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Abstract

We study multi-turn response generation in chatbots where
a response is generated according to a conversation context.
Existing work has modeled the hierarchy of the context, but
does not pay enough attention to the fact that words and utter-
ances in the context are differentially important. As a result,
they may lose important information in context and gener-
ate irrelevant responses. We propose a hierarchical recurrent
attention network (HRAN) to model both the hierarchy and
the importance variance in a unified framework. In HRAN,
a hierarchical attention mechanism attends to important parts
within and among utterances with word level attention and ut-
terance level attention respectively. Empirical studies on both
automatic evaluation and human judgment show that HRAN
can significantly outperform state-of-the-art models for con-
text based response generation.

Introduction
Conversational agents include task-oriented dialog systems
which are built in vertical domains for specific tasks (Young
et al. 2013; Boden 2006; Wallace 2009; Young et al. 2010),
and non-task-oriented chatbots which aim to make natural
and human-like conversations with people regarding to a
wide range of issues in open domains (Jafarpour, Burges,
and Ritter 2010). A common practice of building a chatbot
is to train a response generation model within an encoder-
decoder framework from large scale message-response pairs
(Shang, Lu, and Li 2015; Vinyals and Le 2015). Such mod-
els ignore conversation history when responding, which is
contradictory to the nature of real conversation between hu-
mans. To resolve the problem, researchers have taken con-
versation history into consideration and proposed response
generation for multi-turn conversation (Sordoni et al. 2015;
Serban et al. 2015; 2016b; 2016c).

In this work, we study multi-turn response generation for
open domain conversation in chatbots in which we try to
learn a response generation model from responses and their
contexts. A context refers to a message and several utter-
ances in its previous turns. In practice, when a message
comes, the model takes the context as input and generate

∗The work was done when the first author was an intern in Mi-
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Figure 1: An example of multi-turn conversation

a response as the next turn. Multi-turn conversation requires
a model to generate a response relevant to the whole context.
The complexity of the task lies in two aspects: 1) a conversa-
tion context is in a hierarchical structure (words form an ut-
terance, and utterances form the context) and has two levels
of sequential relationships among both words and utterances
within the structure; 2) not all parts of the context are equally
important to response generation. Words are differentially
informative and important, and so are the utterances. State-
of-the-art methods such as HRED (Serban et al. 2016a) and
VHRED (Serban et al. 2016c) focus on modeling the hier-
archy of the context, whereas there is little exploration on
how to select important parts from the context, although it is
often a crucial step for generating a proper response. With-
out this step, existing models may lose important informa-
tion in context and generate irrelevant responses1. Figure 1
gives an example from our data to illustrate the problem.
The context is a conversation between two speakers about
height and boyfriend, therefore, to respond to the context,

1Note that one can simply concatenate all utterances and em-
ploys the classic sequence-to-sequence with attention to model
word importance in generation. This method, however, loses ut-
terance relationships and results in bad generation quality, as will
be seen in expeirments.
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words like “girl”, “boyfriend” and numbers indicating height
such as “160” and “175” are more important than “not good-
looking”. Moreover, u1 and u4 convey main semantics of
the context, and therefore are more important than the oth-
ers for generating a proper response. Without modeling the
word and utterance importance, the state-of-the-art model
VHRED (Serban et al. 2016c) misses important points and
gives a response “are you a man or a woman” which is OK
if there were only u3 left, but nonsense given the whole con-
text. After paying attention to the important words and utter-
ances, we can have a reasonable response like “No, I don’t
care much about height” (the response is generated by our
model, as will be seen in experiments).

We aim to model the hierarchy and the important parts of
contexts in a unified framework. Inspired by the success of
the attention mechanism in single-turn response generation
(Shang, Lu, and Li 2015), we propose a hierarchical recur-
rent attention network (HRAN) for multi-turn response gen-
eration in which we introduce a hierarchical attention mech-
anism to dynamically highlight important parts of word se-
quences and the utterance sequence when generating a re-
sponse. Specifically, HRAN is built in a hierarchical struc-
ture. At the bottom of HRAN, a word level recurrent neural
network (RNN) encodes each utterance into a sequence of
hidden vectors. In generation of each word in the response,
a word level attention mechanism assigns a weight to each
vector in the hidden sequence of an utterance and forms an
utterance vector by a linear combination of the vectors. Im-
portant hidden vectors correspond to important parts in the
utterance regarding to the generation of the word, and con-
tribute more to the formation of the utterance vector. The ut-
terance vectors are then fed to an utterance level RNN which
constructs hidden representations of the context. Different
from classic attention mechanism, the word level attention
mechanism in HRAN is dependent on both the decoder and
the utterance level RNN. Thus, both the current generated
part of the response and the content of context can help se-
lect important parts in utterances. At the third layer, an ut-
terance attention mechanism attends to important utterances
in the utterance sequence and summarizes the sequence as a
context vector. Finally, at the top of HRAN, a decoder takes
the context vector as input and generates the word in the
response. HRAN mirrors the data structure in multi-turn re-
sponse generation by growing from words to utterances and
then from utterances to the output. It extends the architec-
ture of current hierarchical response generation models by
a hierarchical attention mechanism which not only results
in better generation quality, but also provides insight into
which parts in an utterance and which utterances in context
contribute to response generation.

We conduct an empirical study on large scale open
domain conversation data and compare our model with
state-of-the-art models using both automatic evaluation
and side-by-side human comparison. The results show
that on both metrics our model can significantly out-
perform existing models for multi-turn response gen-
eration. We release our source code and data at
https://github.com/LynetteXing1991/HRAN.

The contributions of the paper include (1) proposal of at-

tending to important parts in contexts in multi-turn response
generation; (2) proposal of a hierarchical recurrent attention
network which models hierarchy of contexts, word impor-
tance, and utterance importance in a unified framework; (3)
empirical verification of the effectiveness of the model by
both automatic evaluation and human judgment.

Related Work
Most existing effort on response generation is paid to single-
turn conversation. Starting from the basic sequence to se-
quence model (Sutskever, Vinyals, and Le 2014), various
models (Shang, Lu, and Li 2015; Vinyals and Le 2015;
Li et al. 2015; Xing et al. 2016; Li et al. 2016) have been
proposed under an encoder-decoder framework to improve
generation quality from different perspectives such as rel-
evance, diversity, and personality. Recently, multi-turn re-
sponse generation has drawn attention from academia. For
example, Sordoni et al. (2015) proposed DCGM where con-
text information is encoded with a multi-layer perceptron
(MLP). Serban et al. (2016a) proposed HRED which mod-
els contexts in a hierarchical encoder-decoder framework.
Under the architecture of HRED, more variants including
VHRED (Serban et al. 2016c) and MrRNN (Serban et al.
2016b) are proposed in order to introduce latent and explicit
variables into the generation process. In this work, we also
study multi-turn response generation. Different from the ex-
isting models which do not model word and utterance impor-
tance in generation, our hierarchical recurrent attention net-
work simultaneously models the hierarchy of contexts and
the importance of words and utterances in a unified frame-
work.

Attention mechanism is first proposed for machine trans-
lation (Bahdanau, Cho, and Bengio 2014; Cho, Courville,
and Bengio 2015), and is quickly applied to single-turn
response generation afterwards (Shang, Lu, and Li 2015;
Vinyals and Le 2015), (Mei, Bansal, and Walter 2017). Re-
cently, Yang et al. (2016) proposed a hierarchical attention
network for document classification in which two levels of
attention mechanisms are used to model the contributions
of words and sentences in classification decision. Seo et
al. (2016) proposed a hierarchical attention network to pre-
cisely attending objects of different scales and shapes in im-
ages. Inspired by these work, we extend the attention mech-
anism for single-turn response generation to a hierarchical
attention mechanism for multi-turn response generation. To
the best of our knowledge, we are the first who apply the hi-
erarchical attention technique to response generation in chat-
bots.

Problem Formalization
Suppose that we have a data set D = {(Ui,Yi)}Ni=1. ∀i,
(Ui,Yi) consists of a response Yi = (yi,1, . . . , yi,Ti

) and
its context Ui = (ui,1, . . . , ui,mi

) with yi,j the j-th word,
ui,mi

the message, and (ui,1, . . . , ui,mi−1) the utterances
in previous turns. In this work, we require mi � 2 and
thus each context has at least one utterance as conversa-
tion history. ∀j, ui,j =

(
wi,j,1, . . . , wi,j,Ti,j

)
where wi,j,k is

the k-th word. We aim to estimate a generation probability
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Figure 2: Hierarchical Recurrent Attention Network

p(y1, . . . , yT |U) from D , and thus given a new conversation
context U, we can generate a response Y = (y1, . . . , yT )
according to p(y1, . . . , yT |U).

In the following, we will elaborate how to construct
p(y1, . . . , yT |U) and how to learn it.

Hierarchical Recurrent Attention Network
We propose a hierarchical recurrent attention net-
work (HRAN) to model the generation probability
p(y1, . . . , yT |U). Figure 2 gives the architecture of HRAN.
Roughly speaking, before generation, HRAN employs a
word level encoder to encode information of every utterance
in context as hidden vectors. Then, when generating every
word, a hierarchical attention mechanism attends to im-
portant parts within and among utterances with word level
attention and utterance level attention respectively. With the
two levels of attention, HRAN works in a bottom-up way:
hidden vectors of utterances are processed by the word level
attention and uploaded to an utterance level encoder to form
hidden vectors of the context. Hidden vectors of the context
are further processed by the utterance level attention as a
context vector and uploaded to the decoder to generate the
word.

In the following, we will describe details and the learning
objective of HRAN.

Word Level Encoder
Given U = (u1, . . . , um), we employ a bidirectional re-
current neural network with gated recurrent units (BiGRU)
(Bahdanau, Cho, and Bengio 2014) to encode each ui, i ∈
{1, . . . ,m} as hidden vectors (hi,1, . . . ,hi,Ti

). Formally,
suppose that ui = (wi,1, . . . , wi,Ti

), then ∀k ∈ {1, . . . , Ti},
hi,k is given by

hi,k = concat(
−→
h i,k,

←−
h i,k), (1)

where concat(·, ·) is an operation defined as concatenating
the two arguments together,

−→
h i,k is the k-th hidden state of a

forward GRU (Cho et al. 2014), and
←−
h i,k is the k-th hidden

state of a backward GRU. The forward GRU reads ui in its
order (i.e., from wi,1 to wi,Ti

), and calculates
−→
h i,k as

zk = σ(Wzei,k +Vz
−→
h i,k−1)

rk = σ(Wrei,k +Vr
−→
h i,k−1)

sk = tanh(Wsei,k +Vs(
−→
h i,k−1 ◦ rk))

−→
h i,k = (1− zk) ◦ sk + zk ◦ −→h i,k−1,

(2)

where
−→
h i,0 is initialized with a isotropic Gaussian distribu-

tion, ei,k is the embedding of wi,k, zk and rk are an update
gate and a reset gate respectively, σ(·) is a sigmoid function,
and Wz,Wr,Ws,Vz,Vr,Vs are parameters. The back-
ward GRU reads ui in its reverse order (i.e., from wi,Ti to
wi,1) and generates {←−h i,k}Ti

k=1 with a parameterization sim-
ilar to the forward GRU.

Hierarchical Attention and Utterance Encoder
Suppose that the decoder has generated t − 1 words,
at step t, word level attention calculates a weight vec-
tor (αi,t,1, . . . , αi,t,Ti

) (details are described later) for
{hi,j}Ti

j=1 and represents utterance ui as a vector ri,t. ∀i ∈
{1, . . . ,m}, ri,t is defined by

ri,t =

Ti∑
j=1

αi,t,jhi,j . (3)

{ri,t}mi=1 are then utilized as input of an utterance level en-
coder and transformed to (l1,t, . . . , lm,t) as hidden vectors
of the context. After that, utterance level attention assigns a
weight βi,t to li,t (details are described later) and forms a
context vector ct as

ct =

m∑
i=1

βi,tli,t. (4)

In both Equation (3) and Equation (4), the more important a
hidden vector is, the larger weight it will have, and the more
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contributions it will make to the high level vector (i.e., the
utterance vector and the context vector). This is how the two
levels of attention attends to the important parts of utterances
and the important utterances in generation.

More specifically, the utterance level encoder is a back-
ward GRU which processes {ri,t}mi=1 from the message
rm,t to the earliest history r1,t. Similar to Equation (2),
∀i ∈ {m, . . . , 1}, li,t is calculated as

z′i = σ(Wzlri,t +Vzlli+1,t)

r′i = σ(Wrlri,t +Vrlli+1,t)

s′i = tanh(Wslri,t +Vsl(li+1,t ◦ r′i))
li,t = (1− z′i) ◦ s′i + z′i ◦ li+1,t,

(5)

where lm+1,t is initialized with a isotropic Gaussian dis-
tribution, z′i and r′i are the update gate and the re-
set gate of the utterance level GRU respectively, and
Wzl,Vzl,Wrl,Vrl,Wsl,Vsl are parameters.

Different from the classic attention mechanism, word
level attention in HRAN depends on both the hidden states
of the decoder and the hidden states of the utterance level
encoder. It works in a reverse order by first weighting
{hm,j}Tm

j=1 and then moving towards {h1,j}T1
j=1 along the

utterance sequence. ∀i ∈ {m, . . . , 1}, j ∈ {1, . . . , Ti},
weight αi,t,j is calculated as

ei,t,j = η(st−1, li+1,t,hi,j);

αi,t,j =
exp(ei,t,j)∑Ti

k=1 exp(ei,t,k)
,

(6)

where lm+1,t is initialized with a isotropic Gaussian distri-
bution, st−1 is the (t − 1)-th hidden state of the decoder,
and η(·) is a multi-layer perceptron (MLP) with tanh as an
activation function.

Note that the word level attention and the utterance level
encoding are dependent with each other and alternatively
conducted (first attention then encoding). The motivation we
establish the dependency between αi,t,j and li+1,t is that
content from the context (i.e., li+1,t) could help identify im-
portant information in utterances, especially when st−1 is
not informative enough (e.g., the generated part of the re-
sponse are almost function words). We require the utterance
encoder and the word level attention to work reversely, be-
cause we think that compared to history, conversation that
happened after an utterance in the context is more likely to
be capable of identifying important information in the utter-
ance for generating a proper response to the context.

With {li,t}mi=1, the utterance level attention calculates a
weight βi,t for li,t as

e′i,t = η(st−1, li,t);

βi,t =
exp(e′i,t)∑m
i=1 exp(e

′
i,t)

.
(7)

Decoding the Response
The decoder of HRAN is a RNN language model (Mikolov
et al. 2010) conditioned on the context vectors {ct}Tt=1
given by Equation (4). Formally, the probability distribution

p(y1, . . . , yT |U) is defined as

p(y1, ..., yT |U) = p(y1|c1)
T∏

t=2

p(yt|ct, y1, ..., yt−1). (8)

where p(yt|ct, y1, ..., yt−1) is given by

st = f(eyt−1 , st−1, ct)

p(yt|ct, y1, ..., yt−1) = �yt · softmax(st, eyt−1),
(9)

where st is the hidden state of the decoder at step t, eyt−1
is

the embedding of yt−1, f is a GRU, �yt
is the one-hot vector

for yt, and softmax(st, eyt−1
) is a V -dimensional vector

with V the response vocabulary size and each element the
generation probability of a word. In practice, we employ the
beam search (Tillmann and Ney 2003) technique to generate
the n-best responses.

Let us denote Θ as the parameter set of HRAN, then we
estimate Θ from D = {(Ui,Yi)}Ni=1 by minimizing the
following objective function:

Θ̂ = argmin
Θ

−
N∑
i=1

log (p(yi,1, ..., yi,Ti |Ui)) (10)

Experiments
We compared HRAN with state-of-the-art methods by both
automatic evaluation and side-by-side human judgment.

Data Set
We built a data set from Douban Group2 which is a popu-
lar Chinese social networking service (SNS) allowing users
to discuss a wide range of topics in groups through post-
ing and commenting. In Douban Group, regarding to a post
under a specific topic, two persons can converse with each
other by one posting a comment and the other quoting it and
posting another comment. We crawled 20 million conversa-
tions between two persons with the average number of turns
as 6.32. The data covers many different topics and can be
viewed as a simulation of open domain conversations in a
chatbot. In each conversation, we treated the last turn as re-
sponse, and the remaining turns as context. As preprocess-
ing, we first employed Stanford Chinese word segmenter3

to tokenize each utterance in the data. Then we removed
the conversations whose response appearing more than 50
times in the whole data to prevent them from dominating
learning. We also removed the conversations shorter than 3
turns and the conversations with an utterance longer than 50
words. After the preprocessing, there are 1, 656, 652 con-
versations left. From them, we randomly sampled 1 million
conversations as training data, 10, 000 conversations as val-
idation data, and 1, 000 conversations as test data, and made
sure that there is no overlap among them. In the test data, the
contexts were used to generate responses and their responses
were used as ground truth to calculate perplexity of genera-
tion models. We kept the 40, 000 most frequent words in the
contexts of the training data to construct a context vocabu-
lary. The vocabulary covers 98.8% of words appearing in the

2https://www.douban.com/group/explore
3http://nlp.stanford.edu/software/segmenter.shtml
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Model Validation Perplexity Test Perplexity
S2SA 43.679 44.508
HRED 46.279 47.467

VHRED 44.548 45.484
HRAN 40.257 41.138

Table 1: Perplexity results

contexts of the training data. Similarly, we constructed a re-
sponse vocabulary that contains the 40, 000 most frequent
words in the responses of the training data which covers
99.0% words appearing in the responses. Words outside the
two vocabularies were treated as “UNK”. The data will be
publicly available.

Baselines
We compared HRAN with the following models:

S2SA: we concatenated all utterances in a context as a
long sequence and treated the sequence and the response
as a message-response pair. By this means, we transformed
the problem of multi-turn response generation to a problem
of single-turn response generation and employed the stan-
dard sequence to sequence with attention (Shang, Lu, and Li
2015) as a baseline.

HRED: the hierarchical encoder-decoder model proposed
by (Serban et al. 2016a).

VHRED: a modification of HRED (Serban et al. 2016c)
where latent variables are introduced in to generation. In all
models, we set the dimensionality of hidden states of en-
coders and decoders as 1000, and the dimensionality of word
embedding as 620. All models were initialized with isotropic
Gaussian distributions X ∼ N (0, 0.01) and trained with an
AdaDelta algorithm (Zeiler 2012) on a NVIDIA Tesla K40
GPU. The batch size is 128. We set the initial learning rate
as 1.0 and reduced it by half if the perplexity on validation
began to increase. We implemented the models with an open
source deep learning tool Blocks4.

Evaluation Metrics
How to evaluate a response generation model is still an open
problem but not the focus of the paper. We followed the ex-
isting work and employed the following metrics:

Perplexity: following (Vinyals and Le 2015), we em-
ployed perplexity as an evaluation metric. Perplexity is de-
fined by Equation (11). It measures how well a model pre-
dicts human responses. Lower perplexity generally indicates
better generation performance. In our experiments, perplex-
ity on validation was used to determine when to stop train-
ing. If the perplexity stops decreasing and the difference is
smaller than 2.0 five times in validation, we think that the
algorithm has reached convergence and terminate training.
We tested the generation ability of different models by per-
plexity on the test data.

PPL = exp

{
− 1

N
ΣN

i=1 log(p(Yi|Ui))

}
. (11)

4https://github.com/mila-udem/blocks

Models Win Loss Tie Kappa
HRAN v.s. S2SA 27.3 20.6 52.1 0.37
HRAN v.s. HRED 27.2 21.2 51.6 0.35

HRAN v.s. VHRED 25.2 20.4 54.4 0.34

Table 2: Human annotation results (in %)

Side-by-side human annotation: we also compared
HRAN with every baseline model by side-by-side human
comparison. Specifically, we recruited three native speakers
with rich Douban Group experience as human annotators. To
each annotator, we showed a context of a test example with
two generated responses, one from HRAN and the other one
from a baseline model. Both responses are the top one results
in beam search. The two responses were presented in ran-
dom order. We then asked the annotator to judge which one
is better. The criteria is, response A is better than response
B if (1) A is relevant, logically consistent to the context, and
fluent, while B is either irrelevant or logically contradictory
to the context, or it is disfluent (e.g., with grammatical er-
rors or UNKs); or (2) both A and B are relevant, consistent,
and fluent, but A is more informative and interesting than
B (e.g., B is a universal reply like “I see”). If the annotator
cannot tell which one is better, he/she was asked to label a
“tie”. Each annotator individually judged 1000 test exam-
ples for each HRAN-baseline pair, and in total, each one
judged 3000 examples (for three pairs). Agreements among
the annotators were calculated using Fleiss’ kappa (Fleiss
and Cohen 1973).

Note that we do not choose BLEU (Papineni et al. 2002)
as an evaluation metric, because (1) Liu et al. (Liu et al.
2016) have proven that BLEU is not a proper metric for
evaluating conversation models as there is weak correlation
between BLEU and human judgment; (2) different from the
single-turn case, in multi-turn conversation, one context usu-
ally has one copy in the whole data. Thus, without any hu-
man effort like what Sordoni et al. (Sordoni et al. 2015) did
in their work, each context only has a single reference in
test. This makes BLEU even unreliable as a measurement of
generation quality in open domain conversation due to the
diversity of responses.

Evaluation Results
Table 1 gives the results on perplexity. HRAN achieves the
lowest perplexity on both validation and test. We conducted
t-test on test perplexity and the result shows that the im-
provement of HRAN over all baseline models is statistically
significant (p-value < 0.01).

Table 2 shows the human annotation results. The ra-
tios were calculated by combining the annotations from
the three judges together. We can see that HRAN outper-
forms all baseline models and all comparisons have rela-
tively high kappa scores which indicates that the annotators
reached relatively high agreements in judgment. Compared
with S2SA, HRED, and VHRED, HRAN achieves prefer-
ence gains (win-loss) 6.7%, 6%, 4.8% respectively. Sign
test results show that the improvement is statistically sig-
nificant (p-value < 0.01 for HRAN v.s. S2SA and HRAN
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Figure 3: Case study (utterances between two persons in contexts are split by “⇒”)

Model Win Loss Tie PPL
No UD Att 22.3% 24.8% 52.9% 41.54

No Word Att 20.4% 25.0% 50.6% 43.24
No Utterance Att 21.1% 23.7% 55.2% 47.35

Table 3: Model ablation results

v.s. HRED, and p-value < 0.05 for HRAN v.s. VHRED).
Among the three baseline models, S2SA is the worst one,
because it loses relationships among utterances in the con-
text. VHRED is the best baseline model, which is consis-
tent with the existing literatures (Serban et al. 2016c). We
checked the cases on which VHRED loses to HRAN and
found that on 56% cases, VHRED generated irrelevant re-
sponses while responses given by HRAN are relevant, logi-
cally consistent, and fluent.

Discussions
Case study: Figure 3 lists some cases from the test set to
compare HRAN with the best baseline VHRED. We can see
that HRAN not only can answer the last turn in the con-
text (i.e., the message) properly by understanding the con-
text (e.g., case 2), but also be capable of starting a new topic
according to the conversation history to keep the conversa-
tion going (e.g., case 1). In case 2, HRAN understands that
the message is actually asking “why can’t you come to have
dinner with me?” and generates a proper response that gives
a plausible reason. In case 1, HRAN properly brings up a
new topic by asking the “brand” of the user’s “lotion” when
the current topic “how to exfoliate my skin” has come to an
end. The new topic is based on the content of the context and
thus can naturally extends the conversation in the case.

Visualization of attention: to further illustrate why

HRAN can generate high quality responses, we visualized
the hierarchical attention for the cases in Figure 3 in Figure
4. In every sub-figure, each line is an utterance with blue
color indicating word importance. The leftmost column of
each sub-figure uses red color to indicate utterance impor-
tance. Darker color means more important words or utter-
ances. The importance of a word or an utterance was cal-
culated by the average weight of the word or the utterance
assigned by attention in generating the response given at the
bottom of each sub-figure. It reflects an overall contribution
of the word or the utterance to generate the response. Above
each line, we gave the translation of the utterance, and below
it, we translated important words. Note that word-to-word
translation may cause confusion sometimes, therefore, we
left some words (most of them are function words) untrans-
lated. We can see that the hierarchical attention mechanism
in HRAN can attend to both important words and important
utterances in contexts. For example, in Figure 4(c), words in-
cluding “girl” and “boyfriend” and numbers including “160”
and “175” are highlighted, and u1 and u4 are more impor-
tant than others. The result matches our intuition in introduc-
tion. In Figure 4(b), HRAN assigned larger weights to u1, u4

and words like “dinner” and “why”. This explains why the
model can understand that the message is actually asking
“why can’t you come to have dinner with me?”. The figures
provide us insights on how HRAN understands contexts in
generation.

Model ablation: we then examine the effect of differ-
ent components of HRAN by removing them one by one.
We first removed li+1 from η(st−1, li+1,t,hi,j) in Equation
(6) (i.e., removing utterance dependency from word level at-
tention) and denoted the model as “No UD Att”, then we
removed word level attention and utterance level attention
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(a) Visualization of case 1 (b) Visualization of case 2

(c) Visualization of case 3 (d) Visualization of case 4

Figure 4: Attention visualization (the importance of a word or an utterance is calculated as their average weights when gener-
ating the whole response)

separately, and denoted the models as “No Word Att” and
“No Utterance Att” respectively. We conducted side-by-side
human comparison on these models with the full HRAN on
the test data and also calculated their test perplexity (PPL).
Table 3 gives the results. We can see that all the components
are useful because removing any of them will cause perfor-
mance drop. Among them, word level attention is the most
important one as HRAN achieved the most preference gain
(4.6%) to No Word Att on human comparison.

Error analysis: we finally investigate how to improve
HRAN in the future by analyzing the cases on which HRAN
loses to VHRED. The errors can be summarized as: 51.81%
logic contradiction, 26.95% universal reply, 7.77% irrele-
vant response, and 13.47% others. Most bad cases come
from universal replies and responses that are logically con-
tradictory to contexts. This is easy to understand as HRAN
does not explicitly model the two issues. The result also
indicates that (1) although contexts provide more informa-
tion than single messages, multi-turn response generation
still has the “safe response” problem as the single-turn case;
(2) although attending to important words and utterances in
generation can lead to informative and logically consistent
responses for many cases like those in Figure 3, it is still not
enough for fully understanding contexts due to the complex
nature of conversations. The irrelevant responses might be

caused by wrong attention in generation. Although the anal-
ysis might not cover all bad cases (e.g., HRAN and VHRED
may both give bad responses), it sheds light on our future
directions: (1) improving response diversity, e.g., by intro-
ducing extra content into generation like Xing et al. (Xing
et al. 2016) did for single-turn conversation; (2) modeling
logics in contexts; (3) improving attention.

Conclusion
We propose a hierarchical recurrent attention network
(HRAN) for multi-turn response generation in chatbots. Em-
pirical studies on large scale conversation data show that
HRAN can significantly outperform state-of-the-art models.
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