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Abstract

Semantic dependency graph has been recently proposed as an
extension of tree-structured syntactic or semantic representa-
tion for natural language sentences. It particularly features
the structural property of multi-head, which allows nodes to
have multiple heads, resulting in a directed acyclic graph
(DAG) parsing problem. Yet most statistical parsers focused
exclusively on shallow bi-lexical tree structures, DAG parsing
remains under-explored. In this paper, we propose a neural
transition-based parser, using a variant of list-based arc-eager
transition algorithm for dependency graph parsing. Particu-
larly, two non-trivial improvements are proposed for repre-
senting the key components of the transition system, to bet-
ter capture the semantics of segments and internal sub-graph
structures. We test our parser on the SemEval-2016 Task 9
dataset (Chinese) and the SemEval-2015 Task 18 dataset (En-
glish). On both benchmark datasets, we obtain superior or
comparable results to the best performing systems. Our parser
can be further improved with a simple ensemble mechanism,
resulting in the state-of-the-art performance.

Introduction

Tree-structured bi-lexical dependencies, either syntactic or
semantic, have been extensively studied in the past decade.
Various algorithms have been proposed for parsing natu-
ral language sentences into such tree structures and ob-
tained great success, especially when equipped with deep
neural models. However, tree structures become inadequate
when moving from syntactic or shallow semantic level to
deep semantic level. In the deep semantic representation, a
word can be the argument of multiple predicates, and vacu-
ous words might be unattached, which results in a directed
acyclic graph (DAG) structure, where a node may have mul-
tiple or no incoming arcs. To cope with these challenges,
several semantic-oriented dependencies have been recently
proposed, typically including the Chinese Semantic Depen-
dency Graph (Che et al. 2016) and the Broad-Coverage Se-
mantic Dependency Graph with three kinds of formalisms
(Oepen et al. 2015), which will be our main focus in this
paper.
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Most existing parsing algorithms were proposed ex-
clusively for tree structures, and the problem of depen-
dency graph parsing (more generally, DAG parsing) remains
under-explored. Developing elegant, efficient and effective
algorithms for DAG parsing is still an important challenge
of great significance. One recent success towards this goal
is the model of Peng, Thomson, and Smith (2017), which
achieves state-of-the-art performance in the SemEval-2015
Task 18 dataset. Their model is a graph-based one and de-
codes with the AD3 algorithm (Martins et al. 2011). Ding et
al. (2014) instead uses a two-stage approach, by first produc-
ing a semantic dependency tree with a structured prediction
model, followed with a classification procedure to recover
the non-local dependencies (Sun et al. 2014) (i.e. arcs point-
ing to words with multiple heads). A related approach was
studied by Sagae and Tsujii (2008), which projectivize the
dependency graphs first, and then learn a projective depen-
dency graph parser. This kind of approaches, however, re-
quire either elaborately-designed linguistic rules or complex
pre- and post-processing, and suffer from error propagation.

In this paper, we propose a neural transition-based al-
ternative for parsing semantic dependency graphs. We in-
troduce a novel transition algorithm which is a variant of
the list-based arc-eager algorithm described originally for
non-projective tree parsing (Choi and McCallum 2013). We
show how the algorithm can be effectively adapted to pars-
ing DAG structures. Furthermore, the main challenge for a
transition-based parsing system to success is the represen-
tation of parsing states (i.e. configurations), based on which
the transition actions are predicted. To cope with this chal-
lenge, we borrow the successful idea from the Stack-LSTM
neural parsing model (Dyer et al. 2015), and present two
non-trivial improvements, namely Bi-LSTM Subtraction and
Incremental Tree-LSTM, to better capture the semantics of
the segments (i.e. spans) and the partially derived sub-graph
structures.

We use SemEval-2016 Task 9: Chinese Semantic Depen-
dency Parsing (Che et al. 2016)1 (Chinese) and SemEval-
2015 Task 18: Broad-Coverage Semantic Dependency Pars-
ing (Oepen et al. 2015)2 (English) as our testbed. Experi-
mental results are promising on both datasets. For Chinese,

1alt.qcri.org/semeval2016/task9/
2alt.qcri.org/semeval2015/task18/
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(a) An example of CSDG. The dashed arcs indicate non-local
dependencies. (”He is too mean to treat us to a meal.”)

(b) An example sentence annotated with PSD semantic formal-
ism in BCSDG.

Figure 1: Examples of CSDG and BCSDG.

we outperform all participating systems by a substantial
margin, and for English, we obtain superior or comparable
results to the participating systems. An ensemble of 3 mod-
els using a simple mechanism (Che et al., 2017) leads to fur-
ther significant improvements, outperforming the state-of-
the-art system of Peng, Thomson, and Smith (2017) on the
macro-averages of three graph formalisms. Our system will
be publicly available at https://github.com/HITalexwang/
lstm-sdparser.

Background

Semantic Dependency Graph

Here we briefly introduce and compare the different seman-
tic dependency graph formalisms presented respectively in
SemEval-2016 Task 9 and SemEval-2015 Task 18.

Chinese Semantic Dependency Graph (CSDG) Fig-
ure 1a shows an example of a Chinese semantic dependency
graph presented in SemEval-2016 Task 9. We can see that
”he” has two head words, i.e., ”mean” with the Experiencer
(Exp) relation and ”treat” with the Agent (Agt) relation, and
every word is attached. More details of the corpora will be
described in experiment section.

Broad-Coverage Semantic Dependency Graph (BCSDG)
SemEval-2015 Task 18 provides three graph formalisms:
DM, PAS and PSD which have different dependency anno-
tations. For simplicity, we present here an example of PSD
representation in Figure 1b to show the general structure.

In general, CSDG is similar with BCSDG. Main differ-
ences between CSDG and BCSDG are three-fold:

1. The ROOT node can only have one child in CSDG, but
in BCSDG it may have more than one (e.g. in Figure 1b
ROOT has two children took and ran).

Transitions Change of State

LEFTl-REDUCE
([σ|i], δ, [j|β], A)

(σ, δ, [j|β], A ∪ {(i l←− j)})

RIGHTl-SHIFT
([σ|i], δ, [j|β], A)

([σ|i|δ|j], [ ], β, A ∪ {(i l−→ j)})

NO-SHIFT
([σ|i], δ, [j|β], A)

([σ|i|δ|j], [ ], β, A)

NO-REDUCE
([σ|i], δ, [j|β], A)

(σ, δ, [j|β], A)

LEFTl-PASS
([σ|i], δ, [j|β], A)

(σ, [i|δ], [j|β], A ∪ {(i l←− j)})

RIGHTl-PASS
([σ|i], δ, [j|β], A)

(σ, [i|δ], [j|β], A ∪ {(i l−→ j)})

NO-PASS
([σ|i], δ, [j|β], A)

(σ, [i|δ], [j|β], A)

Table 1: Transitions defined in the list-based arc-eager algo-
rithm (Choi and McCallum 2013).

2. In CSDG the child of ROOT node is not allowed to have
other heads, while in BCSDG it is acceptable (e.g. in Fig-
ure 1b the child took of ROOT has another head and).

3. The restriction in CSDG that each word has to have at
least one head does not hold in BCSDG (e.g. in Figure 1b
and has no head).

Comparison with SRL and AMR Compared with the
dependency-based semantic role labeling (SRL) representa-
tion (Surdeanu et al. 2008; Hajič et al. 2009) which only con-
siders dependencies between predicates and their arguments,
semantic dependency graphs assume relation between every
possible word pair, making the task much more challenging.

Semantic dependency graph is also distinct from Abstract
Meaning Representation (AMR) presented by Banarescu et
al. (2013), in which the vertexes are abstract concepts with
no explicit alignment to tokens in the sentence.

Transition-Based Dependency Parsing

Transition-based dependency parsers (Nivre 2008) generate
a dependency structure by predicting a transition action se-
quence. Typically, a transition system consists of a stack
σ containing words being processed, a buffer β containing
words to be processed and a memory A that holds the gener-
ated dependency arcs which form the partially constructed
trees. A sequence of predefined transitions are incremen-
tally produced to construct the dependency tree or graph of
one sentence. At each parsing state, the next transition to be
taken is either decided according to the gold structure while
training or predicted by a classifier at test time.

Choi and McCallum (2013) proposed a transition-based
dependency parsing algorithm for non-projective trees,
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Transitions
Preconditions of Transitions in List-Based Arc-Eager Algorithm

Tree-Parsing Graph-Parsing

LEFTl-∗ [i �= 0] ∧ ¬[(i →∗ j) ∈ A] ∧ ¬[∃k.(i ← k) ∈ A] [i �= 0] ∧ ¬[(i →∗ j) ∈ A]
RIGHTl-∗ ¬[(j →∗ i) ∈ A] ∧ ¬[∃k.(k → j) ∈ A] ¬[(j →∗ i) ∈ A]
∗-REDUCE [∃h.(h → i) ∈ A] ∧ ¬[∃k ∈ β.(i → k)] [∃h.(h → i) ∈ A] ∧ ¬[∃k ∈ β.(i → k) ∨ (i ← k)]
∗-SHIFT ¬[∃k ∈ σ.(k �= i) ∧ ((k → j) ∨ (k ← j))]

Table 2: Comparisons in terms of the preconditions of Leftl-∗, Rightl-∗ and ∗-Reduce in our graph-parsing algorithm and the
tree-parsing algorithm.

State Transition σ δ β A
0 Initialization [0] [ ] [1, . . . , 9] ∅
1 NO-SHIFT [0, 1] [ ] [2, . . . , 9]
2 NO-SHIFT [0, 1, 2] [ ] [3, . . . , 9]
3 LEFT-REDUCE [0, 1] [ ] [3, . . . , 9] A ∪ {2 ← mDegr − 3}
4 LEFT-PASS [0] [1] [3, . . . , 9] A ∪ {1 ← Exp − 3}
5 RIGHT-SHIFT [0, 1, 3] [ ] [4, . . . , 9] A ∪ {0− ROOT → 3}
6 RIGHT-SHIFT [0, 1, 3, 4] [ ] [5, . . . , 9] A ∪ {3− mPunc → 4}
7 NO-REDUCE [0, 1, 3] [ ] [5, . . . , 9]
8 NO-SHIFT [0, 1, 3, 5] [ ] [6, . . . , 9]
9 LEFT-REDUCE [0, 1, 3] [ ] [6, . . . , 9] A ∪ {5 ← mNeg − 6}
10 NO-SHIFT [0, 1, 3, 6] [ ] [7, 8, 9]
11 LEFT-REDUCE [0, 1, 3] [ ] [7, 8, 9] A ∪ {6 ← mMod − 7}
12 RIGHT-PASS [0, 1] [3] [7, 8, 9] A ∪ {3− eCau → 7}
13 LEFT-REDUCE [0] [3] [7, 8, 9] A ∪ {1 ← Agt − 7}
14 NO-SHIFT [0, 3, 7] [ ] [8, 9]
15 RIGHT-SHIFT [0, 3, 7, 8] [ ] [9] A ∪ {7− Datv → 8}
16 LEFT-REDUCE [0, 3, 7] [ ] [9] A ∪ {8 ← Agt − 9}
17 RIGHT-SHIFT [0, 3, 7, 9] [ ] [ ] A ∪ {7− ePurp → 9}

Table 3: Transition sequence for the dependency graph in Figure 1a generated by list-based arc-eager graph-parsing algorithm
with gold-standard oracles.

which is a hybrid between Nivre’s arc-eager and list-based
algorithms (Nivre 2003; 2008).3 In this algorithm, a tuple
(σ, δ, β,A) is used to represent each parsing state, where σ is
a stack holding processed words, δ is a deque holding words
popped out of σ that will be pushed back in the future, and β
is a buffer holding unprocessed words. A is a set of labeled
dependency arcs. We use index i to represent word wi, and
index 0 to represent the pseudo root of the graph w0. The
initial state is ([0], [ ], [1, · · · , n], ∅), while the terminal state
is (σ, δ, [ ], A). During parsing, arcs will only be generated
between the top element of σ (wi) and of β (wj).

The transition actions of the list-based arc-eager algo-
rithm are listed in Table 1. LEFTl-∗ and RIGHTl-∗ add an
arc with label l betweem wj amd wi. They are performed
only when one of wi and wj is the head of the other. Other-
wise, NO-∗ will be applied. ∗-SHIFT is performed when no
dependency exists between wj and any word in σ other than
wi, which pushes all words in δ and wj into σ. ∗-REDUCE
is performed only when wi has head and is not the head or
child of any word in β, which pops wi out of σ. ∗-PASS is
performed when neither ∗-SHIFT nor ∗-REDUCE can be per-
formed, which moves wi to the front of δ. (i l−→ j) is used
to denote an arc from wi to wj with label l. (i → j) and
(i →∗ j) indicate that wi is a head and an ancestor of wj

3We refer to the system proposed by Choi and McCal-
lum (2013) as list-based arc-eager algorithm in this paper.

respectively.

Neural Networks for Parsing

Recent years have seen great success in applying neural net-
works to transition-based dependency parsing (Chen and
Manning 2014; Dyer et al. 2015; Andor et al. 2016). The
use of neural networks not only avoids the heavy labour of
feature designing, but also captures much more information
including those that may have not been considered by hu-
man experts. Additionally, it also saves a lot of time that was
wasted in feature combination. Our work is mainly inspired
by the Stack-LSTM model proposed by Dyer et al. (2015),
which depended on an arc-standard algorithm (Nivre 2008).
Three Stack-LSTMs are utilized to incrementally obtain the
representations of the buffer, the stack and the transition ac-
tion sequence. Stack LSTM is an unidirectional LSTM aug-
mented with a stack pointer. When computing a new mem-
ory cell, the current location of this stack pointer determines
which cell in the LSTM provides the information of previous
time step. In addition, a dependency-based Recursive Neu-
ral Network (RecNN) is used to compute the partially con-
structed tree representations. In this way, full information of
each parsing state is expected to be captured, alleviating the
labour-intensive feature engineering.
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Figure 2: Example transition state representation based on LSTMs. The buffer β is represented by Bi-LSTM Subtraction, the
sub-graphs are computed by Incremental Tree-LSTM.

Neural Transition-based DAG Parser

Transition System

The key challenge in dependency graph parsing is the gen-
eration of non-local dependencies. To produce these de-
pendencies, we modify the preconditions of LEFTl-∗ and
RIGHTl-∗ so that the dependency between a head and its
modifier can be generated even if the modifier already has
a head. Table 2 shows the specific differences between the
original tree-parsing algorithm and the proposed variant. Be-
sides, we want to confirm that all of a word’s heads and chil-
dren are found before it is reduced. So we modify the head
confirmation in the precondition of ∗-REDUCE to make sure
no extra head of wi is in the buffer β. While wi is only val-
idated to have one head in the tree-parsing algorithm since
each word has only one head in the tree structure.

Table 3 illustrates the transition sequence for the depen-
dency graph in Figure 1a using the modified algorithm. In
state 4, w1 is moved from σ to δ because it has another head
w7 in β, and the arc between them will be generated in the
future (state 13). In state 12, the transition is RIGHT-PASS
rather than RIGHT-SHIFT because w7 still has a child w1 in
σ, and w3 is moved to δ so that the arc between w7 and w1

can be generated (state 13).

LSTM-Based State Representation

Compared with the arc-standard algorithm (Nivre 2004)
used by Dyer et al. (2015), our transition system has an ex-
tra component in each configuration, i.e., the deque δ. So
we use an additional Stack-LSTM to learn the representa-
tion of δ. More importantly, we introduce two LSTM-based
techniques, namely Bi-LSTM Subtraction and Incremental
Tree-LSTM (explained below) for modeling the buffer and
sub-graph representations in our system.

Representations of the four components are then concate-
nated and passed through a hidden layer to obtain the repre-

Figure 3: Illustration of Bi-LSTM Subtraction for buffer rep-
resentation learning. hf (*) and hb(*) indicate the hidden
vectors of forward and backward LSTM respectively. bt is
the resulting buffer representation.

sentation of the parsing state at time t:

et = max{0,W [st ⊕ bt ⊕ pt ⊕ at] + d}
where st, bt, pt and at are the representation of σ, β, δ and
A respectively. d is the bias. ⊕ is the concatenation operator.
et is finally used to compute the probability distribution of
possible transition actions at time t through a softmax layer.
Figure 2 shows the architecture.

Bi-LSTM Subtraction In Dyer et al. (2015)’s work, the
buffer is simply represented by the last hidden vector of
a right-to-left unidirectional LSTM encoding words in the
buffer, which has the risk of losing information from words
out of the buffer (which have been shifted or reduced)
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Figure 4: Representations of a dependency sub-graph
(above) computed by Tree-LSTM (left) and dependency-
based RecNN (right).

and from the left-to-right direction. Besides, a single hid-
den vector is not substantial for representing the whole
buffer. Here, we regard the buffer as a segment and use
the subtraction between LSTM hidden vectors of the seg-
ment head and tail as its representation. Similar idea was
also explored in Wang and Chang (2016) and Cross and
Huang (2016b). To include the information of words out
of the buffer, we apply subtraction on bidirectional LSTM
representations over the whole sentence (Wang et al. 2016;
Kiperwasser and Goldberg 2016; Cross and Huang 2016a),
thus called Bi-LSTM Subtraction. The forward and back-
ward subtractions are calculated independently, i.e., bf =
hf (l) − hf (f) and bb = bb(f) − bb(l), where hf (f) and
hf (l) are the hidden vectors of the first and the last words
in the forward LSTM, hb(f) and hb(l) are the hidden vec-
tors of the first and the last words in the backward LSTM.
Then bf and bb are concatenated as the buffer representa-
tion. As illustrated in Figure 3, the forward and backward
subtractions for the buffer are bf = hf (eat) − hf (too) and
bb = hb(too)− hb(eat) respectively.

Incremental Tree-LSTM Dyer et al. (2015) have used a
dependency-based Recursive Neural Network (RecNN) to
compute the subtree representations, which has a risk of suf-
fering from gradient vanishing when dealing with deep sub-
trees. Furthermore, we also believe that the architecture used
to model the sub-structures requires the capability to mem-
orize important information and forget unimportant one. So
we use a Tree-LSTM (Tai, Socher, and Manning 2015) in-
stead of RecNN in our architecture. The example in Figure 4
shows the differences between RecNN and Tree-LSTM. In
RecNN, the representation of a sub-graph is computed by
recursively combining head-modifier pairs, whereas in Tree-
LSTM, a head is combined with all of its modifiers simulta-
neously in each LSTM unit.

However, due to the particularities of graph parsing, our
implementation of Tree-LSTM is different from the conven-
tional one. First of all, the partially constructed structures
generated in our parsing procedure are not strictly trees,
since some of the words may have more than one head.
Fortunately, the structures of dependency graphs are con-
strained to be directed acyclic, which makes the Tree-LSTM
still applicable. More importantly, unlike traditional bottom-
up Tree-LSTMs in which each head and all of its modifiers
are combined simultaneously, the modifiers are found incre-

Figure 5: Illustration of the incremental construction process
of a sub-graph. a, b, c and d indicate the embeddings of A,
B, C and D. a+b indicates the combination of A and B.

mentally during our parsing procedure. Therefore, we pro-
pose Incremental Tree-LSTM, which obtains sub-graph rep-
resentations incrementally. To be more specific, each time a
dependency arc is generated, we collect representations of
all the found modifiers of the head and combine them along
with the embedding of the head as the representation of the
sub-graph. The original embedding rather than the current
representation of the head is utilized to avoid the reusage of
modifier information, since the current representation of the
head contains information of its modifiers found previously.

For example, in the sub-graph depicted in Figure 5, the
sub-graph is constructed as follows: (1) embeddings of A
and B are combined and take the place A;4 (2) embeddings
of B and C are combined and take the place of B; (3) em-
beddings of A and D along with current representation of
B (combination of B and C) are combined as the represen-
tation of the final sub-graph which updates A. Note that in
RecNN, after the generation of the third arc, the represen-
tation of A (combination of A and B) and the newly found
modifier D will be combined as the final representation of
the sub-graph. Thus the information of dependency relation
between B and C will be lost.5

Although our Incremental Tree-LSTM can cover more sit-
uations than RecNN does, it still has limitations when deal-
ing with certain structures. For example, in Figure 5, if the
dependency between A and D is not generated, then the final
representation of the sub-graph will be the combination of
embeddings of A and B without C. An ideal solution which
we have tried is to update all of the ancestors of the head
whenever an arc is generated. However, preliminary experi-
ment results show that updating all the ancestors can barely
help to improve the final performance in both CSDG and
BCSDG. We believe it is because that updating all the an-
cestors will not only improve the performance of the Tree-
LSTM but also amplify the structural errors. Thus we even-
tually choose the simplified version.

In addition, on the contrary to RecNN, our Tree-LSTM
does not model the dependency relations. We conduct an
experiment in a basic system with the same architecture of
Dyer et al. (2015) and found that neglecting relations in

4The embeddings are combined through a Tree-LSTM unit.
5It is important to note that the problem does not exist in the

arc-standard algorithm used by Dyer et al. (2015) since the trees
are constructed in a bottom-up manner.

5565



RecNN has only marginal effect on the results.

Experiments

Data and Settings

For Chinese, we use the SemEval-2016 Task 9 as our
testbed. The shared task provides two distinguished corpora
in the domain of NEWS and TEXTBOOKS. We follow the
official evaluation setup (Che et al. 2016) and use the labeled
F-score (LF) and unlabeled F-score (UF) at the dependency
arcs level as the metrics. In particular, non-local dependen-
cies are evaluated separately, i.e., NLF and NUF.

For English, we conduct experiments on the English part
of SemEval-2015 Task 18 closed track (Oepen et al. 2015).
We use the same data split as previous work (Almeida and
Martins 2015; Du et al. 2015), with 33,964 training sen-
tences (WSJ §00-19), 1,692 development sentences (§20),
1,410 in-domain testing sentences (§21) and 1,849 out-of-
domain testing sentences from the Brown Corpus. We utilize
the official evaluation tool to evaluate our results.

DyNet (Neubig et al. 2017) is used to implement our
neural models.6 Similar to Dyer et al. (2015), we utilize
three types of atomic features to represent the tokens: pre-
trained word embeddings, POS tags and randomly initial-
ized word embeddings updated while training. For Chi-
nese we use 100-dimensional word embeddings trained by
word2vec (Mikolov et al. 2013) with Xinhua portion of the
Chinese Gigawords.7 For English we use 50-dimensional
SENNA embeddings.8

The Stack-LSTMs and Bi-LSTM have two layers while
the Tree-LSTM has one. The input and hidden dimensions
of Stack-LSTM, Bi-LSTM and Tree-LSTM are 200. The
learned word embedding size dwt = 100, POS tag, relation
and transition embedding size are all 50.

Results and Discussions

We first explore the effect of Bi-LSTM Subtraction (BS) and
Incremental Tree-LSTM (IT) with the CSDG dataset. Re-
sults are shown in Table 4. We can see that either module can
improve the performance of the basic system, which uses
unidirectional LSTM to represent the buffer and RecNN to
compute the sub-graphs (Dyer et al. 2015), and the system
that uses both yields the best results. The speed compari-
son in Table 5 shows that both modules slow down the basic
system by about 10%. And updating all ancestors in Tree-
LSTM also slows down the BS-IT system by about 10%.

The overall results on CSDG are presented in Table 6.
To further show the effectiveness of our method, we com-
pare our system with a strong baseline approach proposed
by Ding et al. (2014), where a conventional transition-
based tree parser is utilized to produce dependency trees
first, then an SVM classifier is used to recover the addi-
tional dependency arcs by selecting arcs from a set of can-
didates generated by manually designed linguistic rules. In

6github.com/clab/dynet
7https://catalog.ldc.upenn.edu/LDC2003T09
8https://ronan.collobert.com/senna/

Corpus System LF UF NLF NUF

NEWS

Basic 62.23 80.42 49.18 63.90
+BS 62.59 80.61 49.83 65.80
+IT 62.62 80.50 49.25 65.13
+BS&IT 63.30 81.14 51.16 66.92

TEXT

Basic 71.51 84.95 59.70 71.63
+BS 72.29 85.41 59.98 71.68
+IT 72.20 85.33 60.61 71.58
+BS&IT 72.92 85.71 61.91 72.74

Table 4: Effect of the Bi-LSTM Subtraction (BS) module for
buffer representation and the Incremental Tree-LSTM (IT)
module for sub-graph representation using the one-stage
system on Chinese test set (CSDG).

Basic +BS +IT +BS&IT +BS&IT (Anc)

335.0 296.9 302.6 258.1 229.7

Table 5: Speed (tokens/s) comparison on CSDG TEXT-
BOOK set. Anc means update all ancestors in Tree-LSTM.

the work of Ding et al. (2014), they used structured percep-
tron (Collins 2002) to train the classifier. Here we instead
use our proposed neural network architecture to exclude the
effect of transition classification and focus on the differ-
ences between our one-stage approach and their two-stage
one. Results show that our implementation of the two-stage
system achieves better performance than other participating
systems9 in all evaluation metrics except for NLF, indicat-
ing that the two-stage approach is still weak in predicting
non-local dependencies. However, our proposed BS-IT sys-
tem significantly outperforms it and all the other participat-
ing systems. Besides, our BS-IT System achieves an abso-
lute improvement of more than 10% in NLF against the two-
stage system on both copora, showing the superiority of our
proposed method in dealing with non-local dependencies.

We further evaluate our system (BS-IT) on the BCSDG
dataset (English). Since the restriction in our transition sys-
tem that each word must have at least one head does not hold
in this task, we pre-process these sentences by attaching the
words that have no head to ROOT with an extra NULL label.
At test time, arcs with NULL labels will be removed.

Table 7 compares our system with the best published re-
sults on SemEval-2015 Task 18 English test sets. Here Du et
al. (2015)’s parser is a hybrid of transition-based and graph-
based parsing approaches, and also utilizes model ensem-
bling. A&M, 2015 (Almeida and Martins 2015) is a second-
order graph-based parser. Peng et al.,2017 (Peng, Thomson,
and Smith 2017) is also a graph-based parser and yields
state-of-the-art performance on the English part of this task.
Both A&M and Peng et al.’s models used AD3 algorithm for
decoding, while Peng et al. used bidirectional LSTMs com-
posed with a multi-layer perceptron to score dependency
arcs. They also explored multi-task learning approaches to
combine the three different annotations (DM, PAS, PSD), but
we only compare with their basic models here.

9Refer to Che et al. (2016) for more details.
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System
NEWS TEXTBOOKS

LF UF NLF NUF LF UF NLF NUF

IHS-RD-Belarus 59.06 77.64 40.84 60.20 68.59 82.41 50.57 64.58
OCLSP (lbpg) 57.22 74.93 45.57 58.03 65.54 79.39 51.75 63.21
OCLSP (lbpgs) 57.81 75.54 41.56 54.34 66.21 79.85 47.79 55.51
OCLSP (lbpg75) 57.78 75.40 48.89 58.28 66.38 79.91 57.51 63.87
OSU CHGCG 55.69 73.72 49.23 60.71 65.17 78.83 54.70 65.71
2-stage (Ding et al. 2014) 62.29 80.56 39.93 64.29 71.94 85.24 50.67 69.97
BS-IT 63.30 81.14 51.16 66.92 72.92 85.71 61.91 72.74

Table 6: Results of our systems (the bottom one), our implementation of Ding et al. (2014)’s 2-stage system (the middle one)
and other participating systems (the top five) on Chinese test set (CSDG).

System DM PAS PSD Avg.

IN-DOMAIN

Du et al., 2015 (ensemble) 89.1 91.3 75.7 85.4
A&M, 2015 (single) 88.2 90.9 76.4 85.2
Peng et al., 2017 (single) 89.4 92.2 77.6 86.4
BS-IT (single) 89.3 91.4 76.1 85.6
BS-IT (ensemble) 90.3 91.7 78.6 86.9

OUT-OF-DOMAIN

Du et al., 2015 (ensemble) 81.8 87.2 73.3 80.8
A&M, 2015 (single) 81.8 86.9 74.8 81.2
Peng et al., 2017 (single) 84.5 88.3 75.3 82.7
BS-IT (single) 83.2 87.2 73.2 81.2
BS-IT (ensemble) 84.9 87.6 75.9 82.8

Table 7: Labeled F1 score on the BCSDG English test set.
DM, PAS and PSD are the three types of annotations on
the same dataset. The last column shows the macro-average
over the three tasks. McNemar’s test shows that our ensem-
ble model outperforms Peng et al.’s model in DM and PSD
annotations with p-value < 0.001.

Results of our single model are either comparable with or
better than that of Du et al. (2015) and Almeida and Mar-
tins (2015)’s systems. Since Du et al. (2015)’s model is an
ensembled one of 14 models, we also utilize a simple model
ensemble mechanism similar to Che et al. (2017), which
trains three models separately with different random seeds
and while predicting, use the sum of scores predicted by the
three models to decide the next transition at each state. With
this simple mechanism, we achieve better results than the
state-of-the-art one (Peng, Thomson, and Smith 2017) in 4
settings out of 6, and also outperform them on the macro-
averages of both in-domain and out-of-domain datasets.

Related Work

Deep dependency structures beyond surface tree repre-
sentation are traditionally obtained as a by-product of
grammar-guided parsers grounded by CCG, LFG and HPSG
(Clark, Hockenmaier, and Steedman 2002; Miyao and
Tsujii 2005; Sagae, Miyao, and Tsujii 2007). However,
most of the previous work on dependency parsing focused
on tree structures, whereas recent work has proved that
transition-based approaches are also applicable to gener-
ate more informative dependency graphs. Sagae and Tsu-
jii (2008) presented a transition-based approach to gener-
ate HPSG-style predicate-argument structures using pseudo-

projective transformations (Nivre et al. 2006). Following
their step, Tokgöz and Eryiğit (2015) presented a DAG
parser with dynamic oracle, which still requires pseudo-
projective transformation and detransformation. Recently,
Zhang et al. (2016) presented two new transition systems
to generate arbitrary directed graphs in an incremental man-
ner with structured perceptron algorithm (Collins 2002) for
transition classification. Except for the differences between
our and their transition systems, we also make good use of
neural networks in our model.

Conclusion

This paper presents a neural transition-based approach for
semantic dependency graph parsing. We describe a variant
of list-based arc-eager transition algorithm that is capable
of producing DAG structures. Furthermore, two improved
LSTM modules are proposed for representing the key com-
ponents in our transition system. Experimental results on
SemEval-2016 Task 9 and SemEval-2015 Task 18 which de-
fined different kinds of graph formalisms in different lan-
guages (i.e. Chinese and English) demonstrate the effective-
ness of our approach.
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