effort along this line in-
cludes Unfolding RAE + Dynamic Pooling (Socher et al.
2011), ABCNN (Yin et al. 2015), Arc2 (Hu et al. 2014),
Match-SRNN (Wan et al. 2016), CubeCNN (He and Lin
2016), DF-LSTM (Liu et al. 2016) and Coupled-LSTM (Liu,
Qiu, and Huang 2016) etc. Our method falls into the third
group. The major difference of KEHNN is that it leverages
prior knowledge and multiple channels to enhance match-
ing of long text. Before us, some researchers have pro-
posed using prior knowledge as additional features in neural
networks for text matching (Severyn and Moschitti 2015;
Ghosh et al. 2016). Different from these work, our model
leverages prior knowledge to improve representations of
text, and thus noise in the text can be filtered out and im-
portant information can be highlighted in matching.

Matching Approach

Problem Formalization

Suppose that we have a D = {(li, Sx,i, Sy,i)}Ni=1,
where Sx,i = (w1, . . . , wj , . . . , wI) and Sy,i =

(w
′
1, . . . , w

′
j , . . . , w

′
J) are two pieces of text, and wj and

w
′
j represent the j-th word of Sx,i and Sy,i respectively.

li ∈ {1, . . . , C} is a label indicating the matching de-
gree between Sx,i and Sy,i, where C is the scale of the
matching degree. In addition to D, we have prior knowl-
edge for Sx,i and Sy,i denoted as kx,i and ky,i respectively.
Our goal is to learn a matching model g(·, ·) with D and{∪N

i=1kx,i,∪N
i=1ky,i

}
. Given a new pair (Sx, Sy) with prior

knowledge (kx,ky), g(Sx, Sy) predicts the matching degree
between Sx and Sy .

In the following sections, we first assume the existence
of prior knowledge and present our matching model. Then,
we describe details on how to acquire prior knowledge in
practice.
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Knowledge Gate

Inspired by the powerful gate mechanism (Hochreiter and
Schmidhuber 1997; Chung et al. 2014) in recurrent neural
networks (RNNs), we propose using knowledge gates to in-
corporate prior knowledge into matching. The knowledge
gate provides a general and principled approach to leverage
prior knowledge in matching. The underlying motivation is
that we want to use the prior knowledge to filter out noise
and highlight the useful information to matching in a piece
of text. Formally, let ew ∈ R

d denote the embedding of a
word w in text Sx and kx ∈ R

n denote the representation of
the prior knowledge of Sx. Knowledge gate kw is defined as

kw = σ(Wkew + Ukkx), (1)

where σ is a sigmoid function, and Wk ∈ R
d×d, Uk ∈ R

d×n

are parameters. With kw, we define a knowledge enhanced
representation for w as

ẽw = kw � ew + (1− kw)� kx, (2)

where � is an element-wise multiplication operation. Equa-
tion (2) means that prior knowledge is fused into match-
ing by a combination of the word representation and the
knowledge representation. In the combination, the knowl-
edge gate element-wisely controls how much information
from word w is preserved, and how much information from
prior knowledge kx flows in. The advantage of the element-
wise operation is that it offers a way to precisely control
the contributions of prior knowledge and words in match-
ing. Entries of kw lie in [0, 1]. The larger an entry of kw is,
the more information from the corresponding entry of ew
will be kept in ẽw. In contrast, the smaller an entry of kw
is, the more information from the corresponding entry of kx

will flow into ẽw. Since kw is determined by both ew and kx

and learned from training data, it will keep the useful parts
in the representations of w and the prior knowledge and at
the same time filter out noise from them.

Matching with Multiple Channels

With the knowledge enhanced representations, we propose
a knowledge enhanced hybrid neural network (KEHNN)
which conducts matching with multiple channels. Figure 1
gives the architecture of KEHNN. Given a pair (Sx, Sy),
the model looks up an embedding table and represents
Sx and Sy as Sx = [ex,1, . . . , ex,i, . . . , ex,I ] and Sy =
[ey,1, . . . , ey,i, . . . , ey,J ] respectively, where ex,i, ey,i ∈ R

d

are the embeddings of the i-th word of Sx and Sy respec-
tively. Sx and Sy are used to create three similarity matri-
ces, each of which is regarded as an input channel of a CNN.
CNN extracts high level features from the similarity matri-
ces. All features are finally concatenated and synthesized by
a multilayer perceptron (MLP) to form a matching score.

Specifically, in channel one, ∀i, j, element e1,i,j in simi-
larity matrix M1 is calculated by

e1,i,j = h(eᵀx,i · ey,j), (3)

where h(·) could be ReLU or tanh. M1 matches Sx and Sy

on words.
In channel two, we employ bidirectional gated recurrent

units (BiGRU) (Chung et al. 2014) to encode Sx and Sy into

hidden vectors. A BiGRU consists of a forward RNN and
a backward RNN. The forward RNN processes Sx as it is
ordered (i.e., from ex,1 to ex,I ), and generates a sequence
of hidden states (

−→
h 1, . . . ,

−→
h I). The backward RNN reads

Sx in its reverse order (i.e., from ex,I to ex,1) and gener-
ates a sequence of backward hidden states (

←−
h 1, . . . ,

←−
h I).

BiGRU then forms the hidden vectors of Sx as {hx,i =

[
−→
h i,

←−
h i]}Ii=1 by concatenating the forward and the back-

ward hidden states. More specifically, ∀i,−→h i ∈ R
m is cal-

culated by

zi = σ(Wzex,i + Uz
−→
h i−1)

ri = σ(Wrex,i + Ur
−→
h i−1)

h̃i = tanh(Whex,i + Uh(ri �−→
h i−1))

−→
h i = zi � h̃i + (1− zi)�−→

h i−1, (4)

where
−→
h 0 = 0, zi and ri are an update gate and a reset gate

respectively, and Wz , Wh, Wr, Uz , Ur,Uh are parameters.
The backward hidden state

←−
h i ∈ R

m is obtained in a similar
way. Following the same procedure, we get {hy,i}Ji=1 as the
hidden vectors of Sy . ∀i, j, we calculate element e2,i,j in
similarity matrix M2 by

e2,i,j = h(hᵀ
x,iW2hy,j + b2), (5)

where W2 ∈ R
2m×2m and b2 ∈ R are parameters. Bi-

GRU models dependencies among words and encodes se-
quential information of text into hidden vectors, therefore,
M2 matches Sx and Sy on local structures (i.e., sequential
structures such as phrases and clauses) of text.

In the last channel, we employ another BiGRU to pro-
cess the sequences of Sx and Sy which consists of the
knowledge enhanced representations in Equation (2), and
obtain the knowledge enhanced hidden states khx =
(khx,1, . . . , khx,I) and khy = (khy,1, . . . , khy,J) for Sx

and Sy respectively. Similar to channel two, ∀i, j, element
e3,i,j in similarity matrix M3 is given by

e3,i,j = h(khᵀ
x,i ·W3 · khy,j + b3), (6)

where W3 ∈ R
2m×2m and b3 ∈ R are parameters. Prior

knowledge represents a kind of global semantics of Sx and
Sy , and therefore M3 matches Sx and Sy on global context
of text. Note that channel three also models the sequential
structures and the dependencies in text. The difference is that
the structures and the dependencies are modeled under the
supervision of the prior knowledge.

The similarity matrices are then processed by a CNN to
abstract high level features. ∀i = 1, 2, 3, CNN regards a
similarity matrix as an input channel, and alternates convo-
lution and max-pooling operations. Suppose that z(l,f) =[
z
(l,f)
i,j

]
I(l,f)×J(l,f)

denotes the output of feature maps of

type-f on layer-l, where z(0,f) = Mf , ∀f = 1, 2, 3. On con-
volution layers (i.e. ∀l = 1, 3, 5, . . . ,), we employ a 2D con-
volution operation with a window size r

(l,f)
w × r

(l,f)
h , and
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Figure 1: Architecture of KEHNN

define z
(l,f)
i,j as

z
(l,f)
i,j = σ(

Fl−1∑
f ′=0

r
(l,f)
w∑
s=0

r
(l,f)
h∑
t=0

w
(l,f)
s,t · z(l−1,f ′)

i+s,j+t + bl,k), (7)

where σ(·) is a ReLU, and w(l,f) ∈ R
r(l,f)
w ×r

(l,f)
h and bl,k

are parameters of the f -th feature map on the l-th layer, and
Fl−1 is the number of feature maps on the (l − 1)-th layer.
We employ a max pooling operation after a convolution op-
eration and can be formulated as

z
(l,f)
i,j = max

p
(l,f)
w >s≥0

max
p
(l,f)
h

>t≥0

zi+s,j+t, ∀l = 2, 4, 6, . . . , (8)

where p(l,f)w and p
(l,f)
h are the width and the height of the 2D

pooling respectively.
The outputs of the final feature maps are concatenated as a

vector v and fed to a two-layer feed-forward neural network
(i.e., MLP) to calculate a matching score g(Sx, Sy):

g(Sx, Sy) = σ1 (w
ᵀ
2 · σ2 (w

ᵀ
1v + b4) + b5) , (9)

where w1, w2, b4, and b5 are parameters. σ1(·) is softmax
and σ2(·) is tanh.

KEHNN matches two objects by letting them meet at the
beginning, which is the advantage of 2D CNN (Hu et al.
2014) over other methods. Moreover, it constructs interac-
tion matrices by considering multiple levels of semantics
(words, local structures, and global context). Therefore se-
mantic relations between the two objects can be sufficiently
modeled and leveraged in building the matching function.
Our model extends the existing models (Hu et al. 2014;
Wan et al. 2015) by fusing extra knowledge into matching
and conducting matching with multiple channels.

We learn g(·, ·) by minimizing cross entropy (Levin and
Fleisher 1988) with D and

{∪N
i=1kx,i,∪N

i=1ky,i

}
. Let Θ de-

note the parameters of our model. Then the objective func-
tion of learning can be formulated as

L(D; Θ) = −
N∑
i=1

C∑
c=1

P g
c (li) · log(Pc(g(Sx,i, Sy,i)), (10)

where N in the number of instances in D, and C is the num-
ber of values of labels in D. Pc(g(Sx,i, Sy,i)) returns the

c-th element from the C-dimensional vector g(Sx,i, Sy,i),
and P g

c (li) is 1 or 0, indicating whether li equals to c or not.
We optimize the objective function using back-propagation
and the parameters are updated by stochastic gradient de-
scent with Adam algorithm (Kingma and Ba 2014). As reg-
ularization, we employ early-stopping (Lawrence and Giles
2000) and dropout (Srivastava et al. 2014) with rate of 0.5.
We set the initial learning rate and the batch size as 0.01 and
50 respectively.

Prior Knowledge Acquisition

Prior knowledge plays a key role to the success of our
model. As described above, we expect prior knowledge to
represent global context of input. In practice, we can use
tags, keywords, topics, or entities (with meta information
from a knowledge base) that are related to the input as in-
stantiation of the prior knowledge. Such prior knowledge
could be obtained either from the metadata of the input,
or from extra algorithms. Algorithms include tag recom-
mendation (Wu et al. 2016), keyword extraction (Wu et al.
2015), topic modeling (Blei, Ng, and Jordan 2003) and en-
tity linking (Han, Sun, and Zhao 2011) can be utilized to ex-
tract the prior knowledge from multiple resources like web
documents, social media and knowledge base, and embed-
ding techniques (Pennington, Socher, and Manning 2014;
Wang et al. 2014) can be used to transform the raw prior
knowledge to vectors as kx and ky .

In our experiments, we used question tags which repre-
sent a kind of metadata in CQA as the prior knowledge in
the QA task. For the conversation task, we pre-trained a
Twitter LDA model (Zhao et al. 2011) with external large
scale social media data and took the topics predicted by
LDA as the prior knowledge, as the topics could help us
group text with similar meaning. Both the tags and the top-
ics are transformed as vectors by the word2vec algorithm
(Pennington, Socher, and Manning 2014) (see our experi-
ments) and used in matching through the knowledge gates.
The tags and the topics represent a high level abstraction
from human or an automatic algorithm to the QA pairs or
the message-response pairs, and therefore, they can reflect
the global semantics of the input of the two tasks. We leave
the discussion of other types of prior knowledge (e.g., enti-
ties) as future work.
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Experiments

We tested our model on two matching tasks: answer selec-
tion and response selection.

Baseline

We consider the following models as baselines:
Basic models: each piece of text is first embedded to

a vector space by neural networks, and then their match-
ing degree is computed by the two vectors. The embed-
ding methods include multi-layer perceptron (MLP), LSTM
(Lowe et al. 2015), and CNN (Arc1) (Hu et al. 2014). Be-
sides these, we also implemented DeepMatchtopic proposed
in (Lu and Li 2013), and the convolution neural tensor net-
work (CNTN) (Qiu and Huang 2015) proposed for commu-
nity question answering. We also use cosine score with one
hot representations (tf·idf) as inputs to compute the match-
ing degree.

Attentive matching models: we selected Attentive-
LSTM proposed by Tan et al. (2015) and Match-LSTM pro-
posed by Wang et al. (2015) as baselines which represent the
state-of-the-art matching approaches with attention mecha-
nisms.

2D matching models: we implemented Arc2 (Hu et al.
2014), MatchPyramid (Pang et al. 2016), and MV-LSTM
(Wan et al. 2015). In addition to these models, we also
compared our model with MultiGranCNN (Yin and Schütze
2015) which also ensures multigranular comparability but
does not consider prior knowledge.

Knowledge augmented models: we implemented the
model proposed by (Severyn and Moschitti 2015) where
prior knowledge is the same as our model but used as ad-
ditional features and denote it as AddFeature.

We implemented all baselines and KEHNN by Theano
(Theano Development Team 2016). For all models, we set
the dimensionality of word embedding (i.e., d) as 100 and
the maximum text length (i.e., I and J) as 200. In LSTM
based models and BiGRU in our model, we set the di-
mensionality of hidden states as 100 (i.e., m). We only
used one convolution layer and one max-pooling layer in
all CNN based models, because we found that the perfor-
mance of the models did not get better with the number
of layers increased. For Arc2, MatchPyramid, MV-LSTM,
and KEHNN, we tuned the window size in convolution and
pooling in {(2, 2), (3, 3)(4, 4)} and chose (3, 3) finally. The
number of feature maps is 8. For Arc1 and CNTN, we se-
lected the window size from {2, 3, 4} and set it as 3 finally.
The number of feature maps is 200. In MLP, we tuned the di-
mensionality of the hidden layer in {50, 200, 400, 800} and
set it as 50 finally. We implemented MultiGranCNN and
AddFeature following the settings in the existing literatures.
Sx and Sy in KEHNN shared word embeddings, knowledge
embeddings, parameters of BiGRUs, and parameters of the
knowledge gates. All tuning was conducted on validation
sets. The activation functions in baselines are the same as
those in our model. We shared the code of our model at
https://github.com/MarkWuNLP/KEHNN.

Data #question #answer #answers per question
Training 2600 16541 6.36

Dev 300 1645 5.48
Test 329 1976 6.00

Table 2: Statistics of the QA data set

Answer Selection

The goal of the task is to select a good answer from an-
swer candidates for a question. We used a public data set in
SemEval 2015 (AlessandroMoschitti, Glass, and Randeree
2015), which collects question-answer pairs from Qatar Liv-
ing Forum2 and requires to classify the answers into 3 cat-
egories (i.e. C = 3 in our model) including good, potential
and bad. The ratio of the three categories is 51:10:39. The
statistics of the data is summarized in Table 2. We used clas-
sification accuracy as an evaluation metric.

Specific Setting In this task, we regarded question tags as-
signed by askers as prior knowledge (both kx and ky). There
are 27 tags in the Qatar Living data. Knowledge vector k was
initialized by averaging the embeddings of words in the tag.
For all baselines and our model, the word embedding, the idf
table and the topic model (in DeepMatchtopic) were trained
on a Qatar living raw text provided by SemEval 2015 3. We
fixed the word embedding during the training process as the
training data is small, and set h in Equation (3), (5), (6) as
ReLU. The reason of using ReLU here is that ReLU is able
to prevent overfitting when the question-answer pairs are not
enough.

Results JAIST, the champion of the task in SemEval 2015,
used 12 features and an SVM classifier and achieved an ac-
curacy of 0.725. TFIDF performs very bad on this task, as
it only matches QA pairs by word overlap. From Table 3,
we can see that advanced neural networks, such as CNTN,
MV-LSTM, Attentive-LSTM, Match-LSTM, and KEHNN,
outperform JAIST’s model, indicating that hand-crafted fea-
tures are less powerful than deep learning methods. Mod-
els that match text pairs by interaction representations like
Arc2 and MatchPyramid are not better than models that per-
form matching with sentence embeddings like Arc1. This
is because the training data is small and we fixed the word
embedding in learning. LSTM based models in general per-
forms better than CNN based models, because they can
capture sequential information and dependencies in text.
KEHNN outperforms all baseline methods, and the improve-
ment is statistically significant (t-test with p-value ≤ 0.01).

Response Selection

The goal of response selection is to select a proper response
for a message from a candidate pool in a conversational en-
vironment. We used a public English conversation data set,

2http://www.qatarliving.com/forum
3http://alt.qcri.org/semeval2015/task3/index.php?id=data-and-

tools
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ACC
TFIDF 0.456
MLP 0.713
DeepMatchtopic (Lu and Li 2013) 0.682
Arc1 (Hu et al. 2014) 0.715
CNTN (Huang et al. 2013) 0.735
LSTM (Lowe et al. 2015) 0.725
Attentive-LSTM (Tan, Xiang, and Zhou 2015) 0.736
Match-LSTM (Wang and Jiang 2015) 0.743
Arc2 (Hu et al. 2014) 0.715
AddFeature (Severyn and Moschitti 2015) 0.743
MatchPyramid (Pang et al. 2016) 0.717
MultiGranCNN (Yin and Schütze 2015) 0.743
MV-LSTM (Wan et al. 2015) 0.735
JAIST (Tran et al. 2015) 0.725
KEHNN 0.753

Table 3: Results on answer selection

the Ubuntu Corpus (Lowe et al. 2015), to conduct the ex-
periment. The corpus consists of a large number of human-
human dialogues about Ubuntu technique. Each dialogue
contains at least 3 turns, and we only kept the last two ut-
terances as we study text pair matching and ignore context
information. We used the data pre-processed by Xu et al. (Xu
et al. 2016)4, in which all urls and numbers were replaced
by special placeholders. The training set contains 1 million
message-response pairs with a ratio 1:1 between positive and
negative responses, and both the validation set and the test
set have 0.5 million message-response pairs with a ratio 1:9
between positive and negative responses. We followed Lowe
et al. (2015) and employed recall at position k in n candi-
dates as evaluation metrics, denoted as Rn@k.

Specific Setting In this task, we trained a topic model to
generate topics for both messages and responses as prior
knowledge. We crawled 8 million questions (question and
description) from the “Computers & Internet” category in
Yahoo! Answers, and utilized these data to train a Twitter
LDA model (Zhao et al. 2011) with 100 topics. In order
to construct kx,i and ky,i, we separately assigned a topic
to a message and a response by the inference algorithm of
Twitter LDA. Then we transformed the topic to a vector
by averaging the embeddings of top 20 words under the
topic. Word embedding tables were initialized using the pub-
lic word vectors available at http://nlp.stanford.edu/projects/
glove (trained on Twitter) and updated in learning. Tanh is
used as h in Equation (3), (5), (6). The idf table is calculated
using the training data.

Results Table 4 reports the evaluation results on response
selection. Our method outperforms baseline models on all
metrics, and the improvement is statistically significant (t-
test with p-value ≤ 0.01). In the data set, as the training data
becomes large and we updated word embedding in learning,
Arc2 and MatchPyraimd are much better than Arc1. LSTM
based models perform better than CNN based models, which
is consistent with the results in the QA task.

4https://www.dropbox.com/s/2fdn26rj6h9bpvl/ubuntudata.zip?
dl=0

R2@1 R10@1 R10@2 R10@5
TFIDF 0.681 0.383 0.482 0.686
MLP 0.651 0.256 0.380 0.703
DeepMatchtopic 0.593 0.345 0.376 0.693
Arc1 0.665 0.221 0.360 0.684
CNTN 0.743 0.349 0.512 0.797
LSTM 0.725 0.361 0.494 0.801
Attentive-LSTM 0.758 0.381 0.545 0.801
Match-LSTM 0.685 0.289 0.430 0.701
Arc2 0.736 0.380 0.534 0.777
AddFeature 0.763 0.425 0.570 0.804
MatchPyramid 0.743 0.420 0.554 0.786
MultiGranCNN 0.762 0.436 0.571 0.792
MV-LSTM 0.767 0.410 0.565 0.800
KEHNN 0.786 0.460 0.591 0.819

Table 4: Evaluation results on response selection

Conversation QA
R2@1 R10@1 R10@2 R10@5 ACC

M1 0.743 0.420 0.554 0.786 0.717
M2 0.779 0.425 0.565 0.800 0.734
M3 0.750 0.360 0.531 0.791 0.738
M1+M2 0.781 0.435 0.578 0.810 0.745
Removeg 0.778 0.433 0.580 0.810 0.746
Concat 0.784 0.445 0.583 0.817 0.747
KEHNN 0.786 0.460 0.591 0.819 0.753

Table 5: Model Ablation. Concat denotes M1 and M2 with
prior knowledge as an additional feature

Discussions

Model ablation: we first analyze the effect of different parts
of KEHNN. Table 5 gives the results. First, M3 is the best
single channel on the QA data, but it is worse than M2

on the conversation data. This is because there is noise in
the automatically generated topics as the prior knowledge.
In spite of this, when erasing M3 from KEHNN (denoted
as M1+M2) or removing the knowledge gates (denoted as
Removeg) from M3 but the keeping three channels, the per-
formance of the model dropped. The results demonstrate
the importance of the prior knowledge to matching: it can
improve matching accuracy and cannot be simply replaced
by more parameters. Moreover, we also compared KEHNN
with Concat which keeps M1 and M2 but uses the same
prior knowledge as additional features like AddFeature. Al-
though Concat further gets closer to KEHNN, there are still
clear gaps on R10@1, R10@2, and ACC. The results veri-
fied the advantage of the knowledge gate over the heuristic
method in terms of leveraging prior knowledge for match-
ing. Different channels provide different information, and
the information is complementary to each other. This ex-
plains why M1+M2 is better than M1, and KEHNN is fur-
ther better than M1+M2.

Performance across length : we then examine if
KEHNN can improve matching accuracy on long text by
binning text pairs in the two data sets into 4 buckets ac-
cording to the length of the concatenation of the text. Ta-
ble 6 compares KEHNN with LSTM, Attentive-LSTM, MV-
LSTM, MultiGranCNN and M1+M2. We can see that on
both data sets, the performance becomes worse as the text
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Figure 2: Model visualization. The darker areas mean larger values.

(a) Accuracy on QA dataset

Length [0, 30) [30, 60) [60, 90) [90,∞)
LSTM 0.768 0.705 0.728 0.726
Attentive-LSTM 0.792 0.719 0.746 0.732
MV-LSTM 0.788 0.708 0.746 0.739
MultiGranCNN 0.787 0.694 0.712 0.712
M1+M2 0.787 0.719 0.760 0.731
KEHNN 0.792 0.721 0.765 0.746

(b) R10@1 on Ubuntu dataset

Length [0, 10) [10, 20) [20, 30) [30,∞)
LSTM 0.367 0.361 0.345 0.316
Attentive-LSTM 0.383 0.381 0.341 0.318
MV-LSTM 0.416 0.410 0.390 0.369
MultiGranCNN 0.441 0.433 0.431 0.399
M1+M2 0.443 0.428 0.415 0.410
KEHNN 0.464 0.445 0.452 0.437

Table 6: Performance on different length of text

becomes longer, and KEHNN can slow the performance
drop. From the comparison with M1+M2, we can see that
the prior knowledge contributes a lot on text longer than 90
words on the QA data, and is useful from short text to long
text in the conversation data.

Visualization: we finally visualize M1, M2, and M3 in
Figure 2 with an example from the Ubuntu Corpus . The ex-
ample is “message: i tried to check my sound preferences
and so on .. but .. nothing matches” and “response: just
checked quickly but it appears there is no mute option in the
flash menu (right click settings).”. Top words under the topic
(assigned by LDA) of this examples includes sound, audio ...
. Similar word pairs like (sound,mute) and segment pairs like
“my sound preference” and “flash menu (right click setting)”
have large values in M1 and M2 respectively. A major dif-
ference between M2 and M3 is that text after “mute” in the
response is more important in M3. This is because the prior
knowledge (topics) is about “audio” and highlighted the text
segment in matching as it is more related to the topics.

Conclusion

This paper proposes KEHNN which can leverage prior
knowledge in semantic matching. Experiment results show
that the model can significantly outperform state-of-the-art
matching models on two data sets, and especially improve

matching accuracy on long text. We are going to study how
to use different prior knowledge in the future.
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