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Abstract

Different from other sequential data, sentences in natural lan-
guage are structured by linguistic grammars. Previous gen-
erative conversational models with chain-structured decoder
ignore this structure in human language and might generate
plausible responses with less satisfactory relevance and flu-
ency. In this study, we aim to incorporate the results from
linguistic analysis into the process of sentence generation for
high-quality conversation generation. Specifically, we use a
dependency parser to transform each response sentence into
a dependency tree and construct a training corpus of sentence-
tree pairs. A tree-structured decoder is developed to learn the
mapping from a sentence to its tree, where different types
of hidden states are used to depict the local dependencies
from an internal tree node to its children. For training ac-
celeration, we propose a tree canonicalization method, which
transforms trees into equivalent ternary trees. Then, with a
proposed tree-structured search method, the model is able
to generate the most probable responses in the form of de-
pendency trees, which are finally flattened into sequences as
the system output. Experimental results demonstrate that the
proposed X2TREE framework outperforms baseline methods
over 11.15% increase of acceptance ratio.

Introduction
Many natural language processing tasks can be formulated
as sequence to sequence problems. Given a sequence of to-
kens, this task is to generate another sequence of tokens of
equal or non-equal length. For example, machine translation
models try to find a sequence of words in the target language,
expressing the identical meaning to a source sentence; con-
versational models respond to a post utterance with a seman-
tically coherent and grammatically correct sentence. Neu-
ral models were applied to these tasks and achieved state-
of-the-art performances in recent years (Cho et al. 2014;
Shang, Lu, and Li 2015; Vinyals and Le 2015; Sordoni et al.
2015; Serban et al. 2015).

These neural models in essence use a chain-structured de-
coder to sequentially generate tokens given a context vec-
tor encoded from an input sequence. We notice that this de-
coding process is mostly linear, meaning that tokens are ob-
tained in the order of their appearances. It basically consid-
ers the dependency between any word and all its preceding
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ones. RNN models, such as LSTM (Hochreiter and Schmid-
huber 1997) and GRU (Cho et al. 2014), are developed in
demand of capturing both the short and long-distance de-
pendency over the chain structure.

Our work improves upon these studies by incorporating
the results from linguistic analysis into the decoder. Specif-
ically, we leverage a dependency parser to transform each
response sentence into a dependency tree, containing more
local dependency information. The proposed model learns
to map a sentence into a canonicalized tree, which is then
flattened as the final output. Consider the intermediate task
for automatic conversation generation. Instead of generating
the response to a given input post directly, we aim to gener-
ate the dependency parse tree of the corresponding response
in top-down fashion. Additionally, a tree canonicalization
method is proposed, aiming at transforming trees with dif-
ferent numbers of children nodes into their equivalent form,
namely full ternary trees, in order to accelerate training and
simplify model implementation on GPU. Then, a postpro-
cessing step converts the dependency tree into a sequence as
the final response. We also theoretically prove that ternary
tree is the “best” choice for model complexity.

Some models also process trees in a bottom-up fash-
ion. Socher et al. (2011) proposed a max-margin struc-
ture prediction architecture based on recursive neural net-
works, and demonstrated that it successfully parses sen-
tences and understands scene images. Tai et al. (2015) and
Zhu et al. (2015) extended the chain-structured LSTM to
tree-structured LSTM, which is shown to be more effective
in representing a tree structure as a latent vector. All these
models process trees in a bottom-up fashion, where children
nodes are recursively merged into parent nodes until the root
is generated.

However, bottom-up models require all the leaf nodes in
the predicted tree given in advance. For example, to gen-
erate the constituency parse tree for a sentence (shown in
Fig. 1(a)), tokens appeared in the given sentence are used as
leaf nodes in this tree. Similarly, to parse natural scene im-
ages (Socher et al. 2011), an image is first divided into seg-
ments, each of which corresponds to one leaf node in output
tree. With these given leaves bottom-up process recursively
processes the internal nodes until the root is built.

Here, we argue that the bottom-up generative models may
not work well when the leaf nodes are not specified ahead of
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(a) Constituency parser in bottom-up fashion.
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(b) Dependency parser in top-down fashion.

Figure 1: Examples of two tree-structured prediction tasks
in language understanding.

prediction. Consider the task in Fig. 1(b), which is an inter-
mediate task for automatic conversation generation. Instead
of generating the response to a given input post directly,
we aim to generate the dependency parse tree of the cor-
responding response. Then, a postprocessing step converts
the dependency tree into a sequence as the final response.
1 Compared to the SEQ2SEQ solution to conversation gen-
eration, we argue that this tree-structured modeling method
is more effective due to a shorter average decoding length
and the extra structure information provided from the parse
tree. In this task, it is clearly seen that: since all the tokens
in response are not explicitly given by the input post, it may
not be appropriate to generate the dependency from bottom
to top.

Previous works on tree-structured LSTM (Tai, Socher,
and Manning 2015; Zhu, Sobhani, and Guo 2015; Zhang,
Lu, and Lapata 2016) show that incorporating syntactic
structures into the encoder or decoder results in sentence
embedding with improved performances on tasks like sen-
timent analysis and semantic relatedness. In this paper, we
propose to inject tree structures into the decoding process
with the following motivations:

1) Dependency tree parsing extracts short-distance depen-
dencies in the local area of a sentence. Utilizing these lin-
guistic results reduces the difficulty in sequential learning,
thus helps decoders to generate grammatically and seman-
tically correct utterances. Let y be the response sentence
to an input x, and Ty be the dependency tree for y. Then,
the average length between any node in Ty to its root is
O(

√
|y|) (Flajolet and Odlyzko 1982), much smaller than

the sentence length |y|. Thus, this tree transformation may

1The motivation of this solution is detailed in Section Tree Gen-
eration.

alleviate the long-distance gap in sequence generation. 2)
Words in higher levels of the dependency tree usually are
more influential for the sentence. By generating more “im-
portant” words in earlier stages of the decoding process, we
essentially free the decoder from the burden to store impor-
tant semantic information for many time steps. 3) We also
believe that the process of tree-structured sentence genera-
tion is more consistent with how human construct sentences.
Although people speak a sentence in a sequential order, they
may keep some keywords, such as verbs and nouns, in mind
before filling in more descriptive adjectives and adverbs to
generate a full sentence.

In this paper, we develop a tree-structured decoder in the
framework of “X to tree” (X2TREE) learning, where X rep-
resents any structure (e.g. chain, tree) encoding the post as a
latent vector. Since all the tokens in the response are not ex-
plicitly given by the input post, it is appropriate to generate
the dependency from top to bottom. To this end, we need to
address the following challenges:

1) We need to carefully model the different dependencies
between a tree node and its children. Children at different
positions may have different meanings, and the generation of
a child node depends on not only its parent and ancestors but
also its siblings. Thus, we need to fully consider the memory
inherited from both its ancestors and siblings (detailed in
Section Generative Model for K-ary Full Tree).

2) A tree node could obtain any number of children. It is
non-trivial to automatically determine the number of chil-
dren. Furthermore, GPU-based parallel computing is diffi-
cult when the children number is different for each node. We
therefore need a tree canonicalization process, which out-
puts an equivalent standard tree, where each internal node
has a fixed number of child nodes (detailed in Section Tree
Canonicalization).

3) In model inference, it is required to develop a algo-
rithm searching for the most probable trees instead of se-
quences. Since the beam search utilized by previous studies
only handles chain structures, a more general search algo-
rithm for tree structures needs to be developed (detailed in
Section Tree Generation).

With all these challenges addressed, our main contribu-
tions are twofold: 1) We propose a generative neural ma-
chine for tree structures, and apply it to conversational
model. Specifically, we introduce a tree canonicalization
method to standardize the generative process and a greedy
search method for tree structure inference. 2) We empirically
demonstrate that the proposed method successfully predict
the dependency trees of conversational responses to an input
post. Specifically, for the task of automatic conversation the
proposed X2TREE framework achieves 11.15% increase of
acceptance ratio.

It is also worth mentioning that we do not need a perfect
dependency parser. In our task, the sequential sentence is
the final output, while the dependency tree is only the im-
mediate result. If the parsed tree contains errors in similar
patterns, the model can learn these patterns. After we con-
vert the generated tree into a sequence, the sequence may be
still correct, which is also demonstrated by the experiments.
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Figure 2: Parent-children dependency.

X2Tree Neural Network

In this section, we introduce the X2TREE learning frame-
work. The training dataset is given as: D = {(x, Ty)} where
y is the response of the post x and Ty is the corresponding
tree of y, e.g. dependency tree. Our task is to learn the map-
ping from x to a tree structure Ty . Specifically, it adopts the
encoder-decoder framework. We assume x has already been
encoded as a latent vector

(
see e.g. (Sutskever, Vinyals, and

Le 2014; Zhu, Sobhani, and Guo 2015)
)
, and mostly focus

on the tree-structured decoder for the generation of Ty .
As aforementioned, the developed decoder adopts a top-

down generative process. The atom step is generating the
children for a given node. This atom step is performed on
each node until it cannot generate any valid nodes. Thus,
the key to the decoder is modeling the parent-children de-
pendency. Note also that the model parameters for parent-
children dependency are shared for all the atom steps in tree
generation.

We first assume the tree is K-ary full tree where every
internal node has exactly K children, and model this type
of tree in Section Generative Model for K-ary Full Tree.
Then, we propose a canonicalization method that transforms
any tree into a K-ary full tree and discuss the K for differ-
ent applications in Section Tree Canonicalization. Finally,
we introduce an algorithm for tree inference in Section Tree
Generation.

Generative Model for K-ary Full Tree

Here, we propose a generative model for K-ary full tree.
For simplicity, x also represents the latent vector encoded
from the input post. Within the probabilistic learning frame-
work, our main task is to express the conditional probabil-
ity p(T |x) for a pair (x, T ) ∈ D. We can first reformulate
p(T |x) as:

p(T |x) = p(tr|x) · p(T¬r | tr,x) (1)

where tr and T ¬r denotes the root and the set of non-root
nodes respectively. The first term p(tr|x) in Equ. (1) is mod-
eled as follows p(tr|x) = exp gr(tr,x)∑

v∈V exp gr(v,x)
where gr is a

nonlinear and potentially multi-layered function, and V is
the vocabulary containing all possible values for the discrete
random variables.

To model p(T¬r | tr,x), we make the following condi-
tional independence assumption:

Assumption 1. The children of different nodes are condi-
tionally independent given their ancestors.

With assumption 1, p(T¬r|tr,x) is decomposed as:

p(T¬r|tr,x) =
∏

t∈T
p
(
C(t) | x, t, A(t)

)
(2)

where C(t) = (c1, c2, · · · , cK) denotes the set of t’s chil-
dren, and A(t) denotes all t’s ancestors.

We then move to model the conditional probability
p
(
C(t)|x, t, A(t)

)
. Concretely, since the child nodes to a

parent usually correlate with each other, it is inappropriate
to assume conditional independence among them. Thus, the
probability p

(
C(t)|x, t, A(t)

)
is then decomposed into the

following ordered conditional probabilities:

p
(
C(t)|x, t, A(t)

)
=

∏

ck∈C(t)

p
(
ck|x, t, A(t), c<k

)
(3)

Furthermore, we argue that children at different positions
obtain different underlying meanings. Hence, K different
types of hidden states are designed for the K children of
node t:

hk = fk(t,h,x) , k = 1, 2, . . . ,K (4)

where {fk}Kk=1 are activation functions which can be LSTM
or other RNN cells. h denotes the hidden state fed to node t,
containing the memory from t’s ancestors , and hr = 0 for
the root node. With hk, we define p

(
ck | x, t, A(t), c<k

)
as

follows:

p
(
ck | x, t, A(t), c<k

)
=

exp gk
(
ck,x, t,hk, c̃k−1

)
∑

v∈V exp gk
(
v,x, t,hk, c̃k−1

)

c̃k−1 = [c1; c2; · · · ; ck−1]
(5)

where c̃k−1 is the concatenation of {ci}k−1
i=1 .

Modeling of parent-children dependency is summarized
in Fig.2. With all these modelings, we train the X2TREE
model by maximizing the data likelihood, namely

∏

(x,T )∈D

p(T |x)

=
∏

(x,T )∈D

p(tr|x)
∏

t∈T

∏

ck∈C(t)

p
(
ck | x, t, A(t), c<k

) (6)

It is worth mentioning that in order to explicitly notify the
end of tree generation we need to add the special token
“EOB” (short for “End Of Branch”) to the leaf nodes as their
children. Hence, all the leaf nodes of the tree in the training
dataset are EOB nodes.

Tree Canonicalization

As aforementioned, the proposed X2TREE model requires
that the tree is K-ary full tree. Whereas for dialogue gen-
eration task a response sentence can be parsed into a de-
pendency tree with any number of child nodes at each level.
During training and generating, it is difficult to determine the

5724



a(0)

b(0) c(0)

a b c

(a) a-b-c

a(1)

b(0) c(0)

ab c

(b) b-a-c

a(2)

b(0) c(0)

ab c

(c) b-c-a

Figure 3: Three different sequence-preserved trees.
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Figure 4: The canonicalization for node t.

child-node number of a word. Additionally, variable-length
data is tricky for GPU acceleration. Hence, the original de-
pendency tree is canonicalized into K-ary full tree before
training.

Basically, the transformed K-ary full tree should be
equivalent to the original one. In other words, there must ex-
ist an algorithm to support the bi-directional transformation
between a tree and its K-ary full counterpart. Considering
the number of K is linear to the number of model parame-
ters, to reduce model complexity, we usually hope K to be
as small as possible. For a given tree, a simple method to
transform it into a full tree is to fill all the empty positions
with EOB nodes. With this method, every tree node obtains
K children where K is the maximal number of immediate
children over all tree nodes. However, when K is large and
the tree nodes are sparse, the redundant EOB nodes signifi-
cantly increase the learning complexity. Hence, ideally, be-
fore the EOB filling step we want to transform the tree into a
binary or ternary tree.

Here, we mainly consider two scenarios. For an ordered
tree, where ordering is specified for the children of each
node, we transform it to a left-child right-sibling (LCRS) bi-
nary tree (Cormen 2009). This transformation is reversible
with a one-to-one mapping between the ordered tree and
its LCRS counterpart. Furthermore, for the conversational
generation tasks, we need to flatten the predicted tree into a
sequence. Therefore we need to store position information
in the dependency tree. For this purpose we first give the
following definition of sequence-preserved tree (SP tree for
short).

Definition 1. An SP tree is an ordered tree where each node
t is tagged an integer I(t) ∈ {0, 1, · · · ,K}, and K is the
number of children to node t.

The in-order traversal of an SP tree corresponds to a node
sequence. Node t’s children are divided into two parts. The
left part contains the first I(t) nodes (child nodes are or-

dered from left to right), while the right part contains the
remaining nodes. In the in-order traversal we first visit the
nodes in the left part, then the current node, finally the right
part. Fig. 3 shows three SP trees with their corresponding
sequences. Obviously, the dependency tree of a sentence is
an SP tree, where the number attached on each node can be
obtained by checking the position relationship of the node
and its children in the original sentence, as shown in Fig-
ure 1(b). For example, the node “says” obtains a number “1”
which means one child of this node are on its left part in the
original sequence. As discussed earlier, a tree canonicaliza-
tion step is needed to transform the original dependency tree
into a K-ary full tree. To preserve sequence order, we trans-
form the dependency into a ternary tree. We now present the
algorithm and discuss why ternary tree is the “best” choice.
Alg. 1 details this canonicalization process, and an illustra-
tion is shown in Fig.4.

In a ternary tree, each node has three children, namely
left, middle and right nodes. For node t with attached num-
ber I(t), Alg. 1 first determines its left and middle child in
the ternary tree. Specifically, its left child is set to c1, the
first child in the original tree; and its middle child is set to
cI(t)+1. Any other child cj

(
j �= 1 and j �= I(t) + 1

)
is set

as the right child of cj−1 recursively. With this ternary tree
a simple in-order traversal in the order of left child, parent,
middle child and right child can restore it into a sequence.

Algorithm 1 CANONICALIZE

Input: A node of SP tree, t
Output: Ternary tree node corresponding to t, t′

1: Let c1, c2, · · · , cn denote t’s children;
2: Create an new node t′ = t;
3: for j ← 1 to n do
4: currentNode ← CANONICALIZE(cj);
5: if j = 1 and j � I(t) then
6: t′.leftChild ←currentNode;
7: else if j = I(t) + 1 then
8: t′.middleChild ←currentNode;
9: else

10: lastNode.rightChild ←currentNode;
11: end if
12: lastNode ← currentNode;
13: end for
14: return t′;

Next, we prove that the resulting ternary tree is equivalent
to the original SP tree in the sense that they can be trans-
formed into each other.
Theorem 1. Given any SP tree T , it can be transformed into
a ternary tree T ′, and T ′ can be transformed back into the
original tree T .

Proof. Using the Alg.2, we can transform T into a ternary
tree T ′.

We now show how to transform T ′ back into T . For each
node t ∈ T ′, if t is not a right child, let r1 denote the right
child of t, r2 denote the right child of r1, rn denote the right
child of rn−1 until rn obtains no right child.

In the original tree T , t and {rj}nj=1 must be siblings. For
simplicity, let t′ denote their parent.

5725



1) If t is a left child in T ′, (t , r1 , · · · , rn) are first, second,
. . . , (n+ 1)-th child of t′ in the original SP tree T .

2) If t is a middle child in T ′, (t , r1 , · · · , rn) are
(
I(t′)+

1
)
-th,

(
I(t′)+2

)
-th, . . . ,

(
I(t′)+n+1

)
-th child of t′ in the

original SP tree T .
In this way, for each node in T ′, we can find its original

position in T , and then re-converts T ′ to T .

Additionally, we prove that ternary tree is the “best”
choice for model complexity. Theoretically, a dependency
tree is equivalent to a K-ary tree when K � 3. Since the
number of K is linear to parameter size in the X2TREE
model, we prefer simpler models with smaller values of K.
Theorem 2 formally shows that SP trees are not equivalent to
binary trees. Therefore, the ternary tree is the “best” choice.
Thus before training, we perform a preprocessing step which
converts each response into its corresponding dependency
tree (instance of SP tree), and canonicalize them into ternary
trees. A visualization of this canonicalization process is pro-
vided in the slides in the supplemental files.

Theorem 2. Given any SP tree T , no algorithm exists which
transforms T into an LCRS tree T ′ and re-converts T ′ to T .

Proof. Let Sn, On and Ln respectively denote the set of
sequence-preserved trees, ordered trees and LCRS trees with
n nodes. Since the ordered trees and LCRS trees obtain one-
to-one correspondence (Cormen 2009), it can be inferred
that the element number |On| = |Ln|.

For a node t in ordered tree, if t and its children obtain
specified ordering, namely I(t) is defined, it converts to a
SP tree. Furthermore, for different I(t), the SP trees are dif-
ferent. Thus, |Sn| > |On| = |Ln|. Moreover, suppose that
an algorithm exists that transforms T into an LCRS tree T ′,
and re-converts T ′ to T . This infers that |Sn| � |Ln|. It is
contradictory to |Sn| > |Ln|.

Note that the generated tree is a full tree (the leaf nodes
can be in the lower depth) but not a perfect tree. For a sen-
tence with n words, the transformed k-ary full tree contains
exactly (kn+1) nodes, and the extra (kn+1−n) nodes are
the EOB tokens. Thus, only the (kn+ 1− n) nodes induce
the computing waste. To minimize this waste we expect k
as small as possible. Theorems 1 and 2 tell that k=3 is the
minimal number we can use so that the transformed tree is
equivalent to the original dependency tree.

Tree Generation

With the trained model we can infer the most probable trees
for a given input x. In this section we develop a greedy
search algorithm for this inference task.

The beam search is traditionally adopted for sequence
structure generation At each step, it keeps G (called global
beam size) best candidates with the maximal probabilities so
far. Then, only those candidates are expanded next. For each
candidate on the beam it grows a new node at the current
end of the sequence. This process repeats recursively until
all candidates end with EOB nodes.

Algorithm 2 GENERALIZEDBEAMSEARCH

Input:
latent vector, x
global beam size, G
local beam size, L
child number of each node, K

Output: A set of trees, R
1: S ← {G roots with highest p(tr|x)}; R ← φ;
2: while |R| < G do
3: for each T ∈ S do
4: for each leaf t ∈ T do
5: if t = EOB then
6: continue;
7: end if
8: Via chain beam search find L groups of C(t) by max-

imizing p
(
C(t)|x, t, A(t)

)
;

9: for each C(t) do
10: Connect C(t) to T as a new tree T ′;
11: Add T ′ to S;
12: end for
13: end for
14: Delete T from S;
15: end for
16: S ← {G trees with highest p(T |x) in S};
17: for each T ∈ S do
18: if T ’s leaves are all EOBs then
19: Add T to R;
20: end if
21: end for
22: end while
23: R ← {G trees with highest p(T |x) in R};
24: return R;

Since sequence is a special case of trees, searching tree
generation has more challenges to address. First, an arbi-
trary tree has multiple leaves which could potentially gener-
ate new children. Second, when growing new children for a
leaf node we need to generate all children as a whole since
they correlate with each other (as mentioned in Section Gen-
erative Model for K-ary Full Tree). Multiple groups of such
K children need to be generated as the best candidates.

We use the example in Fig. 5 to describe this tree gen-
eration method. The original tree has two leaves, nodes “i”
and “a”. For each of these leaves, we can generate new chil-
dren. Specifically, for node “i” it generates L groups of K
children, as shown in Fig. 5(b) (L = 3 and K = 2 in this ex-
ample). Since these new children are ordered, this local step
of children generation is actually a task of sequence gener-
ation, thus the conventional beam search can be used. Here,
L (called local beam size) is to specify the number of candi-
date sequences generated for each leaf. After the child gener-
ation for all the leaves, we compare all these candidate trees
and only retain top-G (G = 2 in this example) trees for the
next round of generation. This process recursively continues
until all the leaves in the tree are EOB nodes. Note that the
proposed method is a generalized beam search. Beam search
for sequence generation is a special case with K = 1, since
sequence is equivalent to 1-ary tree. The method is detailed
in Algorithm 2. A visualization of this search process is pro-
vided in the slides in the supplementary files.
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(a) The original tree “I-
am-a”.

� � once � � once

(b) Extending the leave node “I”.

� student � human � pupil

(c) Extending the leave node “a”.

Figure 5: Examples of one step of generalized beam search. The Fig.(a) shows the original tree. The Fig. (b) and (c) show the
searching results. Note that words in double quotes are to be expanded. Here, “⊗” denotes special token “EOB”.

Experiment Settings

Dataset Details

Our experiments focus on dialogue generation task. 14
million post-response pairs were obtained from Tencent
Weibo2. After removing spams and advertisements, 815, 852
pairs were left, among which 775, 852 are for training, and
40, 000 for model validation.

Benchmark Methods

We implemented the following four popular neural-based di-
alogue models for comparison:

1. SEQ2SEQ(Sutskever, Vinyals, and Le 2014): A RNN
model that utilizes the last hidden state of the encoder as
the initial hidden state of the decoder;

2. ENCDEC(Cho et al. 2014): A RNN model that feeds the
last hidden state of the encoder to every cell and softmax
unit of the decoder;

3. ATT(Bahdanau, Cho, and Bengio 2015): A RNN model
based on ENCDEC with attention signal;

4. NRM(Shang, Lu, and Li 2015): Neural Responding Ma-
chine with both global and local schemes.

All these models map sequences to sequences directly, and
only differ in how to summarize the encoder hidden states
into a latent vector. Thus, the proposed tree decoder can
be applied to any of these models, and potentially improve
the response quality from a different perspective. Here, we
stress that this tree-decoder can be easily applied to the
model (Serban et al. 2015), which summarizes multiple
rounds of dialogues into a latent vector. In the future, tree
decoder for multi-round dialog will be evaluated.

Implementation Details

All sentences in the experiments are segmented by LTP.
A vocabulary of 28,000 most frequent Chinese words in
the corpus is used for training, which contains 97% words.
Out-of-vocabulary words are replaced with “UNK”. Our im-
plementations are based on the Theano library (Bastien et
al. 2012) over NVIDIA K80 GPU. We applied one-layer
GRU (Cho et al. 2014) with 1,024-dimensional hidden states
to {fk}Kk=1 and all baseline models. As suggested in (Shang,

2http://t.qq.com/?lang=en US

Lu, and Li 2015), the word embeddings for the encoders and
decoders are learned separately, whose dimensions are set to
128 for all models. All the parameters were initialized using
a uniform distribution between -0.01 and 0.01. In training,
the mini-batch size is 128. We used ADADELTA (Zeiler
2012) for optimization. The training stops if the perplex-
ity on the validation set increases for 4 consecutive epochs.
Models with best perplexities are selected for further evalu-
ation. When generating responses, for X2TREE we use gen-
eralized beam search with global beam size G = 6, local
beam size L = 6. For other X2SEQ baseline models, con-
ventional beam search with beam size 200 is used.

Evaluation Methods

Due to the high diversity nature of dialogs, it is practically
impossible to construct a data set which adequately covers
all responses for each given post. Hence, we apply human
judgment to our experiments. In detail, 3 labelers were in-
vited to evaluate the quality of responses to 300 randomly
sampled posts. For each post, each model generated top-5
different responses (for a total of 25). For fair comparison,
we create a single file in which each post is followed by its
25 responses which are shuffled to avoid labelers knowing
which model each response is generated by.

For each response the labelers determine the quality to be
one of the following three levels:
• Level 1: The response is ungrammatical.
• Level 2: The response is basically grammatical but irrele-

vant to the input post.
• Level 3: The response is grammatical and relevant to the

input post. The response on this level is acceptable for
dialog system.

From labeling results, average percentages of responses in
different levels are calculated. Additionally, labeling agree-
ment is evaluated by Fleiss’ kappa (Fleiss 1971) which is
a measure of inter-rater consistency. Furthermore, we also
report BLEU-4 (Papineni et al. 2002) scores for these 300
posts. Since some researchers indicate BLEU may not be a
good measure for dialog evaluation(Liu et al. 2016), we con-
sider human judgment as a major measure in experiments.

Experimental Results and Analysis

The experimental results are summarized in Table 1. For
SEQ2SEQ, NRM and X2TREE, the agreement value is in
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a range from 0.6 to 0.8 which is interpreted as “substan-
tial agreement”. Meanwhile, ENCDEC and ATT obtain a
relatively higher kappa value between 0.8 to 1.0 which is
“almost perfect agreement”. Hence, we believe the labeling
standard is considered clear which leads to high agreement
among labelers.

Table 1: The results from human judgment.
Models Level-1% Level-2% Level-3% Agreement BLEU
ENCDEC 0.44 58.89 40.67 0.8114 8.78
SEQ2SEQ 1.58 50.73 47.69 0.7834 12.45
ATT 2.31 45.31 52.38 0.8269 13.89
NRM 0.64 44.98 54.38 0.7809 13.73
X2TREE 0.44 34.02 65.53 0.7733 15.87

For the Level-3 (acceptable ratio), X2TREE visibly out-
performs other models. The best baseline method NRM
achieves 54.38% Level-3 ratio, while X2TREE reaches
65.53% with an increase percentage of 11.15%. This im-
provement is mainly due to less irrelevant (Level-2) re-
sponses being generated (34.02% v.s. 44.98%), indicating
X2TREE outputs more acceptable responses.

We further notice from Table 1 that the percentage of un-
grammatical (Level-1) responses from X2TREE is less than
other baselines (equal to ENCDEC) and the BLEU score is
greater than other baselines in the experiments. It shows that
responses generated by the tree-structured decoder are more
grammatical than those from the chain-structured decoders
and demonstrate the X2TREE’s robustness to parser errors.
Additionally, X2TREE and ENCDEC achieve best grammat-
ical ratio (99.56%), but ENCDEC fails in generating relevant
responses. Hence, Tree Decoder can improve the response
relevance in experiments. We conjecture the reason is that
X2TREE firstly generate the core verb of the responses. The
first generated may be more relevant to the post and makes
the whole response more relevant to the post.

In summary, the experiments demonstrate that X2TREE
is able to generate more grammatical and relevant responses,
and also show X2TREE obtains the ability to generate cor-
rect trees.

Easiness to Learning

From Table 1, we discover that the percentage of grammati-
cal responses from X2TREE visibly surpasses other models
in the experiments. We conjecture that the tree-structured
decoder is easier to learn because its hidden states need to
store less information than their counterparts in a chain-
structured decoder.

In detail, given a response utterance with length T , the
hidden state at position t in a chain-structured decoder needs
to store the information of all previous words y<t, the aver-
age size of y<t is T+1

2 (with an extra EOS token). In contrast,
in a tree-structured decoder, ht only needs to store the infor-
mation of its ancestors yt. After transforming the response
into a triple dependency tree structure, the average depth of
nodes is O(

√
T ) (Flajolet and Odlyzko 1982). In the worst

case, the depth of a triple dependency tree is T , and the av-
erage number of ancestors of nodes is T+1

2 , which is the

same to the average size of y<t. Fig. 6 shows the average
number of steps hidden states need to remember at different
sequence lengths for our data set.
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Figure 6: Average number of steps need to be stored for hid-
den states in both structures.

Overall, hidden states of a tree-structured decoder need
store less information than chain-structured decoder’s. This
makes X2TREE potentially capable to handle more complex
semantic structures in the response utterances.

Related Work

Statistical Machine Translation. The neural-based
encoder-decoder framework for generative conversation
models follows the line of statistical machine translation.
Sutskever et al. (2014) used multi-layered LSTM as the
encoder and the decoder for machine translation. Later, Cho
et al. (2014) proposed the encoder-decoder framework,
where the context vector is fed to every unit in the decoder.
Bahdana et al. (2015) extended the encoder-decoder frame-
work with the attention mechanism to model the alignment
between source and target sequences.

Conversation models. Inspired by neural SMT, recent
studies showed that these models can also be successfully
applied to dialogue systems. Specifically, for short conver-
sation, Shang et al. (2015) proposed the Neural Respond-
ing Machine which further extended the attention mecha-
nism with both global and local schemes. Zhou et al. (2017)
proposed MARM to generate diverse responses upon multi-
ple mechanisms. Most recently, some researchers focused on
multi-round conversation. Serban et al. (2015) built an end-
to-end dialogue system using hierarchical neural network.
Sordoni et al. (2015) proposed a related model with a hierar-
chical recurrent encoder-decoder framework for query sug-
gestion. Our proposed model can also be applied to these
multi-round conversation models and potentially improve
the performances.

Tree-Structured Neural Network. Recently, some stud-
ies use tree-structured neural network instead of the conven-
tional chain-structured neural network to improve the qual-
ity of semantic representation. Socher et al. (2013) proposed
the Recursive Neural Tensor Network. Each phrase is repre-
sented by word vectors and its parse tree. Vectors of higher
level nodes are computed using their child phrase vectors.
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Tai et al. (2015) and Zhu et al. (2015) extended the chain-
structured LSTM to tree structures. All above models use
tree structures to summarize a sentence into a context vec-
tor, while we propose to decode from a context vector to
generate sentences in a root-to-leaf direction. Additionally,
Zhang et al.(2016) proposed Tree LSTM activation function
in top-down fashion. Here, two important points differen-
tiate our work with theirs. First, Zhang et al. mainly esti-
mate generation probability of dependency tree and apply
their model to sentence completion and dependency parsing
reranking tasks, while X2TREE handles dialogue modeling
in encoder-decoder framework. Second, due to the canon-
icalization method, X2TREE model process fixed number
(K = 3) of children at each step for GPU acceleration, while
Zhang et al. need to process the children sequentially. Thus,
the proposed tree canonicalization method helps to reduce
the training time. To this end, some works also aim at gener-
ating different structure types. Rabinovich et al. (2017) pro-
posed the abstract syntax networks to transform card image
of the game HearthStone into well-formed and executable
outputs. Cheng et al. (2017) utilized predicate-argument
structures to store natural language utterances as interme-
diate and domain-general representations.

Conclusion and Future Work

In this study, we proposed a tree-structured decoder to im-
prove the response quality in dialogue systems. By incorpo-
rating linguistic knowledge into the modeling process, the
proposed X2TREE framework outperforms baseline meth-
ods over 11.15% increase of acceptance ratio in response
generation. Future study on incorporating a tree-structured
encoder is promising to further enhance the sentence gener-
ation quality.
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