
Cross Temporal Recurrent Networks
for Ranking Question Answer Pairs

Yi Tay,1 Luu Anh Tuan,2 Siu Cheung Hui3

1,3 Nanyang Technological University
School of Computer Science and Engineering, Singapore

2 Institute for Infocomm Research, Singapore

Abstract

Temporal gates play a significant role in modern recurrent-
based neural encoders, enabling fine-grained control over re-
cursive compositional operations over time. In recurrent mod-
els such as the long short-term memory (LSTM), temporal
gates control the amount of information retained or discarded
over time, not only playing an important role in influenc-
ing the learned representations but also serving as a protec-
tion against vanishing gradients. This paper explores the idea
of learning temporal gates for sequence pairs (question and
answer), jointly influencing the learned representations in a
pairwise manner. In our approach, temporal gates are learned
via 1D convolutional layers and then subsequently cross ap-
plied across question and answer for joint learning. Empiri-
cally, we show that this conceptually simple sharing of tem-
poral gates can lead to competitive performance across mul-
tiple benchmarks. Intuitively, what our network achieves can
be interpreted as learning representations of question and an-
swer pairs that are aware of what each other is remember-
ing or forgetting, i.e., pairwise temporal gating. Via exten-
sive experiments, we show that our proposed model achieves
state-of-the-art performance on two community-based QA
datasets and competitive performance on one factoid-based
QA dataset.

Introduction

Learning-to-rank for QA (question answering) is a long
standing problem in NLP and IR research which benefits a
wide assortment of subtasks such as community-based ques-
tion answering (CQA) and factoid based question answer-
ing. The problem is mainly concerned with computing rel-
evance scores between questions and prospective answers
and subsequently ranking them. Across the rich history of
answer or document retrieval, statistical approaches based
on feature engineering are commonly adopted. These mod-
els are largely based on complex lexical and syntactic fea-
tures (Wang and Manning 2010; Zhou et al. 2011; Wang,
Ming, and Chua 2009) and a learning-to-rank classifier such
as Support Vector Machine (SVM) (Severyn et al. 2014;
Filice et al. 2016).

Today, we see a shift into neural question answering.
Specifically, end-to-end deep neural networks are used for

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

both automatically learning features and scoring of QA
pairs. Popular neural encoders for neural question answer-
ing include long short-term memory (LSTM) networks
(Hochreiter and Schmidhuber 1997) and convolutional neu-
ral networks (CNN). The key idea behind neural encoders
is to learn to compose (Li et al. 2015), i.e., compressing an
entire sentence into a single feature vector.

While it is possible to encode questions and answers in-
dependently, and later merge them with multi-layer per-
ceptrons (MLP) (Severyn and Moschitti 2015), tensor lay-
ers (Qiu and Huang 2015) or holographic layers (Tay et
al. 2017), it would be desirable for question and answer
pairs to benefit from information available from their part-
ner. There have been many models proposed for doing so
which adopt techniques for jointly learning question and an-
swer representations. Many of these recent techniques adopt
soft-attention matching (Yang et al. 2016; Santos et al. 2016;
Zhang et al. 2017) to learn attention weights that are jointly
influenced by both question and answer. Subsequently, the
joint attention weights are applied accordingly to learn a fi-
nal representation of question and answer. Performance re-
sults have shown that incorporating the interactions between
QA pairs can indeed improve the performance of QA sys-
tems.

Temporal gates form the cornerstone of modern recurrent
neural encoders such as long short-term memory (LSTM) or
gated recurrent units (GRU), serving as one of the key mit-
igation strategies against vanishing gradients. In these mod-
els, temporal gates control the inner recursive loop along
with the amount of information being discarded and retained
at each time step, allowing fine-grained control over the
semantic compositionality of learned representations. Our
work explores the idea of jointly learning temporal gates for
sequence pairs, aiming to learn fine-grained representations
of QA pairs which benefit from information pertaining to
what each other is remembering or forgetting.

The key idea here is as follows: By exploiting information
about the question, can we learn an optimal way to semanti-
cally compose the answer? (and vice versa). First, consider
the following example in Table 1 which highlights the im-
portance of semantic compositionality.

First, it would be easy for many soft-attention and
matching-based models to classify this question and answer
pair with a high relevance score due to the underlined words

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

5512

Q: What deep learning framework should I learn if
I want to get into deep learning? I am a begin-
ner without programming experience. Want to
build cool apps.

A: Tensorflow. It is a pretty solid and low level
deep learning framework for advanced re-
search.

Table 1: Example of a question and answer pair. Ground
truth is negative.

(‘deep learning’ and ‘tensorflow’). However, the reason why
this is a negative example is in the intricate details which
can be effectively learned only via semantic composition-
ality (e.g., ‘without programming experience’, ‘get into’).
On the other hand, by exploiting joint temporal gates, our
method learns to compose the sentence given the informa-
tion about its partner. For instance, without the knowledge of
the answer which contains the phrase ‘advanced research’,
the question encoder will not know if it should retain the
word ‘beginner’. Hence, joint learning of temporal gates can
help our model learn to compose, by influencing what it re-
members and forgets. As a result, this additional knowledge
can allow the words in boldface (‘beginner’,‘advanced re-
search’) to be strongly retained in the final representation.
This is in similar spirit to neural attention. However, our ap-
proach jointly learns to compose instead of learning to at-
tend. The difference is at the level which representations are
influenced at.

Our Contributions

The main contributions of this work are:

• We introduce a new method for using temporal gates to
synchronously and jointly learn the interactions between
text pairs. In the context of question answering, we learn
which information to remember or discard in the answer
while being aware of the context of the question. To the
best of our knowledge, this is the first work that performs
question answer matching at the temporal gate level.

• We propose a novel neural architecture for QA rank-
ing. Our proposed Cross Temporal Recurrent Network
(CTRN) model is largely inspired by the recently incepted
Quasi Recurrent Neural Network (QRNN) (Bradbury et
al. 2016) and can be considered as a natural extension of
QRNN to sequence pairs. Our model takes after QRNN in
the sense that gates are first learned (via 1D convolutional
layers) and then subsequently applied to temporally adjust
the representations. Hence, the facilitation of information
flow can be interpreted as joint pairwise gating.

• Our proposed CTRN model achieves state-of-the-art per-
formance on two community-based QA (CQA) datasets,
namely the Yahoo Answers dataset and the QatarLiving
dataset from SemEval 2016. Moreover, our model also
achieves highly competitive performance on the TrecQA
dataset for factoid based QA. Experimental results show
that CTRN outperforms models that utilize attention-
based matching while being significantly more efficient.

Experimental results also confirm that CTRN improves
the underlying QRNN model.

Related Work

This section introduces prior work in the field of neural QA
ranking. We also introduce the Quasi Recurrent Neural Net-
work (QRNN) model, which lives at the heart of our pro-
posed approach.

Neural Question Answer Ranking

Convolutional neural network (CNN) (Hu et al. 2014; Sev-
eryn and Moschitti 2015) and recurrent models like the long
short-term memory (LSTM) (Wang and Nyberg 2015) net-
work are popular neural encoders for the QA ranking prob-
lem. (Yu et al. 2014) proposed to use CNN for learning fea-
tures and subsequently apply logistic regression for generat-
ing QA relevance scores. Subsequently, an end-to-end neu-
ral architecture based on CNN and bilinear matching was
proposed in (Severyn and Moschitti 2015).

In many recent works, the key innovation in most mod-
els is the technique used to model interaction between ques-
tion and answer pairs. The CNN model introduced in (Sev-
eryn and Moschitti 2015) uses a MLP to compose vectors of
questions and answers. (Qiu and Huang 2015) adopted ten-
sor layers for richer modeling capabilities. (Tay et al. 2017)
proposed holographic memory layers. (He, Gimpel, and
Lin 2015) proposed Multi-Perspective CNN which matches
‘multiple perspectives’ based on variations of pooling and
convolution schemes. Recent work has showed the effective-
ness of learning QA embeddings in non-Euclidean spaces
such as Hyperbolic space (Tay, Luu, and Hui 2017). Mod-
els based on soft-attention such as Attentive Pooling net-
works (AP-BiLSTM and AP-CNN) (Santos et al. 2016), AI-
CNN (Zhang et al. 2017) and aNMM (attention-based neu-
ral matching) (Yang et al. 2016) have also been proposed.
These models learn weighted representations of QA pairs
using similarity matrix based attentions.

Quasi Recurrent Neural Network (QRNN)

In this section, we introduce Quasi Recurrent Neural Net-
work (Bradbury et al. 2016) and our key motivation of bas-
ing CTRN on QRNN. QRNN is a recurrent neural network
that is actually a convolutional neural network in disguise.
The key intuition with QRNN is that it first learns temporal
gates via 1D convolutions and subsequently applies them se-
quentially. Contrastively, recurrent models learn these gates
sequentially. Given an input of a sequence of L vectors
w ∈ R

m where L is the maximum sequence length and m is
the dimension of the vectors, the QRNN model applies three
1D convolution operations as follows:

Z = tanh(Wz ∗ X)

F = σ(Wf ∗ X) (1)
O = σ(Wo ∗ X)

where X is the input sequence of m dimensional vectors
with sequence length L. Wx,Wf ,Wo ∈ R

k×d×m are pa-
rameters of QRNN and ∗ denotes a convolution across the
temporal dimension. k is the filter width and d is the output

5513

Shared Embedding Layer

Conv Z (q) Conv F (q) Conv O (q) Conv Z (a)Conv F (a)Conv O (a)

CTRN cell CTRN cell

Shared Projection Layer

MLP

Softmax

Shared Projection Layer

Shared Embedding Layer

Question Input Answer Input

Mean Pool

Embedding
Layer

Projection
Layer

Quasi-Recurrent
Layer

Forward Op

Mean Pooling

MLP Layer

Softmax Layer

…

Mean Pool

…

Temporal Crossing

…
v

…
vHadamard

Product

Figure 1: Diagram of our proposed CTRN architecture. Gates (denoted Conv F and Conv O) are prelearned via convolutions
and each CTRN cell (for q and a) incorporates the gates of their partner while learning representations. The base representations
(in which gates are applied in CTRN) are denoted by Conv Z. Green denotes information flow from question and blue denotes
information flow from answer.

dimension. Subsequently, the following equations describe
the forward (recursive) operation of the QRNN cell:

ct = ft � ct−1 + (1− ft)� zt

ht = ot � ct

where ct is the cell state and ht is the hidden state. ft, ot are
the forget and output gates respectively at time step t. σ is
the sigmoid activation which nonlinearly projects each ele-
ment of its input to [0, 1]. Z can be regarded as the convolved
base representation similar to what a traditional CNN model
learns. F and O are then applied recursively to temporally
adjust and influence the semantic compositionality of Z. As
such, this makes it ‘quasi-recurrent’. The key difference
between QRNN and recurrent models like LSTM is that
gates are prelearned via convolution while RNN models like
LSTM learn their gates sequentially during the recursive for-
ward operation. In short, the forward operation in QRNN is
still sequentially applied but is comparatively much cheaper
than traditional LSTM cells since gates are merely applied in
the case of QRNN. As such, the parallelization of gate learn-
ing improves the speed of QRNN as compared to LSTM. In
the original paper, QRNN achieved around 4 times less com-
putational time as compared to LSTM models while achiev-
ing similar or better performance. For the sake of brevity, we
refer interested readers to (Bradbury et al. 2016) for more
details.

Inspired by the computational benefits of QRNN, we
adopt it as our base model. Next, we also notice an attrac-
tive property of QRNN. In QRNN models, because gates are
prelearned, it enables us to align temporal gates between two

QRNNs easily. Conversely, considering the fact that ques-
tions and answers might not have similar sequence length,
trying to sequentially align temporal gates in LSTM mod-
els can be extremely cumbersome and inefficient. More im-
portantly, temporal gates of LSTM cells do not have global
information, i.e., each step is only aware of all steps that
precede it. On the other hand, temporal gates from QRNNs
have global information about the entire sequence.

Our Proposed Approach

In this section, we describe our novel deep learning model
layer-by-layer. The overall architecture of our model is illus-
trated in Figure 1. For notational convenience, we denote the
subscripts q, a on whether a parameter belongs to question
or answer respectively.

Embedding + Projection Layer

Our model accepts two sequences of indices (question and
answer inputs) which are passed through an embedding
layer (shared between q and a inputs) and returns a sequence
of n dimensional vectors. In practice, we initialize and fix
this layer with pretrained embeddings while connecting to a
n×m projection layer. As such, the output of the embedding
+ projection layer is a m dimensional vector. Note that this
layer is shared between question and answer inputs.

Quasi-Recurrent Layer

The input to the quasi-recurrent layer is a sequence of L
vectors w ∈ R

m where L is the maximum sequence length.

This layer applies three 1D convolution operations as de-
scribed in Equation (1). Finally, the outputs of the quasi-
recurrent layer are representations or matrices {Zs,Fs,Os}
where s = {q, a}. Note that up till now, this quasi-recurrent
layer remains functionally identical to QRNN.

Lightweight Temporal Crossing (LTC)

In this section, we introduce our novel lightweight tempo-
ral crossing (LTC) mechanism which lives at the heart of
our CTRN model. Our approach extends upon the QRNN
model, we leverage the fact that gates Fx,Ox are learned
non-sequentially. The key idea is to leverage the informa-
tion in Fq,Oq for Za and vice versa. This information flow
is denoted by the green and blue arrows in Figure 1. The out-
puts of this layer are similar to the LSTM model, i.e., they
are a sequence of hidden states H ∈ R

L×d where L is the
sequence length and d is the number of filters. At this layer,
there are two CTRN cells, namely CTRN-Q and CTRN-A,
for question and answer representations respectively.

�tanh

X
�

X

+ X

�

X

�

X

+X

X
����
���

����
��	�

��
�

���
�

���
�

���

��

�����
��� �����

��	�

����
���

Figure 2: Diagram of a single CTRN-Q cell. Red lines are in-
formation flow from answer gates. X denotes element-wise
multiplication, + denotes element-wise addition. tanh is the
hyperbolic tangent function and σ is the sigmoid function.

In this section, we use CTRN-Q as an example but note
that CTRN-A and CTRN-Q are functionally symmetrical.
Figure 2 illustrates a single CTRN-Q cell. Each CTRN-Q
cell contains two cell states denoted as c

(q)
t and c

(q†)
t and

two hidden states denoted as h(q)
t and h

(q†)
t . As such, there

are two learned representations in the CTRN-Q cell, denoted
by q and q† respectively. The first representation is learned
as per normal, i.e., applying Fq, Oq on Zq . The second repre-
sentation is learned by applying partner gates Fa, Oa on the
question representation Zq . The following equations depict
the forward operation of the CTRN-Q cell.

c
(q)
t = fq

t � c
(q)
t−1 + (1− fq

t)� zqt

h
(q)
t = oqt � c

(q)
t

c
(q†)
t = fa

t∗ � c
(q†)
t−1 + (1− fa

t∗)� zqt

h
(q†)
t = oat∗ � c

(q†)
t

where fn
t , o

n
t , z

n
t denote the forget and output gates for text

n ∈ {q, a} at time step t. t∗ is an aligned time step between
question and answer sequences as the sequence length of
question and answer might be different. For simplicity, we

consider t∗ = t × �max(|q|,|a|)
min(|q|,|a|) �. Similarly, the forward op-

eration for CTRN-A is as follows:
c
(a)
t = fa

t � c
(a)
t−1 + (1− fa

t)� zat

h
(a)
t = oat � c

(a)
t

c
(a†)
t = fq

t∗ � c
(a†)
t−1 + (1− fq

t∗)� zat∗

h
(a†)
t = oqt � c

(a†)
t

Finally, to obtain a single representation for each question
and answer. We simply apply the Hadamard product � be-
tween hidden states of each time step, i.e., h(q)

t = h
(q)
t �

h
(q†)
t and h

(a)
t = h

(a)
t � h

(a†)
t . This enables joint represen-

tations of temporal gates which form the crux of our LTC
mechanism.

Why does this work? Notably, since gates are learned via
parameterized convolutional layers, our learned gates (F and
O) not only contain ‘local’ index-specific information but
also ‘global’ information of the entire text sequence. This
is modeled by the parameters of the convolutional layers
which produce F and O. As such, it would suffice to com-
pose them index-wise since the goal is to enable information
flow between the temporal gates of question and answer. Our
intuition here is to cross apply question and answer gates
to both question and answer representations so as to en-
able gradients flow across question and answer during back-
propagation. Since the goal is to fuse and not to ‘match’,
we empirically found that soft-attention alignment of gates
to yield no performance benefits over a simple index-wise
alignment.

Temporal Mean Pooling Layer The output of each
CTRN cell is an array of hidden states [hs

1, h
s
2..h

s
L]. In this

layer, we apply temporal mean pooling for both CTRN-
Q and CTRN-A. The operation of this layer is a simple
element-wise average of all output hidden vectors.

Dense Layers (MLP) The inputs of this layer are two vec-
tors which are the final representations of question and an-
swer respectively. In this layer, we concatenate the two vec-
tors and pass them through a series of fully-connected dense
layers (or MLP). Likewise, the number of layers is also a
hyperparameter to be tuned.

Softmax Layer and Optimization The final output of the
hidden layer is then passed through a 2-class softmax layer.
The final score of each QA pair is described as follows:

s(q, a) = softmax(Wf x+ bf) (2)
where x is the output of the last hidden layer and Wf ∈
R

h×2 and bf ∈ R
2. h is the size of the hidden layer.

Our network minimizes the standard cross entropy loss as
its training objective. The choice of a pointwise model
is motivated by 1) ease of implementation and 2) previ-
ous work (Severyn and Moschitti 2015; Tay et al. 2017;
Zhang et al. 2017). The loss function is defined as follows:

L = −
N∑

i=1

[yi log si + (1− yi) log(1− si)] + λ ‖θ‖22 (3)

5515

where s is the output of the softmax layer. θ contains all the
parameters of the network and λ ‖θ‖22 is the L2 regulariza-
tion. The parameters of the network are updated using the
Adam Optimizer (Kingma and Ba 2014).

Complexity Analysis
In this section, we study the memory complexity of our
model to further justify the lightweight aspect in our LTC
mechanism. First, our CTRN does not incur any parame-
ter cost over the vanilla QRNN model (3kdm for a single
QRNN model). As such, the memory complexity and pa-
rameter size remain equal to QRNN. This is easy to see as
there is no additional parameters added since our model,
from a computational graph perspective, is simply adding
connections between nodes. Next, we consider the runtime
complexity of our model (forward pass). Let d be the num-
ber of filters of the convolution layer and L be the maxi-
mum sequence length. The computational complexity of a
single QRNN cell is O(dL) excluding convolution oper-
ations used to generate {F, O, Z}. Though the number of
operations is approximately doubled (due to cross applying
gates), the complexity of a CTRN cell is still O(dL), i.e.,
our model still runs in linear time as compared to LSTM
models with quadratic time complexity. Overall, our model,
though seemingly more complicated, does not increase the
parameter size and only incurs a slight increase in compu-
tational cost as compared to the already efficient QRNN
model. We are also able to leverage the computational ben-
efits of QRNN over the vanilla LSTM model. Table 2 shows
a simple comparison of our proposed CTRN model against
the standard LSTM and AP-BiLSTM models. We observe
that QRNN and CTRN are much more parameter efficient
as compared to recurrent models, only taking up ≈ 58% the
parameter size of the vanilla LSTM model and being 400%
smaller than AP-BiLSTM.

Model # Mem Complexity # Params
LSTM 4(md+ d2) + 2dh + h 1.79M

AP-BiLSTM 4(md+ d2) + 4d2 5.86M
QRNN 3 kdm+ 2dh + h 1.05M
CTRN 3 kdm+ 2dh + h 1.05M

Table 2: Memory complexity analysis with shared parame-
ters for q and a. m is the size of the input embeddings. d is
the number of filters and the dimensionality of the LSTM
model. h is the size of the hidden layer. The complexity
highighted in boldface is used to compose q and a. # Params
gives an estimate with d = 512, m = 300, h = 128 and
k = 2. Word embedding parameters are excluded from com-
parison.

Experiments
To ascertain the effectiveness of our proposed approach, we
conduct experiments on three popular benchmark datasets.

Experimental Setup

This section describes the datasets used, baselines compared
and evaluation metrics.

Datasets We select three popular benchmark datasets
which are described as follows:

• YahooQA - Yahoo Answers is a CQA platform. This is
a moderately large dataset containing 142, 627 QA pairs
which are obtained from the CQA platform. More specif-
ically, preprocessing and testing splits1 are obtained from
(Tay et al. 2017). In their setting, questions and answers
that are not in the range of 5 − 50 tokens are filtered.
Additionally, 4 negative samples are generated for each
question by sampling from the top 1000 hits using Lucene
search.

• QatarLiving - This is another CQA dataset which was
obtained from the popular SemEval-2016 Task 3 Subtask
A (CQA). This is a real world dataset obtained from Qatar
Living Forums. In this dataset, there are ten answers per
thread (question) which are marked as ‘Good’, ‘Poten-
tially Useful’ or ‘Bad’. Following (Zhang et al. 2017), we
treat ‘Good’ as positive and anything else as negative la-
bels.

• TrecQA - This is a popular QA ranking benchmark ob-
tained from the TREC QA Tracks 8-13. QA pairs are gen-
erally short and factoid-based consisting trivia like ques-
tions. In this dataset, there are two training sets, namely
TRAIN and TRAIN-ALL. TRAIN consists of QA pairs
that have been manually judged and annotated. TRAIN-
ALL is an automatically judged dataset of QA pairs and
contains a larger number of QA pairs. TRAIN-ALL, be-
ing a larger dataset, also contains more noise. Neverthe-
less, both datasets enable the comparison of all models
with respect to the availability and volume of training
samples.

The statistics of all datasets, i.e., training sets, development
sets and testing sets, are given in Table 3.

CQA TrecQA
YahooQA QL TRAIN TRAIN-ALL

Train Qns 50.1K 4.8K 94 1229
Dev Qns 6.2K 224 82 82
Test Qns 6.2K 327 100 100

Train Pairs 253K 36K 4.7K 53K
Dev Pairs 31.7K 2.4K 1.1K 1.1K
Test Pairs 31.7K 3.2K 1.5K 1.5K

Table 3: Statistics of datasets. QL denotes the QatarLiving
dataset. TRAIN and TRAIN-ALL are two settings of the
TrecQA dataset.

Evaluation Metrics For each dataset, we adopt the eval-
uation metrics used in prior work. For YahooQA, we fol-
low (Tay et al. 2017) that uses P@1 (Precision@1) and
MRR (Mean Reciprocal Rank). For QatarLiving, we follow
(Zhang et al. 2017) and evaluate on P@1 and MAP (Mean
Average Precision). For TrecQA, we follow the experiment
procedure in (Severyn and Moschitti 2015) using the official
evaluation metrics of MAP and MRR. Since the evaluation

1Splits be obtained at https://github.com/vanzytay/YahooQA
Splits.

5516

metrics are commonplace in ranking tasks, we omit any fur-
ther details for the sake of brevity.

Implementation Details and Baselines For our CTRN
model, we tune the output dimension (number of fil-
ters) within [128, 1024] in multiples of 128. A single lay-
ered CTRN and QRNN is used. The number of dense
(MLP) layers is tuned from [1, 3] and learning rate tuned
amongst {10−3, 10−4, 10−5}. Batch size is tuned amongst
{64, 128, 256, 512}. Dropout is set to 0.5 and L2 regular-
ization is set to 4× 10−6. Word embedding matrices are all
non-trainable and are learned by the projection layer instead.
For the three datasets, we adopt dataset-specific baselines
largely based on prior published works.

• YahooQA - We compare against multiple state-of-the-
art models. Specifically, we compare our model with the
vanilla LSTM, vanilla CNN, CNTN, NTN-LSTM and
HD-LSTM. Since we use the same testing splits, we re-
port the results directly from (Tay et al. 2017). Addition-
ally, we include additional baselines such as AP-BiLSTM
and AP-CNN (Santos et al. 2016) which serve as a repre-
sentative for soft-attention alignment based models. Co-
sine similarity with pairwise ranking is used as the met-
ric for AP-BiLSTM and AP-CNN following the original
implementation. Models superscripted with † are imple-
mented by us. We initialize our model with pretrained
GloVE embeddings (Pennington, Socher, and Manning
2014) of d = 300.

• QatarLiving - The key competitors of this dataset are the
CNN-based ARC-I/II architecture by Hu et al. (Hu et al.
2014), the Attentive Pooling CNN (Santos et al. 2016),
Kelp (Filice et al. 2016) a feature engineering based SVM
method, ConvKN (Barrón-Cedeño et al. 2016) a combi-
nation of convolutional tree kernels with CNN and finally
AI-CNN (Attentive Interactive CNN) (Zhang et al. 2017),
a tensor-based attentive pooling neural model. We ini-
tialize with pretrained GloVE embeddings of d = 200
trained using the domain-specific unannotated corpus pro-
vided by the task.

• TrecQA - We compare against published works which in-
clude both traditional models and neural models. More-
over, we compare with models reported in (Tay et al.
2017) on TRAIN and TRAIN-ALL datasets to observe
the effect of different dataset sizes. The evaluation pro-
cedure follows (Severyn and Moschitti 2015) closely. We
initialize the embedding layers with the same pretrained
word embeddings of d = 50 as (Severyn and Mos-
chitti 2015) for fair comparisons against competitor ap-
proaches. These embeddings are trained with the Skip-
gram model using the Wikipedia and AQUAINT corpus.
Four word overlap features are also concatenated before
the dense layers following (Severyn and Moschitti 2015).
We train our model for 25 epochs for TRAIN and 5
epochs for TRAIN-ALL and report the test score from the
best performing model on the development set. Hyper-
parameters are also tuned on the development set. Early
stopping is adopted and training is terminated if the vali-
dation performance doesn’t improve after 5 epochs.

Experimental Results

In this section, we report some observations pertaining to
our empirical results.

Model P@1 MRR

Random Guess 0.200 0.457
BM-25 0.225 0.493
CNNφ 0.413 0.632

CNTNφ 0.465 0.632
LSTMφ 0.465 0.669

NTN-LSTMφ 0.545 0.731
HD-LSTMφ 0.557 0.735
AP-CNN† 0.560 0.726

AP-BiLSTM† 0.568 0.731
QRNN† 0.573 0.736

CTRN (This paper) 0.601 0.755

Table 4: Experimental results on YahooQA. Models are
ranked by P@1. Models marked with φ are reported directly
from (Tay et al. 2017) while † denotes our own implementa-
tion. Best result is in boldface and second best is underlined.

Experimental Results on YahooQA Table 4 reports the
experimental results on the YahooQA dataset. Firstly, we
observe that our proposed CTRN achieves state-of-the-art
performance on this dataset. Notably, we outperform HD-
LSTM (Tay et al. 2017) by 4% in terms of P@1 and 2%
in terms of MRR. CTRN also outperforms attention based
models such as AP-BiLSTM and AP-CNN (Santos et al.
2016) by a considerable margin, i.e., of about 2%− 3%. At
this junction, we make several observations about our pro-
posed CTRN model. Firstly, this shows that our LTC mech-
anism is more effective than soft-attention matching on this
dataset. Secondly, the merits of this mechanism can be fur-
ther observed by the performance difference in the QRNN
and CTRN. Our proposed CTRN comfortably outperforms
QRNN by 2%−3% in terms of P@1 and MRR. Surprisingly,
we see that a simple baseline QRNN performs quite well on
this dataset which outperforms other complex models such
as NTN-LSTM and HD-LSTM (Tay et al. 2017).

Experimental Results on QatarLiving Table 5 reports
our experimental results on the QatarLiving dataset. Our
CTRN model outperforms AI-CNN2 by 2.5% in terms of
P@1 while maintaining similar performance on MRR. The
performance of the CTRN model also outperforms the base-
line QRNN by 3% on P@1. Similar to the Yahoo QA
dataset, we also found that the baseline QRNN performed
surprisingly well, i.e., outperforming ConvKN and other
CNN based models such as ARC-I and ARC-II. Overall, our
proposed approach achieves very competitive results on this
dataset.

2For fair comparison, we compare against the reported results
of AI-CNN that does not use handcrafted features.

5517

Model P@1 MAP

ARC-I CNN 0.741 0.771
ARC-II CNN 0.753 0.780

AP 0.755 0.771
Kelp 0.751 0.792

ConvKN 0.755 0.777
QRNN 0.758 0.783

AI-CNN 0.763 0.791
CTRN (This paper) 0.788 0.794

Table 5: Experimental results on the QatarLiving dataset.
Best result is in boldface and second best is underlined.
CTRN outperforms the complex AI-CNN model.

TRAIN TRAIN-ALL

Model MAP MRR MAP MRR

CNN + LR 0.7058 0.7846 0.7113 0.7846
CNN 0.7000 0.7469 0.7216 0.7899

CNTN 0.7045 0.7562 0.7278 0.7831
LSTM 0.7007 0.7777 0.7350 0.8064

MV-LSTM 0.7077 0.7821 0.7327 0.7940
NTN-LSTM 0.7225 0.7904 0.7364 0.8009
HD-LSTM 0.7520 0.8146 0.7499 0.8153

QRNN 0.7000 0.7859 0.7609 0.8227
CTRN (This paper) 0.7582 0.8233 0.7712 0.8384

Table 6: Comparisons of various neural baselines on the
TREC QA task on two dataset settings TRAIN and TRAIN-
ALL. Competitors (except QRNN and CTRN) are reported
from (Tay et al. 2017). Best result is in boldface and second
best is underlined.

Model MAP MRR

Wang et al. (2007) 0.6029 0.6852
Heilman and Smith (2010) 0.6091 0.6917
Wang and Manning (2010) 0.5951 0.6951
Yao (2013) 0.6307 0.7477
Wang et al. (2015) - BM25 0.6370 0.7076
S & M (2013) 0.6781 0.7358
Yih et al. (2013) 0.7092 0.7700
Yu et al. (2014) - CNN+LR 0.7113 0.7846
Wang et al. (2015) - biLSTM 0.7143 0.7913
S & M. (2015) - CNN 0.7459 0.8078
Yang et al. (2016) - aNMM 0.7495 0.8109
Tay et al. (2017) - HD-LSTM 0.7499 0.8153
Bradbury et al. (2016) - QRNN+MLP† 0.7609 0.8227
He and Lin (2016) - MP-CNN 0.7620 0.8300
CTRN† (TRAIN) 0.7582 0.8233
CTRN† (TRAIN-ALL) 0.7712 0.8384

Table 7: Performance comparisons of all published works on
TREC QA dataset. S&M is short for Severyn and Moschitti.
Best result is in boldface and second best is underlined. The
MP-CNN result is reported from (Rao, He, and Lin 2016),
using the pointwise model for fair comparison. † denotes
results reported by this work.

Results on TrecQA Table 6 reports the results on TRAIN
and TRAIN-ALL settings of the TrecQA task. CTRN
achieves the top results comparing to the multitude of neu-

ral baselines. Notably, the performance of CTRN is about
1%− 5% better than QRNN. QRNN performs very compet-
itively on the TRAIN-ALL setting but fails in comparison
for the TRAIN setting. This might be because QRNN, with
three 1D convolutional layers, might overfit on the smaller
dataset. However, CTRN performs well on smaller TRAIN
as well which hints at possibly some regularizing effect of
the LTC mechanism. The performance of the vanilla QRNN
model on the TRAIN-ALL setting is also surprisingly com-
petitive, outperforming more complex models such as HD-
LSTM and NTN-LSTM.

Table 7 reports the results of the CTRN model against
other published competitors. We can see that CTRN out-
performs many complex neural architectures such as the
aNMM model (Yang et al. 2016), HD-LSTM (Tay et al.
2017) and MP-CNN model (He, Gimpel, and Lin 2015;
Rao, He, and Lin 2016).

Runtime Comparison

Runtime
0

200

400

600

800

1000

S
ec
on
ds
/
E
p
o
ch

Runtime Analysis

QRNN

CTRN

LSTM

BiLSTM

AP-BiLSTM

Figure 3: Comparisons of runtime of all recurrent models on
the TRAIN-ALL dataset with d = 800.

Figure 3 shows the runtime comparison for recurrent
models on the TRAIN-ALL dataset. We observe that CTRN
is a very scalable and efficient model. Notably, our CTRN
model benefits from the training speed brought from the
QRNN model, which is clearly significantly faster than
LSTM models. Moreover, we also show that CTRN does
not significantly increase the runtime of the base QRNN,
only incurring an additional ≈ 10s per epoch. Moreover, we
achieve 4 times faster runtime compared to vanilla LSTM
models and 8 times faster than AP-BiLSTM.

Conclusion

We introduced a novel method for jointly learning to com-
pose QA pairs. This is achieved by aligning temporal gates.
We show that our lightweight temporal crossing (LTC)
mechanism is an effective method of modeling interactions
between QA pairs without incurring any parameter cost. Our
CTRN model performs competitively on two CQA bench-
marks and one factoid QA benchmark while being much
faster than LSTM and AP-BiLSTM models.

5518

Acknowledgements

The authors thank anonymous reviewers for their hardwork
and feedback.

References

Barrón-Cedeño, A.; Martino, G. D. S.; Joty, S. R.; Moschitti,
A.; Al-Obaidli, F.; Romeo, S.; Tymoshenko, K.; and Uva, A.
2016. Convkn at semeval-2016 task 3: Answer and ques-
tion selection for question answering on arabic and english
fora. In Proceedings of the 10th International Workshop
on Semantic Evaluation, SemEval@NAACL-HLT 2016, San
Diego, CA, USA, June 16-17, 2016.
Bradbury, J.; Merity, S.; Xiong, C.; and Socher, R. 2016.
Quasi-recurrent neural networks. CoRR abs/1611.01576.
Filice, S.; Croce, D.; Moschitti, A.; and Basili, R. 2016.
Kelp at semeval-2016 task 3: Learning semantic rela-
tions between questions and answers. In Proceedings of
the 10th International Workshop on Semantic Evaluation,
SemEval@NAACL-HLT 2016, San Diego, CA, USA, June
16-17, 2016.
He, H.; Gimpel, K.; and Lin, J. J. 2015. Multi-perspective
sentence similarity modeling with convolutional neural net-
works. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2015,
Lisbon, Portugal, September 17-21, 2015.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8).
Hu, B.; Lu, Z.; Li, H.; and Chen, Q. 2014. Convolutional
neural network architectures for matching natural language
sentences. In Advances in Neural Information Processing
Systems 27: Annual Conference on Neural Information Pro-
cessing Systems 2014, December 8-13 2014, Montreal, Que-
bec, Canada.
Kingma, D. P., and Ba, J. 2014. Adam: A method for
stochastic optimization. CoRR abs/1412.6980.
Li, J.; Chen, X.; Hovy, E.; and Jurafsky, D. 2015. Visualiz-
ing and understanding neural models in nlp. arXiv preprint
arXiv:1506.01066.
Pennington, J.; Socher, R.; and Manning, C. D. 2014. Glove:
Global vectors for word representation. In Proceedings
of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25-29, 2014,
Doha, Qatar, A meeting of SIGDAT, a Special Interest Group
of the ACL.
Qiu, X., and Huang, X. 2015. Convolutional neural tensor
network architecture for community-based question answer-
ing. In Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos
Aires, Argentina, July 25-31, 2015.
Rao, J.; He, H.; and Lin, J. J. 2016. Noise-contrastive esti-
mation for answer selection with deep neural networks. In
Proceedings of the 25th ACM International on Conference
on Information and Knowledge Management, CIKM 2016,
Indianapolis, IN, USA, October 24-28, 2016.
Santos; Tan, M.; Xiang, B.; and Zhou, B. 2016. Attentive
pooling networks. CoRR abs/1602.03609.

Severyn, A., and Moschitti, A. 2015. Learning to rank
short text pairs with convolutional deep neural networks.
In Proceedings of the 38th International ACM SIGIR Con-
ference on Research and Development in Information Re-
trieval, Santiago, Chile, August 9-13, 2015.
Severyn, A.; Moschitti, A.; Tsagkias, M.; Berendsen, R.; and
de Rijke, M. 2014. A syntax-aware re-ranker for microblog
retrieval. In The 37th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SI-
GIR ’14, Gold Coast , QLD, Australia - July 06 - 11, 2014.
Tay, Y.; Phan, M. C.; Luu, A. T.; and Hui, S. C. 2017. Learn-
ing to rank question answer pairs with holographic dual lstm
architecture. In Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in Infor-
mation Retrieval, Shinjuku, Tokyo August 7-11, 2017.
Tay, Y.; Luu, A. T.; and Hui, S. C. 2017. Enabling ef-
ficient question answer retrieval via hyperbolic neural net-
works. CoRR abs/1707.07847.
Wang, M., and Manning, C. D. 2010. Probabilistic tree-edit
models with structured latent variables for textual entailment
and question answering. In COLING 2010, 23rd Interna-
tional Conference on Computational Linguistics, Proceed-
ings of the Conference, 23-27 August 2010, Beijing, China.
Wang, D., and Nyberg, E. 2015. A long short-term memory
model for answer sentence selection in question answering.
In Proceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2015, July 26-31,
2015, Beijing, China, Volume 2: Short Papers.
Wang, K.; Ming, Z.; and Chua, T. 2009. A syntac-
tic tree matching approach to finding similar questions in
community-based qa services. In Proceedings of the 32nd
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 2009,
Boston, MA, USA, July 19-23, 2009.
Yang, L.; Ai, Q.; Guo, J.; and Croft, W. B. 2016. anmm:
Ranking short answer texts with attention-based neural
matching model. In Proceedings of the 25th ACM Interna-
tional on Conference on Information and Knowledge Man-
agement, CIKM 2016, Indianapolis, IN, USA, October 24-
28, 2016.
Yu, L.; Hermann, K. M.; Blunsom, P.; and Pulman, S.
2014. Deep learning for answer sentence selection. CoRR
abs/1412.1632.
Zhang, X.; Li, S.; Sha, L.; and Wang, H. 2017. Attentive in-
teractive neural networks for answer selection in community
question answering. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, February 4-9, 2017,
San Francisco, California, USA.
Zhou, G.; Cai, L.; Zhao, J.; and Liu, K. 2011. Phrase-based
translation model for question retrieval in community ques-
tion answer archives. In The 49th Annual Meeting of the As-
sociation for Computational Linguistics: Human Language
Technologies, Proceedings of the Conference, 19-24 June,
2011, Portland, Oregon, USA.

5519

