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Abstract

Variational encoder-decoders (VEDs) have shown promising
results in dialogue generation. However, the latent variable
distributions are usually approximated by a much simpler
model than the powerful RNN structure used for encoding and
decoding, yielding the KL-vanishing problem and inconsis-
tent training objective. In this paper, we separate the training
step into two phases: The first phase learns to autoencode dis-
crete texts into continuous embeddings, from which the second
phase learns to generalize latent representations by reconstruct-
ing the encoded embedding. In this case, latent variables are
sampled by transforming Gaussian noise through multi-layer
perceptrons and are trained with a separate VED model, which
has the potential of realizing a much more flexible distribu-
tion. We compare our model with current popular models and
the experiment demonstrates substantial improvement in both
metric-based and human evaluations.

Introduction

Recurrent neural networks (RNNs) (Bengio et al. 2003) are
widely used in natural language processing tasks. However,
given the history context, RNNs estimate the probability of
one word at a time and does not work from a holistic sen-
tence representation (Bowman et al. 2016). When applied to
dialogue generation, the corresponding result is that it would
generate either short, boring responses or long, inconsistent
sentences. As the length of generated sentences grows, it
would easily deviate from the original intention as such token-
level estimation only considers immediate short rewards
and neglects global structure consistency. In hence, vanilla
RNNs prefer generating generic and safe short responses
to avoid the risk of making errors (Vinyals and Le 2015;
Serban et al. 2016; Shen et al. 2017). One way of improving
this deficient generating process is to introduce a sentence-
level representation, which can be further conditioned on to
ensure the sentence-level consistency.

Deep latent variable models are a popular way to learn
such representations in a generative setting. Latent repre-
sentations and generators can be jointly trained in an un-
supervised way. By learning the probability of synthesiz-
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ing real data from intermediate latent variables, they are
expected to uncover and disentangle causal factors that are
most important to explain the data. The exact log-likelihood
normally requires integral in high-dimensional space and
cannot be analytically expressed. Current approaches solve
this intractability problem by imposing a recognition net-
work to approximate the real posterior probability. Vari-
ational autoencoders (VAEs) (Kingma and Welling 2014;
Rezende, Mohamed, and Wierstra 2014) bring scalability and
stability to the training procedure, which introduces a repa-
rameterization trick to reduce the variance when estimating
the backpropagated gradients.

(Serban et al. 2017b) proposed the VHRED structure
which applied the conditional VAE (CVAE) (Sohn, Lee, and
Yan 2015) with RNN encoder-decoders in dialogue gener-
ation, in hope of CVAE’s advantage of learning global rep-
resentations being a good complement of RNN’s power at
modeling local dependencies. However, this simple combina-
tion runs into the KL-vanishing problem that the RNN part
ends up explaining all the structures without making use of
the latent representation. The reason is that RNN is a univer-
sal approximator with much more flexibility than the simple
gaussian distributed latent variables so that the model lacks
enough motivation to utilize them.

Current approaches normally address this problem by
weakening the RNN decoder to match the simpler latent vari-
able distribution, which essentially sacrifices the generating
capacity for better representation learning and is inappropri-
ate when our main goal is to learn a generative model. In this
paper, on the contrary, we take advantage of the universality
of RNNs to help realize a more flexible latent variable distri-
bution. By this means, we can not only add motivation for
utilizing latent variables, but also strengthen the expressive-
ness of the generating model. Specifically, we split the whole
structure into a CVAE module and an autoencoder (AE) mod-
ule. The CVAE module learns to generate latent variables
while the AE module builds the connection between them and
real dialogue utterances. The outputs of the CVAE serve as
input latent variables for the AE module, which is potentially
much more flexible than restricting the latent variables to fol-
low a fixed distribution. As the RNN encoder-decoders in the
AE module are universal approximators, they are adjusted to
extract continuous vectors from the dialogue data that can be
more easily modelled by the CVAE module. Combined with
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a scheduled sampling trick, this structure can significantly
improve the generating performance. We show this structure
can be compared to an adversarial encoder-decoder which
substitutes the GAN step with a VAE alternative. Though the-
oretically less accurate, our framework is preferred to AED
as the training process of VAE is much more reliable than
GAN in seq2seq tasks and the universality of RNN ensures
this inaccuracy can be controlled within an acceptable range.

VED in Dialogue Generation

In this section, we review the VAE and VHRED structure,
then analyze where the training difficulty comes from when
applied in dialogue generation and how current approaches
try to solve this problem.

VAE and VHRED

The variational autoencoder (VAE) (Kingma and Welling
2014; Rezende, Mohamed, and Wierstra 2014) is a popular
generative model. Its generating process is as follows: data
x is generated by the generative distribution pθ(x|z) and
z is sampled from the prior distribution p(z). In contrast
to calculating the exact log-likelihood, it can be efficiently
trained by optimizing a valid lower bound (Jordan et al. 1999).
The objective takes the following form:

− log pθ(x) ≤ − log pθ(x) + KL(qφ(z|x)||pθ(z|x))
= −Eqφ(z|x)[log pθ(x|z)] + KL(qφ(z|x||p(z)) (1)

pθ(z|x) is the real posterior distribution of z given the prior
distribution pθ(z) and the likelihood pθ(x|z). The optimiz-
ing objective is namely maximizing the likelihood log pθ(x)
and at the same time minimizing the mismatch between the
approximated posterior qφ(z|x), which is parametrized by
neural networks, and the real posterior pθ(z|x). When the
gap KL(qφ(z|x)||pθ(z|x)) is large, the objective becomes
inconsistent and the generating process cannot recover the
real data distribution even in the global optimum.

The whole process can be conditioned on an additional
context c, which leads to the conditional VAE (Sohn, Lee,
and Yan 2015) (CVAE): the output x is generated from the
distribution pθ(x|c, z), latent variable z is drawn from the
prior distribution pθ(z|c). The variational lower bound of
CVAE is written as follows:

−Eqφ(z|x,c)[log pθ(x|c, z)] + KL(qφ(z|x, c)‖pθ(z|c)) (2)

Specially, to some extent, when both the context c and output
x are sequential data, CVAE can also be treated as a seq2seq
model (Sutskever, Vinyals, and Le 2014).

The variational hierarchical recurrent encoder-decoder
(VHRED) (Serban et al. 2017b) is a CVAE with hierarchical
RNN encoders, where the first-layer RNN encodes token-
level variations and the second-layer RNN captures sentence-
level topic shifts. In this case, c in Equation. 2 stands for
dialogue history, x is the response to be decoded and z is
the latent variable reflecting the high-level representation
of x. The distribution qφ(z|x, c) and pθ(z|c) are usually set
as simple Gaussian distributions with diagonal covariance
matrix.

Optimization Challenges

In VHRED, straightforwardly optimizing with Equation. 2
suffers from the KL-vanishing problem because the RNN
decoder pθ(x|c, z) is a universal function approximator and
tends to represent the distribution without referring to the
latent variable. At the beginning of the training process, when
the approximate posterior qφ(z|x, c) carries little useful in-
formation, it is natural for the model to blindly set qφ(z|x, c)
closer to the Gaussian prior pθ(z|c) so that the extra cost
from the KL divergence can be avoided (Chen et al. 2017).

To better analyze where the optimizing comes from, we
can rewrite Equation. 2 as the following:

− log

∫
z

pθ(z|c)pθ(x|z, c)dz + KL(qφ(z|x, c)||pθ(z|x, c))
(3)

Let’s first take a look at the first item,
log

∫
z
pθ(z|c)pθ(x|z, c)dz = log pθ(x|c). When the

family of pθ(x|z, c) is complex enough and includes the
real distribution of x, the optimal value of this item is
p(x|c) and the reliance on z is not necessary. However,
reliance on z provides the model with a chance of taking
advantage of z′s distribution and reduces the complexity
requirement for the distribution family pθ(x|z, c). For
example, suppose p(x|c) = N (0, 1) and pθ(z|c) = N (3, 1),
modeling p(x|c) accurately without reliance on z requires
pθ(x|z, c) to include the Gaussian distribution, while by
means of the linear mapping between x and z, pθ(x|z, c) can
describe the real distribution with only linear complexity.
When Gaussian distribution is not covered in the family
pθ(x|z, c), this model has to exploit the relation between x
and z to model the real distribution. Likewise, in dialogue
generation, although the RNN decoder pθ(x|c) can in theory
approximate arbitrary function, perfectly fitting the real
dialogue distribution is still difficult due to the optimizing
challenge, training corpus size and approximating errors.
Therefore, to achieve the global optimum, we believe this
first item will always prefer utilizing the latent variables, so
long as the decoder pθ(x|z, c) is not perfect. The weaker
the decoder family is, the more it will be biased to utilizing
latent variables. A more flexible prior distribution pθ(z) will
also increase the chance as it provides more possibilities for
the utilisation.

The second item is the KL divergence, whose minimum
value is 0 if and only if qφ(z|x, c) = pθ(z|x, c). According
to the Bayes theorem, we can express pθ(z|x, c) as:

pθ(z|x, c) = pθ(x|z, c)pθ(z|c)
pθ(x|c) (4)

By ignoring the latent variable z, pθ(x|z, c) and pθ(x|c) can-
cels out, setting qφ(z|x, c) = pθ(z|c) can easily arrive at the
global optimum 0. Otherwise, when pθ(z|c) is parametrised
as a mean-field Gaussian distribution as in VHRED, the real
posterior is impossible to fall into the same distribution fam-
ily. Firstly, the independence relation cannot be satisfied. To
make dimensions of pθ(z|x) independent with each other,
the likelihood pθ(x|z) must exactly disentangle the effect
of every dimension, which is unrealistic when pθ(x|z) is a
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categorical distribution modelled by the RNN softmax. Sec-
ondly, the real posterior distribution can hardly still follow a
Gaussian distribution when the likelihood pθ(x|z) is based
on discrete sequential data. Normally the training process
will adjust pθ(x|z) to make the real posterior easier to be
modelled by qφ(z|x) (Hinton et al. 1995). However, when x
represents sentences with variable length, the value of pθ(x|z)
vanishes greatly when the length grows, which makes the
adjusting task much more difficult. This implies the second
item will always prefer ignoring the latent variables, so long
as the approximated posterior is not powerful enough to per-
fectly match the real posterior. The weaker the approximating
posterior distribution family is, the more it will be biased to
ignoring latent variables.

Above all, the objective function of variational encoder-
decoders in dialogue generation is essentially the competition
of these two items, who is biased to utilizing or ignoring
latent variables respectively. The reason of KL divergence
vanishing in the global optimum is that the second term can
gain more from ignoring the latent variables than the first
term from utilizing them.

Current Approaches

If we use the ELBO objective, as explained, there are
two directions to prevent the KL-vanishing problem: im-
proving the advantage of utilising latent variables in
log

∫
z
pθ(z|c)pθ(x|z, c)dz or weakening the advantage of

abandoning latent variables in KL(qφ(z|x, c)||pθ(z|x, c)).
For the former direction, we need to use a smaller dis-

tribution family to model the decoder pθ(x|z, c). When
the decoder is weaker, if ignoring latent variables, it be-
comes farther from the real distribution at the global op-
timum thus encouraging latent variables to be exploited.
Word drop-out (Bowman et al. 2016) is a common method
to weaken the RNN decoder. At each time step, the input
word has a certain chance (drop-out rate) of becoming an-
other word, the RNN decoder therefore cannot store a con-
tinuous history context. In (Xie et al. 2017), word drop-
out is also explained as a special kind of smoothing. Simi-
larly, for CNN decoders, limiting their power can also en-
code more information to latent variables (Yang et al. 2017;
Chen et al. 2017). Bag-of-word loss proposed by (Zhao, Zhao,
and Eskenazi 2017) can also fall into this category. It imposes
an extra loss which forces the latent variable to predict the
whole sentence without word inputs, which is essentially
increasing the weight of the reconstruction loss with the drop-
out rate set to 1.

For the latter direction, we need to use a more flexible
prior or posterior distribution for latent variables. Once the
approximated posterior distribution is powerful enough, the
KL divergence can be close to zero without losing the de-
pendence on latent variables. (Serban et al. 2017a) applies
a piecewise distribution to replace the Gaussian prior distri-
bution. Though can represent multi-modal conditions, it is
still limited as a fixed distribution with pre-defined number
of modes. (Salimans, Kingma, and Welling 2015) samples
latent variables through Markov chains, but it imposed an
extra approximation and the objective becomes less accu-
rate. (Rezende and Mohamed 2015; Kingma et al. 2016;

Chen et al. 2017) use a normalizing flow. Latent variables are
first sampled from a simple distribution then passed through
several invertible transformations to get better flexibility. Nor-
malizing flow is computationally more costly and has not
been applied in text generation yet.

We can also change the original ELBO objective for easier
optimization. KL-annealing (Bowman et al. 2016) and free
bits (Kingma et al. 2016) are two popular strategies. In KL-
annealing, a small weight is added to the KL divergence
term in Equation. 2, which starts from zero and gradually
increases to 1. This prevents the model from zeroing out
the KL divergence at the earlier training stage. Once the
KL divergence vanishes, it is difficult to be recovered for
the short sight nature of gradient descent. Free bits reserve
some space of KL divergence for every dimension of latent
variables. KL divergence is only optimized when exceeding
the predefined quota. Similar ideas can be found in (Yang et
al. 2017), which reserved space for the total KL divergence
instead of for every dimension.

Improving Variational Encoder-Decoders

As discussed above, two ways for alleviating the optimizing
challenge includes weakening the RNN decoders and improv-
ing the flexibility of latent variable distributions. The latter
class is more fundamental since it also brings more expres-
siveness to the generating model. Weakening the decoders,
though attenuating the KL-vanishing problem, will inevitably
hurt the overall performance.

Adversarial Encoder-Decoder An ideal way of represent-
ing the latent variable distribution is to use a universal approx-
imator like neural networks. (Makhzani et al. 2016) proposed
adversarial autoencoder (AAE) which samples posterior la-
tent variables by transforming Gaussian noise through multi-
layer-perceptrons. The flexibility of neural networks ensures
it can fit arbitrary distribution. However, the probability den-
sity is intractable, so adversarial learning (Goodfellow et
al. 2014) must be implemented to replace the original KL
divergence term.

We can apply this idea to dialogue generation, where AAE
is changed to context-dependent adversarial encoder-decoder
(AED). The training objective can be represented as:

−Eqφ(z|c,x)pθ(x|c, z) + JS(qφ(z|c)||pθ(z|c)) (5)

The training alternates between the autoencoder (AE) phase
to optimize −Eqφ(z|c,x)pθ(z|c, z) and the GAN phase to
match the aggregated posterior qφ(z|c) and the prior pθ(z|c).
qφ(z|c, x) and pθ(z|c) are implicitly defined by passing
context-dependent Gaussian random variables ε through
multi-layer perceptrons. The graphical model is depicted in
Figure. 2. It can be shown that this objective differs from the
original ELBO by adding an extra punishment to the entropy
of qφ(x|z, c) and using Jensen-Shannon divergence in lieu
of KL divergence. In the non-parametric limit, its generating
model can recover the exact data distribution.

Replacing GAN with VAE The idea of AED sounds ap-
pealing, but GAN is notoriously difficult to train, especially
when both the prior and posterior need to be updated towards
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Figure 1: Architecture for collaborative variational encoder-decoder.
⊕

denotes concatenation of information. M1(AE) and
M2(CV AE) are represented in brown and green respectively.

Figure 2: Up: adversarial encoder-decoder, down: adversarial
encoder-decoder after replacing GAN with VAE, Full line
rectangle: GAN and CVAE phase, Dotted line rectangle: AE
phase

each other, the model becomes extremely sensitive to hyper-
parameters and the training is very unstable. In consequence,
we try replacing the GAN phase with a CVAE alternative. An
RNN encoder is first applied to extract the corresponding la-
tent variable target z̃ for each dialogue turn x, based on which
a CVAE is trained to reconstruct it through context-dependent
Gaussian noise. The connection to AED can be seen in Figure
2. Specifically, we just replace the JS(qφ(z|c)||pθ(z|c)) in
Equation 5 with the following CVAE objective:

−Eqφ(ε|c,z̃)pθ(z|c, ε) +KL(qφ(ε|c, z̃)||pθ(ε|c)) (6)
qφ(ε|c, z̃) is an approximated posterior. It can be easily
proved when qφ(ε|c, z̃) is powerful enough to cover the real

posterior pθ(ε|c, z̃), objective 6 has the same global optimum
as in JS(qφ(z|c)||pθ(z|c)). We can therefore instead alter-
nate between the AE phase and the CVAE phase to achieve
the same effect as in AED.

Constraining RNN Encoder The accuracy of the CVAE
objective relies on the matching degree of qφ(ε|c, z̃) and
pθ(ε|c, z̃). Therefore, in the AE phase, apart from encoding
representative information to reduce the normal AE recon-
struction loss, the RNN encoder should also encode utter-
ances in a manner where the real posterior pθ(ε|c, z̃) can be
more easily modelled by the distribution defined by qφ(ε|c, z̃)
in the CVAE phase. To do this, we add a KL divergence con-
straint to the RNN encoder in the AE phase. The RNN en-
coder has to keep KL(qφ(ε|c, z̃)||pθ(ε|c)) within a specific
range. It is also possible to constrain the value of the whole
CVAE objective of Equation. 6, but we find constraining
only the KL divergence is enough when the alternating step
is not too large. Note that in the encoder phase, the model
can only adjust the RNN encoder-decoders to control the KL
divergence, the generating parameters for latent variables are
fixed.

Scheduled Sampling Trick In the AE phase, we also find
it useful to initially use the ground-truth encoding z̃ then
gradually change to noisier CVAE output z. We apply the
scheduled sampling strategy proposed in (Bengio et al. 2015).
Before decoding, a coin is flipped to decide whether to feed
the real hidden vector z̃ or the noisy z. In the beginning,
to make it easy, we mostly pick the real z̃. As the training
proceeds, we gradually improve the difficulty by increasing
the chance of selecting noisy z until finally all inputs are
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replaced with the z. We decide the chance of selecting the
real z̃ with a linear decay function as:

p = max(1− i

k
, 0) (7)

i is the step number and k is a constant controlling the decay-
ing speed. Other decaying functions are also applicable like
exponential decay or inverse sigmoid decay.

Training Process Our model contains a CVAE phase and
an AE phase. These two phases are trained iteratively until
an equilibrium is achieved.

In the CVAE phase, A sample z̃ is obtained from the AE
by transforming dialogue texts into a continuous embedding
and is used as a target for the maximum likelihood training
of the CVAE. We assume the generative model pθ(z|ε, c) =
N (z̃, I), the loss function is:

min
φ

KL(qφ(ε|z̃, c)‖pφ(ε|c)) + 1

2
Eqφ(ε|z̃,c)||gφ(ε)− z̃||22;

z̃ = fθ(x)
(8)

fθ is the RNN encoder and is fixed as part of the AE module
during training.

In the AE phase, An observation x is sampled from the
training data and fed into the transform function to get a con-
tinuous vector representation z̃ = fθ(x). The corresponding
latent variable z is sampled from the posterior distribution
qφ(z|z̃, c) provided by the CVAE part. The sampled latent
variable z, together with x, forms a target for training the AE.
The objective function is:

min
θ

max(α,KL(qφ(ε|z̃, c)‖pφ(ε|c)))
− Eqφ(z|z̃,c)[log(pθ(x|z, c))];
z̃ = fθ(x), z = (1− p)gφ(ε) + pz̃

(9)

The first item is used to control KL divergence in a reasonable
range such that the transformed z can be more easily mod-
elled by the CVAE phase. α can be used to adjust the leverage
between the reconstruction loss and KL divergence, where
a lower α value will lead to a lower KL divergence in the
end. p is the keeping rate defined in Equation. 7. The detailed
architecture is depicted in Figure 1. We refer to this frame-
work as collaborative VED where the AE and CVAE phase
collaborate with each other to achieve a better generating
performance.

Model Summary In summary, we replace the GAN phase
of AED with a CVAE alternative. The output of the CVAE
part are latent variables, which can represent a much broader
distribution family than mean-field Gaussian. As CVAE is in
theory less accurate than GAN because it needs to approxi-
mate the real posterior, we leverage the more powerful RNN
encoder-decoders. In the AE phase, they should autoencode
utterenaces to make the real posterior easily representable by
the CVAE part.

Experiments
We conduct our experiments on two dialogue datasets: Daily-
dialog (Li et al. 2017) and Switchboard (Godfrey and Holli-
man ). Dailydialog contains 13118 daily conversations under

ten different topics. This dataset is crawled from various web-
sites for English learner to practice English in daily life. Stat-
ics show that the speaker turns are roughly 8, and the average
tokens per utterance is about 15, which are appropriate for
training dialog models. Switchboard has 2400 two-sided tele-
phone conversations under 70 specified topics with manually
transcribed speech and alignment. Compared with Dailydia-
log, the turn of every dialogue is much longer and the subject
is more disperse. These two datasets are randomly separated
into training/validation/test sets with the ratio of 10:1:1.

Models and Training Procedures

For comparison, we also implemented the hred model
(seq2seq model with hierarchical RNN encoders), which
is the basis of VHRED. Latent variable models are trained
by standard KL-annealing with different weights (Bowman
et al. 2016; Higgins et al. 2017), with additional BOW
loss (Zhao, Zhao, and Eskenazi 2017; Semeniuta, Severyn,
and Barth 2017), word drop-out (Bowman et al. 2016), free
bits (Kingma et al. 2016) and our collaborative VED (CO)
with the scheduled sampling trick (SS). For our framework,
we use the encoder RNN as the transformation function fθ(x).
We tuned the parameters on the validation set and measure
the performance on the test set. In all experiments, the letters
are all transformed to the lower-case, the vocabulary size was
set as 20,000 and all the OOV words were mapped to a spe-
cial token <unk>. We set word embeddings to size of 300
and initialized them with Word2Vec embeddings trained on
the Google News Corpus. The first, second-layer encoder and
decoder RNN in the following experiments are single-layer
GRU with 512, 1024 and 512 hidden neurons. The dimen-
sion of latent variables is set to 512. The batch size is 128
and we fix the learning rate as 0.0002 for all models. Our
framework is trained epochwise by alternatively training the
CVAE and DAE part. The probability estimators for VAE are
2-layer feedforward neural networks. At test time, we output
the most likely responses using beam search with beam size
set to 5 (Graves 2012) and <unk> tokens were prevented
from being generated. We implemented all the models with
the open-sourced Python library Tensorflow (Abadi et al.
2016) and optimized using the Adam optimizer (Kingma and
Ba 2014). Dialogs are cut into set of slices with each slice
containing 80 words then fed into the GPU memory.

Metric-based Evaluation

We compare our model with the basic HRED and several
current approaches including KL-annealing (KLA), word
drop-out (DO), free-bits (FB) and bag-of-words loss (BOW).
The details are summarized in Table 1 and 2. For KLA, we
initialize the weight with 0 and gradually increase to 1 in
the first 12000 or 25000 training steps for Dailydialog and
Switchboard respectively. The word drop-out rate is fixed to
25%. Words are dropped out only in the training step. We set
the reserved space for every dimension as 0.01 in free bits
(FB) and also try reserving 5 bits for the whole dimension
space (FB-all). We use an α value 5 for our collaborative
model (CO) and set the scheduled sampling (SS) weight
k = 2500 or 5000 for Dailydialog or Switchboard. We also
experiment with jointly training the AE and CVAE part in our
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model and report the results. Table 1 measured the perplex-

Table 1: Metric Results, left: Dailydialog, right: switchboard
Model PPL KL NLL

HRED 43.4|48.3 0.00|0.00 229.1|355.6
KLA 31.8|44.5 4.90|4.36 225.0|331.6
KLA+DO 29.8|40.1 3.80|4.48 223.9|317.0
KLA+BOW 26.8|30.9 12.8|8.92 247.3|321.1
FB 41.7|32.1 3.34|3.90 239.0|322.7
FB-all 29.4|21.7 5.01|4.97 226.1|308.2
CO 26.1|36.5 4.90|4.94 223.6|289.7
CO+DO 25.1|34.4 5.01|4.93 218.7|273.4
CO+SS 23.8|31.8 4.92|4.93 213.2|273.4
CO+SS(joint) 28.5|39.6 5.16|5.02 224.3|301.3

ity (PPL), KL divergence (KL) and negative log-likelihood
(NLL). NLL is averaged over all the 80-word slices within
every batch. For latent variable models, NLL is computed as
the ELBO, which is the lower bound of the real NLL.

As can be seen, our model CO+SS achieves the lowest
NLL over both datasets. The Schedule Sampling (SS) strat-
egy significantly helps brings down the NLL. Word drop-out
(DO), though weakening the RNN decoder, improved the
performance when combined with both KLA and CO, which
verified the assumption that DO can function as a smooth-
ing technique in neural network language models (Xie et al.
2017). KLA itself needs early stop, otherwise the KL diver-
gence will vanish once the weight increases to 1. BOW avoids
the KL-vanishing problem, but the overall performance will
significantly decrease because adding an additional loss in
theory leads to a biased result for latent variables. BOW in-
formation is encoded into the latent variable, but it prevents
the decoder from stably learning the word order pattern in the
training step thus sacrifices the NLL performance. FB-all per-
forms much better than FB, which suggests most important
information is concentrated on a few dimensions. Equally re-
serving space for every dimension is not suitable. Finally, we
also testified the necessity of iteratively training our model.
Jointly training the model brings recession on both the per-
plexity and KL divergence on the two datasets.

Figure 3: T-SNE visualization of sampled latent variables.
left: VHRED, right: CO+SS. Red dots correspond to samples
from prior distribution, while the blue dots correspond to
samples from posterior distribution

Figure. 3 visualizes the latent variables drawn from

VHRED and our framework. We randomly pick a dialogue
context “I’d like to invite you to dinner tonight , do you have
time ?” and apply the information retrieval based method
to gather 10 responses with similar context from the corpus.
All the 10 responses are verified by humans as appropriate
ones, which span over different possibilities like “Thank you
for your invitation. ”, “Don’t be silly . Let’s go Dutch .” and
“Are you asking me for a date ? ”. For each response, 10 sam-
ples are drawn from the posterior latent variable distribution,
which forms 100 posterior latent variable samples (blue dots)
in total. Likewise, 100 samples are drawn from the prior
latent variable distribution (dots) given only the dialogue
context. The visualization clearly indicates the superiority of
our framework in modelling more flexible prior and poste-
rior latent variable distributions. In the VHRED model, both
the prior and posterior distributions are limited uni-modal
Gaussians with only a little overlap. In our framework, the
distributions are more diverse and samples from the prior and
posterior distribution share more overlap with each other.

Table 2: Embedding Results, left: dailydialog, right: switch-
board

Model Average Greedy Extrema

HRED 0.463|0.334 0.445|0.399 0.356|0.280
KLA 0.442|0.317 0.436|0.327 0.327|0.267
KLA+DO 0.458|0.325 0.461|0.341 0.378|0.283
KLA+BOW 0.475|0.340 0.459|0.352 0.386|0.302
FB 0.423|0.336 0.414|0.348 0.349|0.318
FB-all 0.429|0.341 0.439|0.352 0.357|0.325
CO 0.465|0.377 0.465|0.381 0.394|0.331
CO+DO 0.489|0.385 0.471|0.379 0.397|0.337
CO+SS 0.539|0.392 0.477|0.394 0.443|0.340
CO+SS(joint) 0.420|0.347 0.452|0.360 0.351|0.308

Table 2 reports the results of the embedding-based topic
similarity: Embedding Average (Average), Embedding Ex-
trema (Extrema) and Embedding Greedy (Greedy) (Liu et
al. 2016). Unlike the NLL, who measures the token-level
match, these embedding-based metrics map responses to a
vector space and compute the cosine similarly with golden an-
swers, which can to a large extent measure the sentence-level
semantic similarity.

We can see our model still achieved the highest topic sim-
ilarity according to all the three metrics. This suggests our
model can bring improvement for both token-level coherence
and sentence-level topic match. BOW, though not good at
the NLL metric, performed remarkably well on this metric,
which implies BOW is beneficial for the decoder to generate
the correct high-level meaning but fails to transform the mean-
ing to a fluent sentence. In contrast, FB has a relative lower
on-topic similarity score compared with its performance on
the token-level likelihood.

Human Evaluation

The accurate evaluation of dialogue systems is an open prob-
lem. To validate the previous metric-based results, we further
conduct a human evaluation on several models. We randomly
sampled 100 context from the test corpus and apply 6 differ-
ent models to generate the best response with beam search.
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Table 3: Examples of context-response pairs for the neural network models. eou denotes end-of-utterance and indicates the
start of a new turn.

Context Response

The taxi drivers are on strike again . eou
What for ? eou They want the govern-
ment to reduce the price of the gasoline .

eou

KLA: all right . i’ll take it .
KLA+BOW: well , how much is the price of the price price ?
CO-SS: that’s good . i want to buy a new car .
Gold: It is really a hot potato .

I’d like you to do me a favor . eou What
is it ? eou Can you mail this at the post
office for me ? I have to go to the doctor
for an appointment and I don’t have enough
time to go to the post office . eou

KLA: i’m sorry , but i’m not sure . i don’t want to have a look at the moment .
KLA+BOW: oh , i’m sorry , but it’s a pleasure to be in my room and again-b .
CO+SS: ok , i will . do you have any other questions about the company ?
Gold: Sure . And I’d like you to get some cold medicine for me when you go
to the doctor’s .

I heard you’ve found a new job . eou Yes
, I’m now working in a company . eou
So you’re quite happy with your new job ?

eou

KLA: to be honest , but i’m not familiar with my friends .
KLA+BOW: i’d like to . but i would like my mind .
CO+SS: not really , but how about you , sue ?
Gold: Right . I enjoy what I’m doing .

The evaluation is conducted only on the Dailydialog corpus
since it is closer to our daily conversation and easier for hu-
mans to make the judgement. All the generated responses,
together with the dialogue context, are then randomly shuf-
fled and judged on the crowdsourcing website CrowdFlower.
People are asked to judge the plausibility of the generated
response by giving a binary score in three aspects: gram-
maticality, coherence with the dialogue context and diversity
(ensure the response is not a dull sentence). 54 people are
finally involved in evaluating the total 600 responses, each
is judged by 3 different people and the score agreed by most
people is adopted. We set each person can judge at most 50
responses and filter by manually-set test questions.

The results shows that our model generates highly fluent
sentences compared to other approaches. KLA+BOW, as
expected, receives the lowest score on fluency. Our model
also achieves relative good scores on coherence and diversity,
implying novel responses related to the conversation topic can
be generated by our model. However, we notice the human
evaluation is rather subjective and not reliable enough. If
a sentence is influent, humans tend to reject it though the
topic might be coherent and the content might be diverse.
It is difficult to give an objective score separately for all
the three aspects. We can see models with lower scores on
fluency normally also receive lower scores on the other two
fields like KLA+BOW and FB-all. Therefore, we consider
this evaluation only as a complement to the metric-based
results, indicating that humans agree with the generations of
our models more than with the others.

Table 4: Human Judgements for models trained on Dailydi-
alog corpus, F refers to fluent, C refers to coherence and D
refers to diversity.

Model F(%) C(%) D(%)

KLA 76 35 50
KLA+DO 80 41 57
KLA+BOW 70 36 48
FB-all 74 29 34
CO+DO 82 49 54
CO+SS 89 44 51

Table 3 shows exampled generated responses. We can see
the our improved collaborative VED model with scheduled
sampling can more accurately identify the topic and generate
more coherent responses. Standard KL-annealing tends to
generate smooth sentences but irrelevant to the context. Im-
posing an additional BOW loss can increase the probability
of correctly capturing the main topic, but the generated re-
sponses are sometimes grammatically wrong, as also has been
shown from the metric-based results. In the first example, the
context is about taxi drivers’ request for reducing gasoline
price, the response from KLA is a fluent natural sentence
but not closely related to the context. Model KLA+BOW
starts with a reasonable beginning but ends up with influent
continuations. Though influent, KLA+BOW model does cap-
ture the main topic about price, indicating it can successfully
predict the order-insensitive bag of words but fail to establish
a natural sentence. In contrast, our model is not only a fluent
sentence, but also close to the topic. More importantly, it
brings some new information “I want to buy a new car” and
is helpful to an interactive conversation. Similar conditions
can be seen in the other two examples.

Conclusion

Variational encoder-decoders and recurrent neural networks
are powerful in representation learning and natural language
processing respectively. Though recently quite a few work
has started to apply them on dialogue generation, the train-
ing process is still unstable and the performance is hard to
be guaranteed. In this work, we thoroughly analyze the rea-
son of the training difficulty and compare different current
approaches, then propose a new framework that allows effec-
tively combining these two structures in dialogue generation.
We split the whole structure into two parts for more flexible
prior and posterior latent variable distributions. The training
process is simple, efficient and scales well to large datasets.

We demonstrate the superiority of our model over other
popular methods on two dialogue corpus. Experiments show
that our model samples latent variables with more flexible
distributions without sacrificing recurrent neural network’s
capability of synthesizing coherent sentences. Without losing
generality, our model should be able to apply on any se2seq
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tasks, which we leave for future work.
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