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Abstract

Attention mechanism has been a key component in Recur-
rent Neural Networks (RNNs) based sequence to sequence
learning framework, which has been adopted in many text
understanding tasks, such as neural machine translation and
abstractive summarization. In these tasks, the attention mech-
anism models how important each part of the source sentence
is to generate a target side word. To compute such impor-
tance scores, the attention mechanism summarizes the source
side information in the encoder RNN hidden states (i.e., ht),
and then builds a context vector for a target side word upon
a subsequence representation of the source sentence, since
ht actually summarizes the information of the subsequence
containing the first t-th words in the source sentence. We in
this paper, show that an additional attention mechanism called
word attention, that builds itself upon word level representa-
tions, significantly enhances the performance of sequence to
sequence learning. Our word attention can enrich the source
side contextual representation by directly promoting the clean
word level information in each step. Furthermore, we pro-
pose to use contextual gates to dynamically combine the sub-
sequence level and word level contextual information. Ex-
perimental results on abstractive summarization and neural
machine translation show that word attention significantly
improve over strong baselines. In particular, we achieve the
state-of-the-art result on WMT’14 English-French translation
task with 12M training data.

1 Introduction

Recurrent Neural Networks (RNNs) based encoder-decoder
framework has been successfully applied to various se-
quence to sequence text understanding tasks, e.g. neu-
ral machine translation (Sutskever, Vinyals, and Le 2014;
Bahdanau, Cho, and Bengio 2014), abstractive summariza-
tion (Nallapati et al. 2016a) and dialogue system (Asri,
He, and Suleman 2016). The key component to the suc-
cess of RNNs based sequence to sequence learning is the
attention mechanism (Bahdanau, Cho, and Bengio 2014;
Luong, Pham, and Manning 2015). The attention mecha-
nism is able to allow the model automatically rely on dif-
ferent parts of the source sentence when generating a target
word, and hence avoids using a fixed-size vector to represent
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the entire source sentence, and makes it possible to generate
distinct and more relevant source sentence representation for
each decoding step.

Typical attention mechanism models the dependency be-
tween source and target sentences through the interaction
between encoder and decoder RNN hidden states, and sum-
marizes such dependency into context vectors. Concretely,
as the first step, the encoder RNN processes the source sen-
tence into a memory consisting of all hidden state vectors.
Such a memory is then queried by the target side RNN hid-
den state at each decoding step, generating a distribution
over the memory itself. Based on such a distribution, the hid-
den states in the source side memory are linearly weighted
into a context vector to represent source sentence, which is
further used in generating the target side word in every step.
It is therefore observed that the context vector acts as the
key component of attention mechanism, since it dynamically
represents all the source side information.

In current attention mechanism, the context vectors are
built upon the RNN hidden state vectors, which act as repre-
sentations of prefix substrings of the source sentence, given
the sequential nature of RNN computation. Apart from such
subsequence level context vectors, in this paper, we pro-
pose to leverage an additional context vector computed by
a new attention mechanism named word attention, which
allows the decoder to directly and selectively touch more
raw source sentence information on word level without any
complicated sequential operations. From the perspective of
source side representation, our word attention enhanced
model extracts the semantic information of the source sen-
tence at different abstractive levels, combining previous sub-
sequence level representation with low-level word represen-
tation. In this way, we are able to rebuild more adaptive and
comprehensive context vectors to encode source sentence,
which assist the attention model in every decoding step.

Concretely, our proposed word attention is a complemen-
tary attention that concentrates on specific source word in-
formation during target sentence generation. At each de-
coding step, the word attention will selectively pay atten-
tion to different source side words, and generate an attentive
word context that is built directly upon word embeddings.
The word context vector is then used to emit the target side
word, together with previous context vector that arises from
RNN hidden states that summarize source sentence at sub-
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sequence level.
Furthermore, in order to better balance the two context

vectors, we add additional multiplicative contextual gates to
control the information flow from conventional hidden state
based context and the new word embedding based context
at each decoding step. As we discussed before, in source
side representation for attention model, word context com-
plements conventional hidden state based context by bring-
ing in more word level and direct information of the source
sentence. Accordingly, contextual gates adaptively control
how much each of the two contexts contributes to current
decoding step. As revealed by our experiments, word con-
text vectors are much better controlled with such gate units,
playing its unique contribution in certain scenarios in which
direct source side word information is needed.

Our contributions are summarized as follows:
• We propose to leverage the source side word level infor-

mation to form a complementary attentive word context.
Such a word level attention makes the source side contex-
tual information to be more comprehensive.

• In order to better combine the hidden context and word
context, we leverage contextual gates to dynamically se-
lect the amount of both contexts at each decoding step.

• Experiments on both abstractive summarization and neu-
ral machine translation clearly show that our method well
improves model performance by a non-trivial margin. In
particular, on WMT’14 English-French translation task
with 12M training dataset, our method achieves the best
performance among all the published results.

2 Background

In this section, we introduce the background of our work.

2.1 RNNs based Sequence to Sequence Modeling

Many sequence to sequence text understanding tasks rely
on the Recurrent Neural Networks (RNNs) based encoder-
decoder framework. In such a framework, the encoder RNN
first maps an input source sentence x = (x1, x2, ..., xTx)
into hidden states H = (h1, h2, ..., hTx), and then the de-
coder RNN takes these state representations as input and
generates the output sentence y = (y1, y2, ..., yTy ) word by
word.

Specifically, given the source sentence x and previously
generated target sequence y<i, the conditional probability
of generating word yi at time step i is decided by:

p(yi|y<i,x) = g(yi−1, si, c
α
i )

si = f(si−1, yi−1, c
α
i ),

where g is the softmax function, si is the hidden state of
decoder RNN at time step i. In practice the choice of the re-
current component f is Long Short Term Memory (LSTM)
unit (Hochreiter and Schmidhuber 1997) or Gated Recur-
rent Unit (GRU) (Cho et al. 2014). cαi is the source sentence
representation (i.e., context vector), which can be the last
hidden state hTx

from encoder, mean of the encoder hidden
states 1

Tx

∑Tx

j hj , or calculated by an attention mechanism
which we will review in the next subsection 2.2.

2.2 Attention Mechanism

The attention mechanism (Bahdanau, Cho, and Bengio
2014; Luong, Pham, and Manning 2015) allows fluent in-
formation flow by making each target side word directly and
dynamically affected by subparts of the source sentence. It
firstly leverages source hidden states H and target hidden
state to obtain the attention weights, and then outputs an
attentive context vector that is further used to generate the
target word. Concretely, in generating the i-th target word,
the attention mechanism weights each source hidden state
hj according to:

αij =
exp(eαij)∑Tx

k=1 exp(e
α
ik)

, (1)

where the energy function
eαij = Aα(si−1, hj) (2)

is the key alignment model, typically in the form of feedfor-
ward neural network. In our work we set it to be the same as
(Bahdanau, Cho, and Bengio 2014):

Aα(si−1, hj) = vTa tanh(Wasi−1 + Uahj). (3)
Then the attentive context vector cαi is calculated by:

cαi =

Tx∑

j=1

αijhj . (4)

Apparently, such context vector is based on hidden states
H . We therefore in the rest of the paper, name such context
vector cαi as hidden context.

3 Models
In this section, we will introduce our proposed word atten-
tion mechanism. The overall framework of our model is il-
lustrated in Figure 1, including the word attention (the bot-
tom blue parts in the figure), and the contextual gates (the
yellow circle of the decoder in the figure).

3.1 Word Attention

From the Equation (2) to Equation (4), we observe that cur-
rent attention mechanism heavily relies on the RNN hidden
states as representation for source sentence. As discussed be-
fore, such attention mechanism enables the target word gen-
eration to be dependent on source subsequence level infor-
mation, since each hidden state summarizes the information
from the beginning of the sentence. Apart from that, we in
this paper argue that the distinct and clean source word in-
formation would be beneficial for the target decoding, and
those word level context vectors will act as qualified seman-
tic supplementary to the conventional subsequence level rep-
resentation H . To add such word level information, at each
decoding step, we leverage source word embedding xj to-
gether with target hidden state si−1 to compute word atten-
tion weight βij , and by weighted averaging word embed-
dings using βij , we can obtain an extra context vector cβi ,
which we refer to as word context. 1

1For the sake of clarity, we denote original hidden attention re-
lated variables with symbol α and our new word attention related
variables with symbol β.
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Figure 1: The overall architecture of our word attention model (better viewed in color mode). The top red parts Aα in the
encoder denote the original attention mechanism computed with RNN hidden states together with its hidden context cαi . The
bottom blue parts Aβ in the encoder are our new word attention and its correspondingly attentive word context cβi . The yellow
circle oi represents the contextual gates to automatically balance the contribution of hidden context cαi and word context cβi
when generating target hidden state si.

Specifically, when decoding a target word yi at time step
i, similar to Equation (1), we first calculate the attention
weight βij as the softmax of energy function eβij :

βij =
exp(eβij)∑Tx

k=1 exp(e
β
ik)

, (5)

where the energy function eβij is computed by j-th source
word embedding xj and previous target hidden state si−1:

eβij = Aβ(si−1, xj) = vTb tanh(Wbsi−1 + Ubxj), (6)

where vb ∈ R
m, Wb ∈ R

m×n and Ub ∈ R
m×m are the

weight matrices, with the dimensions of word embedding
and decoder hidden units respectively denoted as m and n.

The above attention weight βij can be regarded as the
probability that target word yi is directly aligned to a spe-
cific source word xj , without any extra information of pre-
vious words x<j . After getting the attention weight βij for
all source words, the resulting word context is the weighted
sum of all source word embedding vectors:

cβi =

Tx∑

j=1

βijxj . (7)

The word context cβi is then provided as an additional input
to derive the current target hidden state si through

si = f(si−1, yi−1, c
α
i , c

β
i ). (8)

With the current decoder state si, the last generated word
yi−1, the two contexts cαi and cβi , the output probability
p(yi|y<i,x) of a target word yi is correspondingly set as:

p(yj |y<i,x) = g(yi−1; si, c
α
i , c

β
i ). (9)

To make a clearer introduction, by assuming f as GRU,
we give the detailed mathematical form of Equation (8) and
Equation (9):

si =(1− zi) ◦ si−1 + zi ◦ s̃i
s̃i =tanh(Wyi−1 + U [ri ◦ si−1] + Cαcαi +Cβcβi )

zi =σ(Wzyi−1 + Uzsi−1 + Cα
z c

α
i +Cβ

zc
β
i )

ri =σ(Wryi−1 + Ursi−1 + Cα
r c

α
i +Cβ

r c
β
i )

(10)

p(yi|y<i,x) = g(Wyyi−1 +Wsi +Wαcαi +Wβcβi ).

In above equations, the bold parts represent what make
our word attention model different from the conventional
hidden attention model. All W , U , C are the weight ma-
trices for our model. σ(·) denotes the sigmoid function and
◦ indicates element-wise product.

With our proposed word attention, we now have two dif-
ferent context vectors: cαi and cβi , respectively arising from
source RNN hidden states and source word embeddings. In
current mathematical modeling, i.e., Equation (10), they are
directly summed together in target word decoding. However,
treating them equally may be not optimal given that different
target side words may rely on the source side information at
different levels: some of them may prefer source side con-
text information at subsequence level such as some compo-
sitional semantics contained in phrases, whereas the others
might need more specific and clean word context to obtain
more lower level information. Therefore, we propose to use
gate units to dynamically control the amount of both con-
texts for each decoding step, which is introduced in the next
subsection.
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3.2 Contextual Gates to Combine Hidden
Context and Word Context

Contextual gates can achieve better balance of both sub-
sequence level and word level source side information via
adaptively controlling the weights of hidden context cαi and
word context cβi . To be specific, at the i-th decoding step, the
multiplicative contextual gates examine both the two context
vectors, the RNN hidden state si−1 and last generated word
yi−1, and then output a gate vector oi to decide the amount
of information from the two contexts:

oi = σ(Woyi−1 + Uosi−1 + Cα
o c

α
i + Cβ

o c
β
i ), (11)

where Wo ∈ R
n×m, Uo ∈ R

n×n, Cα
o ∈ R

n×n, Cβ
o ∈ R

n×m

are weight matrices.
Afterwards, adding oi into Equation (10), we recompute

the hidden state si = (1− zi) ◦ si−1 + zi ◦ s̃i in GRU as

s̃i = tanh(Wyi−1 + U [ri ◦ si−1]+oi ◦ Cαcαi

+(1− oi) ◦ Cβcβi )
(12)

zi = σ(Wzyi−1 +Uzsi−1 + oi ◦Cα
z c

α
i + (1− oi) ◦Cβ

z c
β
i )

ri = σ(Wryi−1 +Ursi−1 +oi ◦Cα
r c

α
i +(1− oi) ◦Cβ

r c
β
i ).

The hidden context cαi and word context cβi are now
weighted by the gate vector oi. Acting in this way, the de-
coding state si can dynamically benefit from both hidden
context and word context with different ratios, and help to
generate words under different situations. Such contextual
gates are clearly shown in Figure 1 via the yellow circle and
its related links.

4 Experiments

To evaluate our approach, we carried out experiments on two
typical sequence to sequence text understanding tasks: ab-
stractive summarization and neural machine translation.

4.1 Experimental Settings

Abstractive Summarization We first valid our approach
on abstractive summarization task. We train on the Giga-
word corpus (Graff and Cieri 2003) and pre-process it identi-
cally to (Rush, Chopra, and Weston 2015; Shen et al. 2016),
resulting in 3.8M training article-headline pairs, 190k for
validation and 2, 000 for test. Similar to (Shen et al. 2016),
we use a source and target vocabulary consisting of 30k
words.

Our model is developed based on one of the most widely
used sequence to sequence framework RNNsearch (Bah-
danau, Cho, and Bengio 2014) with LSTM as recurrent unit.
The embedding size of our model is 620, and the LSTM
hidden state size in both encoder and decoder is 1024. The
initial values of all weight parameters are uniformly sam-
pled between (−0.05, 0.05). We train our word attention en-
hanced model by Adadelta (Zeiler 2012) with learning rate
1.0 and gradient clipping threshold 1.5 (Pascanu, Mikolov,
and Bengio 2013). The mini-batch size is 64 and the learning
rate is halved when the dev performance stops increasing.

Neural Machine Translation We conduct on two ma-
chine translation tasks, German-English (De-En for short)
and English-French (En-Fr for short).

For De-En, we use data from the De-En machine trans-
lation track of the IWSLT 2014 evaluation campaign (Cet-
tolo et al. 2014), which is popular used in machine transla-
tion community (Bahdanau et al. 2016; Ranzato et al. 2015;
Wu et al. 2017). We follow the same pre-processing as de-
scribed in above works. The training/dev/test data set respec-
tively contains about 153k/7k/7k De-En sentences pairs,
with 32, 009 German words and 22, 822 English words as
the vocabulary, leaving the other words replaced by ‘UNK’.
In addition to the word level experiments, we also conduct
experiments on sub-word units level where the corpus are
pre-processed with byte pair encoding (BPE). BPE (Sen-
nrich, Haddow, and Birch 2016) has been shown to be an
effective approach to handle large vocabulary issue in NMT.
We extract about 25k sub-word tokens as vocabulary.

For En-Fr, we use a widely adopted benchmark
dataset (Jean et al. 2014; Zhou et al. 2016; Wang et al. 2017)
which is the subset of WMT’14 En-Fr training corpus, con-
sisting of 12M sentences pairs. newstest 2012 and newstest
2013 are concatenated as the dev set and newstest 2014 acts
as test set. Different with De-En, for En-Fr, we only run our
experiments with sub-word units.

As for model, for De-En, we use a single-layer LSTM
model with the dimension of both embedding and hidden
state to be 256. Similar to summarization task, we also train
the model by Adadelta with learning rate 1.0. The dropout
rate is 0.15, the gradient is clipped by 2.5, and the batch size
is 32. We automatically halve the learning rate according to
validation performance and stop when the performance is
not improved anymore. In addition, to further demonstrate
the effect of word attention mechanism on top of more pow-
erful baselines, we perform empirical studies based on a
much stronger deep RNN model with 2 stacked LSTM lay-
ers. The dropout rate for such a deep model is 0.2 for all
layers except the output layer before softmax, which is sep-
arately set as 0.5. All the hyperparameters such as dropout
ratio and gradient clipping threshold are chosen via cross-
validation on the dev set. For En-Fr, we directly set the
RNNsearch baseline as a 4-layer encoder and 4-layer de-
coder model and run our model on top of it, with embedding
size 512, hidden state size 1024, and the dropout ratio 0.1.
The other experimental settings are the same as De-En.

All our models are implemented with Theano (Theano
Development Team 2016) and trained on TITAN Xp GPU.
For summarization task, it takes about 1 day on one GPU; for
De-En 2-layer model, it takes about 4 hours on one GPU; for
En-Fr 4-4 layer model, the training takes roughly 17 days on
4 GPUs to converge, with batch size on each GPU as 32 and
gradients on each GPU summed together via Nvidia NCCL.
For decoding, we use beam search (Sutskever, Vinyals, and
Le 2014) with width 5 and 10 for translation and summa-
rization respectively.

4.2 Main Results

As to evaluation measure, we use ROUGE (Lin 2004) F1
score for summarization task and tokenized case-sensitive

5581



BLEU (Papineni et al. 2002) 2 score for translation task.
The results on abstractive summarization are reported in

Table 1. Neural machine translation tasks are summarized in
Table 2, Table 3 and Table 4. In these tables, “RNNsearch”
refers to the baseline model proposed in (Bahdanau, Cho,
and Bengio 2014), i.e., the sequence to sequence model with
only hidden context in attention mechanism; “Word Atten-
tion” refers to our proposed word attention model on top of
RNNsearch without gate units; “Contextual Gates” refers to
our word attention enhanced model with gate units; “Word”
and “BPE” in the first row respectively stand for the experi-
ments conducted on word level and sub-word units level.

Abstractive Summarization For summarization task, the
compared baseline models are: 1) ABS and ABS+ (Rush,
Chopra, and Weston 2015), both using attentive CNN en-
coder and NNLM decoder. ABS+ is further tuned by word-
level n-gram features; 2) RAS-Elman (Chopra, Auli, and
Rush 2016), which utilizes convolutional encoder and atten-
tion based ELman RNN decoder; 3) Feats2s (Nallapati et
al. 2016b), which is an RNN sequence to sequence encoder-
decoder model taking additional hand-crafted features as in-
put; 4) Luong-NMT (Luong, Pham, and Manning 2015), a
sequence to sequence model with 2-layer encoder and 2-
layer decoder; 5) Shen MLE and +MRT (Shen et al. 2016),
typical attention-based RNN models, the difference is that
MRT further uses minimum risk training principle to di-
rectly optimize the evaluation measure, showing much bet-
ter performance; 6) RNNsearch (Bahdanau, Cho, and Ben-
gio 2014), which denotes the basic single-layer LSTM based
sequence to sequence model implemented by ourselves.

From Table 1, we can see that our model has a signif-
icant improvement over most of baselines. In particular: 1)
compared with RNNsearch, our model achieves 2.2, 1.3, 1.7
points improvement on unigram based ROUGE-1, bigram
based ROUGE-2 and longest common subsequence based
ROUGE-L F1 score respectively; 2) our word attention en-
hanced model even achieves the similar performance with
MRT, which is specially designed to directly optimize the
evaluation metric. We believe incorporating the MRT prin-
ciple would further improve the performance of our method.

Neural Machine Translation For De-En translation task,
from Table 2, compared with the single-layer RNNsearch
baseline, our word attention enhanced model with gate units
achieves an improvement of 0.74 and 0.87 BLEU points on
word level and sub-word units level respectively. Table 3
summarizes the empirical verifications conducted with the
2-layer stacked LSTM model. By incorporating the word at-
tention into such a stronger model, on word level translation,
we obtain 0.90 BLEU points improvement over the original
baseline 29.01, and we even outperform previously reported
best result 29.16 from (Huang et al. 2017) by 0.75 points.
Furthermore, on sub-word units level translation, again we
achieve new state-of-the-art result for this task with the

2Calculated by the multi-bleu.pl script at https://github.
com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-
bleu.perl

Model RG-1 RG-2 RG-L
ABS 29.55 11.32 26.42

ABS+ 29.76 11.88 26.96
RAS-Elman 33.78 15.97 31.15

Feats2s 32.67 15.59 30.64
Luong-NMT 33.10 14.45 30.71
Shen MLE 32.67 15.23 30.56

+MRT 36.54 16.59 33.44
RNNsearch 33.67 15.68 31.67

+Word Attention 35.64 16.64 33.03
+Contextual Gates 35.93 16.99 33.41

Table 1: ROUGE F1 scores on abstractive summariza-
tion test set. RG-N stands for N-gram based ROUGE F1
score, RG-L stands for longest common subsequence based
ROUGE F1 score. Our work is significantly better than
RNNsearch (p < 0.01).

BLEU score of 31.90, outperforming any other previous re-
ported numbers by a non-trivial margin.

We also report parameters comparison on 2-layer models
in Table 3. As we can see, incorporating word attention only
has a marginal increment of parameters compared with the
2-layer stacked LSTM baseline.

For En-Fr translation task, we compare our model with
several strong baseline models, including LAU from (Wang
et al. 2017), Deep Attention model (Deep-Att), Google’s
NMT system (GNMT), and 4-4 layer RNNsearch model
implemented by ourselves. Again our word attention en-
hanced model achieves 39.10 BLEU score, which even sur-
passes previous widely acknowledged stack LSTM base-
lines which: 1) are trained with much larger dataset, i.e., the
38.95 BLEU is obtained on the full 36M WMT’14 En-Fr
dataset for GNMT, while we are only using 12M ; 2) have
much larger depths, e.g. 18 − 7 and 8 − 8 encoder-decoder
stacked depth respectively for Deep-Att (Zhou et al. 2016)
and GNMT (Wu et al. 2016). As far as we know, this (39.10)
is the best reported result for WMT’14 En-Fr translation task
obtained on the 12M training subset.

Model Word BPE
RNNsearch 26.98 27.83

+Word Attention 27.39 28.49
+Contextual Gates 27.72 28.70

Table 2: BLEU scores on De-En test set for single-layer
models. Our work is significantly better than RNNsearch
(p < 0.01).

4.3 Qualitative Analysis

To better understand the impact brought by the word atten-
tion in sequence to sequence learning, we provide qualitative
analysis in this subsection. Concretely, through some exam-
ple cases in De-En translation task, we visualize the effect
of the two main parts of word attention, i.e., the attention
weights and gate units.
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(a) Attention weights from RNNsearch. (b) Gated attention weights from our model.

Figure 2: Visualization of the attention weights for one De-En translation case. The x-axis and y-axis of each plot correspond
to the words in the source sentence (German) and the target sentence (English). 2(a) is attention weights from RNNsearch, 2(b)
is gated attention weights from our model. The different and important parts are emphasized with rectangle.

Model Word Params BPE Params
NPMT+LM 29.16 - - -

2-2 RNNsearch 29.01 24.3M 31.03 25.0M
+Word Attention 29.68 24.9M 31.71 25.6M

+Contextual Gates 29.91 25.6M 31.90 26.3M

Table 3: BLEU scores on De-En test set for 2-layer models.
The BLEU number for baseline model “NPMT+LM” is re-
ported in the original paper (Huang et al. 2017). Our work is
significantly better than 2-2 RNNsearch (p < 0.01).

Model Data BLEU
LAU (Wang et al. 2017) 12M 35.10

Deep-Att (Zhou et al. 2016) 12M 35.90
Deep-Att (Zhou et al. 2016) 36M 37.70

Deep-Att+PosUNK (Zhou et al. 2016) 36M 39.20
GNMT (Wu et al. 2016) 36M 38.95

4-4 RNNsearch 12M 38.50
+Contextual Gates 12M 39.10

Table 4: BLEU scores on En-Fr test set. Our work is signifi-
cantly better than 4-4 RNNsearch (p < 0.05).

Visualize Attention Weights Figure 2 shows the attention
weights for one De-En translation example. The left subfig-
ure 2(a) plots the alignment matrix from RNNsearch. As to
our model, for each decoding step i, we first average the gate
units value as oi = ōi, where oi is the gate units vector at
this step. After such average operation, we obtain the scalar
oi and use it to derive the visualized gated attention weight
as oi ∗ αij + (1 − oi) ∗ βij . The right subfigure 2(b) shows
these gated attention weights.

From Figure 2(b), we can see that the word pair “and the”
is aligned to source word pair “und die” with strong atten-
tion weights, while in RNNsearch, the two word pairs are

relatively less correlated. As another observation, the target
word “in” should be aligned to source word “in”, which
is well achieved in our model. However, there is no such
alignment in RNNsearch. Furthermore, target word “looks”
is mostly aligned to the correct source side word “sieht”
by our model. As a comparison, in RNNsearch “looks” is
aligned to “jetzt” and has nearly no alignment with “sieht”.
These observations clearly demonstrate the effectiveness of
our proposal and prove the importance of clean word infor-
mation in fixing the potential attention errors based on RNN
hidden states.

Visualize Contextual Gates The contextual gates are
used to dynamically control the amount of hidden context
and word context. In order to demonstrate the effectiveness
of such gate units, we visualize gate units value 1 − oi for
the same De-En translation pair shown in Figure 2, where oi
is the averaged gate units value as introduced before.

The visualization result is displayed in Figure 3. Form
this figure, we can observe that the visualization result of
gate units actually coincides with attention weights visual-
ization in Figure 2: the target words “and”, “the”, “in” and
“looks” are in deeper color than other words, which means
at these steps, the decoder focuses more on word context
than other steps. With more attention on clean word context,
(i.e., larger 1− oi), our model has more accurate alignments
at these steps as shown in Figure 2(b), which makes it more
likely to generate correct translations (see the first transla-
tion case in Table 5 in next subsection 4.4).

4.4 Generation Sentence Study

To further understand the advantages brought by our word
attention enhanced model, we show two translation sen-
tences in Table 5 from De-En translation task, and one sum-
marized headline example from abstractive summarization
task. Their major different parts are emphasized by bold
fonts which lead to different sequence generation quality.
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Src und die welt in der wir jetzt leben sieht so aus .

Ref and the world we now live in looks like this .
RNNs and the world that we live in now is what we live .
Ours and the world that we live in now looks like this .

Src lassen sie uns nun unseren blick auf die rollstuhlfahrer richten , etwas , für das ich mich besonders leidenschaftlich einsetze .

Ref now let &apos;s turn our heads towards the wheelchair users , something that i &apos;m particularly passionate about .
RNNs so let &apos;s take a look at the UNK , something i &apos;m going to do something like that .
Ours let &apos;s now take our view on the UNK , something that i &apos;m particularly passionate about .

Src the chairman of china’s national people’s congress (npc), qiao shi, said today that china is
willing to expand economic cooperation with italy on the basis of equality and mutual benefits.

Ref china willing to expand economic ties with italy: npc leader
RNNs chinese npc chairman meets italy on economic cooperation
Ours china willing to expand economic cooperation with italy

Table 5: Cases-studies to demonstrate the translation and summarization quality improvement brought by our model. We provide
two De-En translation examples and one summarization example, together with the source sentence (Src), ground-truth sentence
(Ref), and two output sentences respectively provided by RNNsearch (RNNs) and our model (Ours).

Figure 3: Visualization of the gate units on one De-En
translation case. This figure shows the target sentence. The
deeper blue color refers to larger value of 1 − oi, which
means the decoder concentrates more on word context.

From the first translation case, as analysed before, one can
see that “sieht” and “so” were not correctly translated in
RNNsearch, while successfully translated into“looks like”
after grasping the word context by our method. Similarly
in the second case, “unseren”, “besonders” and “leiden-
schaftlich” were missed during translation in RNNsearch,
but our model correctly translated these words into “our”,
“particularly” and “passionate”. The third summarization
case again demonstrates the effects of our proposal. One can
see that “china willing to expand” from source article are re-
mained in the ground-truth, and our model successfully gen-
erates these words in the summarized headline. These ex-
amples respectively prove that our word attention enhanced
model improves the translation and summarization quality
by making full use of word semantics.

5 Related Work

The attention mechanism for sequence to sequence text un-
derstanding is first used in neural machine translation task.
(Bahdanau, Cho, and Bengio 2014) first introduce the “soft”
attention mechanism by allowing a model to automatically
align relevant parts of a source sentence to a target word
at each decoding step with different weights. After that,
plenty of works target at improving the performance of at-
tention model. For example, (Luong, Pham, and Manning
2015) propose a local attention model that focuses on a sub-
set of source hidden states, instead of the entire source hid-
den states. (Yang et al. 2016) use an LSTM to design an

recurrent attention model. Recently there are also several
works on self-attention (intra-attention) mechanism that at-
tempt to enhance the coupling between different parts of
the same sequence for the sake of better sequence repre-
sentation (Cheng, Dong, and Lapata 2016; Lin et al. 2017;
Paulus, Xiong, and Socher 2017; Vaswani et al. 2017).

All of above mentioned works calculate the attention
weights only depend on source and target hidden states,
without any word level information. Recently, (Wang et al.
2017; Gehring et al. 2017) try to directly incorporate word
level information into attention computation. However, they
only focus on attention computation in decoder side by
adding target word embedding, e.g. (Wang et al. 2017) in-
volve word embedding in target sentence, but still use RNN
hidden states to represent source sentence. Our work is quite
different from them, since our complementary word atten-
tion gets full use of specific source word embedding from
encoder, and outputs an additional word context to enhance
the source sentence representation.

6 Conclusion

In this paper, for sequence to sequence learning, we propose
to compute attention weights by leveraging clean source
word level information to enhance the semantic representa-
tion of source sentence. We also introduce contextual gates
to dynamically select the contribution of hidden context
and word context. Both of the two components contribute
to make a better attention model. Our empirical study on
two typical sequence to sequence text understanding tasks,
abstractive summarization and neural machine translation,
clearly shows that word attention with contextual gates
significantly improve the performance of RNNs based se-
quence to sequence learning. For future work, we plan to
apply our approach to more sequence to sequence text un-
derstanding tasks, like open-domain dialogue system, and
incorporate our word attention into other sequence to se-
quence architectures such as ConvS2S (Gehring et al. 2017).
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Cettolo, M.; Niehues, J.; Stüker, S.; Bentivogli, L.; and Fed-
erico, M. 2014. Report on the 11th iwslt evaluation cam-
paign, iwslt 2014.
Cheng, J.; Dong, L.; and Lapata, M. 2016. Long short-
term memory-networks for machine reading. arXiv preprint
arXiv:1601.06733.
Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learning
phrase representations using rnn encoder–decoder for statis-
tical machine translation. In EMNLP.
Chopra, S.; Auli, M.; and Rush, A. M. 2016. Abstractive
sentence summarization with attentive recurrent neural net-
works. In NAACL, 93–98.
Gehring, J.; Auli, M.; Grangier, D.; Yarats, D.; and Dauphin,
Y. N. 2017. Convolutional sequence to sequence learning.
arXiv preprint arXiv:1705.03122.
Graff, D., and Cieri, C. 2003. English gigaword, linguistic
data consortium.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation.
Huang, P.; Wang, C.; Zhou, D.; and Deng, L. 2017. Neural
phrase-based machine translation. CoRR abs/1706.05565.
Jean, S.; Cho, K.; Memisevic, R.; and Bengio, Y. 2014. On
using very large target vocabulary for neural machine trans-
lation.
Lin, Z.; Feng, M.; Santos, C. N. d.; Yu, M.; Xiang, B.; Zhou,
B.; and Bengio, Y. 2017. A structured self-attentive sentence
embedding. arXiv preprint arXiv:1703.03130.
Lin, C.-Y. 2004. Rouge: A package for automatic evaluation
of summaries. In ACL-04 workshop. Barcelona, Spain.
Luong, M.-T.; Pham, H.; and Manning, C. D. 2015. Effec-
tive approaches to attention-based neural machine transla-
tion. In EMNLP.
Nallapati, R.; Zhou, B.; Gulcehre, C.; Xiang, B.;
et al. 2016a. Abstractive text summarization using
sequence-to-sequence rnns and beyond. arXiv preprint
arXiv:1602.06023.
Nallapati, R.; Zhou, B.; Gulcehre, C.; Xiang, B.;
et al. 2016b. Abstractive text summarization using

sequence-to-sequence rnns and beyond. arXiv preprint
arXiv:1602.06023.
Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002.
Bleu: a method for automatic evaluation of machine transla-
tion. In ACL. Association for Computational Linguistics.
Pascanu, R.; Mikolov, T.; and Bengio, Y. 2013. On the
difficulty of training recurrent neural networks. In ICML,
1310–1318.
Paulus, R.; Xiong, C.; and Socher, R. 2017. A deep rein-
forced model for abstractive summarization. arXiv preprint
arXiv:1705.04304.
Ranzato, M.; Chopra, S.; Auli, M.; and Zaremba, W. 2015.
Sequence level training with recurrent neural networks.
arXiv preprint arXiv:1511.06732.
Rush, A. M.; Chopra, S.; and Weston, J. 2015. A neural at-
tention model for abstractive sentence summarization. arXiv
preprint arXiv:1509.00685.
Sennrich, R.; Haddow, B.; and Birch, A. 2016. Neural ma-
chine translation of rare words with subword units. In ACL.
Shen, S.; Zhao, Y.; Liu, Z.; Sun, M.; et al. 2016. Neural
headline generation with sentence-wise optimization. arXiv
preprint arXiv:1604.01904.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to
sequence learning with neural networks. In NIPS.
Theano Development Team. 2016. Theano: A Python
framework for fast computation of mathematical expres-
sions. arXiv e-prints abs/1605.02688.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is all you need. CoRR abs/1706.03762.
Wang, M.; Lu, Z.; Zhou, J.; and Liu, Q. 2017. Deep neu-
ral machine translation with linear associative unit. arXiv
preprint arXiv:1705.00861.
Wu, Y.; Schuster, M.; Chen, Z.; Le, Q. V.; et al. 2016.
Google’s neural machine translation system: Bridging the
gap between human and machine translation. arXiv preprint
arXiv:1609.08144.
Wu, L.; Zhao, L.; Qin, T.; Lai, J.; and Liu, T.-Y. 2017. Se-
quence prediction with unlabeled data by reward function
learning. In IJCAI-17, 3098–3104.
Yang, Z.; Hu, Z.; Deng, Y.; Dyer, C.; and Smola, A. 2016.
Neural machine translation with recurrent attention model-
ing. arXiv preprint arXiv:1607.05108.
Zeiler, M. D. 2012. Adadelta: an adaptive learning rate
method. arXiv preprint arXiv:1212.5701.
Zhou, J.; Cao, Y.; Wang, X.; Li, P.; and Xu, W. 2016. Deep
recurrent models with fast-forward connections for neural
machine translation. arXiv preprint arXiv:1606.04199.

5585


