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Abstract

While end-to-end neural machine translation (NMT) has
achieved notable success in the past years in translating a
handful of resource-rich language pairs, it still suffers from
the data scarcity problem for low-resource language pairs
and domains. To tackle this problem, we propose an inter-
active multimodal framework for zero-resource neural ma-
chine translation. Instead of being passively exposed to large
amounts of parallel corpora, our learners (implemented as
encoder-decoder architecture) engage in cooperative image
description games, and thus develop their own image cap-
tioning or neural machine translation model from the need to
communicate in order to succeed at the game. Experimental
results on the IAPR-TC12 and Multi30K datasets show that
the proposed learning mechanism significantly improves over
the state-of-the-art methods.

Introduction

Neural machine translation (NMT) (Kalchbrenner and Blun-
som 2013; Sutskever, Vinyals, and Le 2014; Bahdanau, Cho,
and Bengio 2015), which directly models the translation
process in an end-to-end way, has achieved state-of-the-
art translation performance on resource-rich language pairs
such as English-French and German-English (Johnson et al.
2016; Gehring et al. 2017; Vaswani et al. 2017). The suc-
cess is mainly attributed to the quality and scale of available
parallel corpora to train NMT systems. However, preparing
such parallel corpora has remained a big problem in some
specific domains or between resource-scarce language pairs.
Zoph et al. (2016) indicate that NMT trends to obtain much
worse translation quality than statistical machine translation
(SMT) under small-data conditions.

As a result, developing methods to achieve neural ma-
chine translation without direct source-target parallel cor-
pora has attracted increasing attention in the community re-
cently. These methods utilize a third language (Firat et al.
2016; Johnson et al. 2016; Chen et al. 2017; Zheng, Cheng,
and Liu 2017; Cheng et al. 2017) or modality (Nakayama
and Nishida 2017) as a pivot to enable zero-resource source-
to-target translation. Although promising results have been
obtained, pivoting with a third language still demands large
scale parallel source-pivot and pivot-target corpora. On the

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

5086

other hand, large amounts of monolingual text documents
with rich multimodal content are available on the web, e.g.,
text with photos or videos posted to social networking sites
and blogs. How to utilize the monolingual multimodal con-
tent to build zero-resource NMT systems remains an open
question.

Multimodal content, especially image, has been widely
explored in the context of NMT recently. Most of the work
focus on using image in addition to text query to rein-
force the translation performance (Caglayan et al. 2016;
Hitschler, Schamoni, and Riezler 2016; Calixto, Liu, and
Campbell 2017). This task is called multimodal neural ma-
chine translation and has become a subtask in WMT16 ! and
WMTI17 2. In contrast, there exists limited work on bridg-
ing languages using multimodal content only. Gella et al.
(2017) propose to learn multimodal multilingual representa-
tions of fixed length for matching images and sentences in
different languages in the same space with image as a pivot.
Nakayama and Nishida (2017) suggest putting a decoder
on top of the fixed-length modality-agnostic representation
to generate a translation in the target language. Although
the approach enables zero-resource translation, the use of
a fixed-length vector is a bottleneck in improving translation
performance (Bahdanau, Cho, and Bengio 2015).

In this work, we introduce a multi-agent communication
game within a multimodal environment (Lazaridou, Pham,
and Baroni 2016; Havrylov and Titov 2017) to achieve di-
rect modeling of zero-resource source-to-target NMT. We
have two agents in the game: a captioner which describes an
image in the source language and a translator which trans-
lates a source-language sentence to a target-language sen-
tence. Apparently, the translator is our training target. The
two agents collaborate with each other to accomplish the
task of describing an image in the target language with mes-
sage in the source language exchanged between the agents.
Both agents get reward from the communication game and
collectively learn to maximize the expected reward. Experi-
ments on German-to-English and English-to-German trans-
lation tasks over the TAPR-TC12 and Multi30K datasets
demonstrate that the proposed approach yields substantial
gains over the baseline methods.

Uhttp://www.statmt.org/wmt16/
*http://www.statmt.org/wmt17/



Background

Given a source-language sentence x and a target-language
sentence y, a NMT model aims to build a single neural net-
work P(y|x; 6,_,,) that translates x into y, where 0,_,, is
a set of model parameters. For resource-rich language pairs,
there exists a source-target parallel corpus D, , to train the
NMT model. The model parameters can be learned with
standard maximum likelihood estimation on the parallel cor-
pus:

>

Xay>€Dz,y

0A$_>y = argmax { log P(y|x; 0$_>y)}. )
(

Ty

Unfortunately, parallel corpora are usually not readily
available for low-resource language pairs or domains. On
the other hand, there exists monolingual multimodal con-
tent (images with text descriptions) in the source and tar-
get language. It is possible to bridge the source and tar-
get languages with the multimodal information (Nakayama
and Nishida 2017) for an image is a universal representation
across all languages.

One way to ground a natural language to a visual image is
through image captioning, which annotates a description for
an input image with natural language through a CNN-RNN
architecture (Xu et al. 2015; Karpathy and Fei-Fei 2015).
Below, we call a pair of a text description and its counterpart
image a “document” and use z to denote an image. Given
documents in the target language D, = {(z",y")}_,,
an image caption model P(y|z;0._,,) can be built, which
“translates” an image to a sentence in the target language.
The model parameters 6,_,, can be learned by maximiz-
ing the log-likelihood of the monolingual multimodal docu-

ments:
>

log P(y|z;02iy)}. 2)
z,y)eD.

0.y

ézﬁy = argmax {
(

Inspired by the idea of pivot-based translation (Cheng
et al. 2017; Zheng, Cheng, and Liu 2017), another way to
achieve image-to-target translation is using a second lan-
guage (the source language) as a pivot. As a result, image-
to-target translation can be divided into two steps: the im-
age is first translated to a source sentence using the image-
to-source captioning model, which is then translated to a
target sentence using the source-to-target translation model.
We use two agents to represent the image-to-source caption-
ing model and the source-to-target translation model. The
image-to-target translation procedure can be simulated by
a two-agent communication game, where agents cooperate
with each other to play the game and collectively learn their
model parameters based on the feedback. Below we for-
mally define the game, which is a general learning frame-
work for training zero-resource machine translation model
with monolingual multimodal documents only.

Two-agent Communication Game
Problem Formulation

Given monolingual documents in the source language
D., = {{z'™ x("™)IM_and in the target language

5087

hund ein

greift

a'-‘%l brown: - dog -

Figure 1: Zero-resource neural machine translation through
a two-agent communication game within a multimodal en-
vironment. Agent A; is an image captioning model imple-
mented with CNN-RNN architecture (Xu et al. 2015); Agent
Aj is a neural machine translation model implemented with
RNNSearch (Bahdanau, Cho, and Bengio 2015). Taking an
image as input, agent A; sends a message in the source lan-
guage to agent A,, which is translated by agent As to a
target-language sentence to win a reward.

D., = {(z™,y™)}N_| | our aim is to learn a model
which translates source sentence x to target sentence y. Im-
portantly, D, , and D, , do not overlap; they do not share
the same images at all. Our model consists of a captioner
P(x|z;0,—,,) which translates image to source sentence
and a translator P(y|x; 6,_,,) which translates source sen-
tence to target sentence, where 6._,, and 6,_,, are model
parameters. To make the task a real zero-resource scenario,
we assume that no parallel corpora are available even in
the validation set. That is to say, we only have monolin-
gual documents D?% {{z™,x™) M and Dyl =
{(z",y™) }N""" for validation.

In the following we describe two models: (i) the PRE.
(pre-training) model that only trains the translator in the two-
agent game as the captioner can be pre-trained with D, ,;
(i1) the JOINT model that jointly optimize the captioner and
translator through reinforcement learning in the communi-
cation game.

The Game

As illustrated in Fig. 1, we propose a simple communication
game with two agents, the captioner A; and the translator
A,. Sampling a monolingual document (z,y) from D, ,,
the game is defined as follows:

1 A; is shown the image and is told to describe the image
with a source-language sentence X, 4.

2 A is shown the middle sentence x,,;q4 generated by A;
without the image information. It is told to translate X,,,;q
to a target-language sentence.

3 The environment evaluates the consistency of the trans-
lated target sentence and the gold-standard target-



language sentence y and then both agents receive a re-
ward.

The captioner A; and the translator A, must work to-
gether to achieve a good reward. A; should learn how to
provide accurate image description in the source language
and A, should be good at translating a source sentence to
a target sentence. This game can be played for an arbitrary
number of rounds, and the captioner A; and the translator
Ay will get trained through this reinforcement procedure
(e.g., by means of the policy gradient methods). In this way,
we develop a general learning framework for training zero-
resource machine translation model (the translator A5) with
monolingual multimodal documents only through a multi-
agent communication game. As we do not assume the spe-
cific architectures of the captioner and the translator, our
proposed learning framework is transparent to architectures
and can be applied to any end-to-end image captioning and
NMT systems.

Implementation

For a game beginning with a monolingual document
(z,y) € D, We use X,,;q to denote the exchanged source
sentence between agents. The goal of training is to find the
parameters of the agents that maximize the expected reward:

3

We follow He et al. (2016a) and define the reward as the log
probability of agent A5 generates y from x,,,;4:

E(0:2,0:y) = Ep(x, 0126, ) (Y, Ximids Oz y)]-

T(Yv Xmid) 0x—>y) = IOg P(Y‘Xmid; 090—>y) 4

As a result, the expected reward in the multi-agent commu-
nication game can be re-written as:

g(ez%za az%y) = EP(xm,id\z;Oz_,m) [log P(y|xmid; am%y)]

&)

In training, we optimize the parameters of the captioner

and translator through policy gradient methods for expected
reward maximization:

Gz—m;, 91—)1}

3 5(02%075%)}.

(2,y)€ED ,y

(6)

argmax

0. 10,0,y

We compute the gradient of £(0,_,,, 0,_,,) with respect to
parameters 8,_,, and 6,_,,. According to the policy gradi-
ent theorem (Sutton et al. 1999), it is easy to verify that:

Vezﬂg(@z—m 090—>y)

= E[Tvozéw IOg P(Xmid‘z; 0z—>x>]; (7)
Vexﬁy g(az%xa Bz%y)
= E[Vem—)y log P(Y|Xmid§ ezﬁy)]a ®)

in which the expectation is taken over X,,;; and r

Unfortunately, Eqn. 7 and 8 are intractable to calculate
due to the exponential search space of X (z). Following (He
et al. 2016a), we adopt beam search for gradient estima-
tion. Compared with random sampling, beam search can
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Algorithm 1 The learning algorithm in the two-agent com-
munication game
1: Input: Monolingual multimodal documents D,
{{z™, y™)}A_,, initial image-to-source caption model 0,
initial source-to-target translation model 6, _,,,, beam search
size K, learning rates 7y1,¢, 72,

2: repeat

3: t=1t+1.

4: Sample a document (z",y") from D ,.

5: Setz=2z",y =y".

6: Generate K sentences Xmid,1, " * ;Xmid, Kk USIng
beam search according to the image captioning model
P(x|2;60:-5).

7 fork=1,--- ,Kdo

8: Set the reward for the kth sampled sentence as r, =

log P(y|Xmid,k; Ox—sy)-
9: end for

10: Compute the stochastic gradient of 0,_,:
. 1 E
Vo, . Elrl = — > [reVe._,, log P(Xmiar|2 02 2)].
K k=1
11: Compute the stochastic gradient of 6, :
. 1 &
ng*,y]E[T‘] = } [Vew*,y log P(Y|xmid,k§0m~>y)}~
k=1
12: Model updates:

Oz < O + ’Yl,tvezﬂwﬁ[r]v
ez%y — az%y + ’Y2,tv9m_,ny[7n]-

13: until convergence

help to avoid the very large variance and sometimes unrea-
sonable results brought by image captioning (Ranzato et al.
2015). Specifically, we run beam search with the captioner
Aj to generate top- K high-probability middle outputs in the
source language, and use the averaged value on the middle
outputs to approximate the true gradient. Algorithm 1 shows
the detailed learning algorithm.

Training

Since the captioner A; has a very large action space to gen-
erate source description X,,;q4, it is extremely difficult to
learn with an initial random policy. Specifically, the search
space for A is of size O(VT), where V is the number of
words in the source vocabulary (more than 1000 in our ex-
periments) and T is the length of the sentence (around 10
to 20 in our experiments). Thus, we pre-train the captioner
A; with maximum likelihood estimation leveraging mono-
lingual dataset D, ,:

Apre
az—m

D

{ (z,X)ED,

We initialize the captioner A; with the pre-trained image
caption model and randomly initialize the translator As. To
avoid the randomly initialized agent A5 doing harm to the
pre-trained captioner Ay, we fix A for the initial few epochs

= argmax

z—x

log P(x|z;0._.) } 9)
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Figure 2: Validation of the PRE. model on monolingual doc-
uments D”‘” for the IAPR-TC12 German-to-English trans-
lation task BLEU score of the translator A, on the test set
correlates very well with BLEU score on D’;flyl using our
proposed validation criterion.

and only optimize agent As. Then we adopt two different
training approaches:

1. The PRE. (pre-training) model: We keep the captioner
fixed and only train the translator in the two-agent game.
Thus, the training objective is:

JrRE. (02—y)

>

<11Y>6Dz-,y

[log P(y|Xmid; 0z—y)].  (10)

Ep (s pyal2:027)

2. The JOINT model: We jointly optimize the captioner
and the translator through reinforcement learning in the
communication game. To encourage the captioner A; to
correctly describe the image in the source language, we
use half documents from monolingual dataset D, , =
{(z(™) x(™)IM_ in each mini batch to constrain the
parameters of A;. We train to maximize the weighted sum
of the reward based on documents from D, , and the log-
likelihood of image-to-source captioning model 6,_,, on
documents from D, ,. The objective becomes:

jJOINT (02~>a:; Bx%y)

D

<Z7Y>€Dz.,y

+A

EP(me\z;GZHI) [log P(Y|szd7 09:—)1/)]

>

(z,x)€D; 4

log P(x|2;0,). (11)

Validation

Since we do not have access to parallel sentences even at
validation time, we need to have a criterion for model and
hyper-parameters selection for the PRE. and JOINT meth-
ods. We validate the model on D?%.

Given model parameters 8._,, and 6,_,, at some itera-
tion and a monolmgual document (z, y) from D2, we out-
put the image’s description in the target language Wlth the
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Table 1: Dataset statistics.

TIAPR-TC12 | Multi30K
Num. of images 20,000 31,014

Vocabular En 1207 5877

4 De 1511 7225

Avg. length En 18.8 14.1

of descriptions | De 15.9 11.7

following decision rule using beam search:

X = argmax {P(x|z; Oz_m)} (12)
y = argmax {P(y|§c; 9w_)y)} (13)

y

With the generated y as the hypothesis and the gold-standard
description y as the reference, we use the BLEU score as
the validation criterion, namely, we choose the translation
model with the highest BLEU score. Figure 2 shows a typi-
cal example of the correlation between this measure and the
translation performance of the translator A5 on test set.

Experiments
Data Set

We evaluate our model on two publicly available multi-
lingual image-description datasets as in (Nakayama and
Nishida 2017). The IAPR-TC12 dataset (Grubinger et al.
2006), which consists of English image descriptions and the
corresponding German translations, has a total of 20K im-
ages. Each image contains multiple descriptions and each
description corresponds to a different aspect of the image.
Since the first sentence is likely to describe the most salient
objects (Grubinger et al. 2006), we use only the first de-
scription of each image. We randomly split the dataset into
training, validation and test sets with 18K, 1K and 1K im-
ages respectively. The recently published Multi30K dataset
(Elliott et al. 2016), which is a multilingual extension of
Flickr30k corpus (Young et al. 2014), has 29K, 1K and 1K
images in the training, validation and test splits respectively
with English and German image descriptions (Elliott et al.
2016). There are two types of multilingual annotations in
the dataset: (i) a corpus of one English description per im-
age and its German translation; and (ii) a corpus of 5 in-
dependently collected English and German descriptions per
image. Since the corpus of independently collected English
and German descriptions better fit the noisy multimodal con-
tent on the web, we adopt this corpus in our experiments.
Note that although these descriptions describe the same im-
age, they are not translations of each other.

For preprocessing, we use the scripts in the Moses SMT
Toolkit (Koehn et al. 2007) to normalise and tokenize En-
glish and German descriptions. For the IAPR-TC12 dataset,
we construct the vocabulary with words appearing more than
5 times in the training splits and replace those appearing less
than 5 times with UNK symbol. For the Multi30K dataset,
we adopt a joint byte pair encoding (BPE) (Sennrich, Had-



Table 2: Splits for experiments. Each image is annotated with one English or German sentence for the IAPR-TC12 dataset,

while each image is described by 5 English or German sentences for the Multi30K dataset.

Split Pair IAPR-TC12 Multi30K
img En De img En De
Train ?mg-En 9,000 | 9,000 - 14,500 | 72,500 -
img-De | 9,000 - 9,000 | 14,500 - 72,500
Validation img-En | 500 500 - 507 2,535 -
img-De | 500 - 500 507 - 2,535
Test En-De - 1,000 | 1,000 - 5,000 | 5,000

dow, and Birch 2016) with 10K merge operations on En-
glish and German descriptions to reduce vocabulary size.
To comply with the zero-resource setting, we randomly split
the images in the training and validation datasets into two
parts with equal size. One part constructs the image-English
split and the other part the image-German split. Unneces-
sary modalities for each split (e.g., German descriptions for
image-English split) are ignored. Note that the two splits
have no overlapping images, and we have no direct English-
German parallel corpus. Table 1 and 2 summarizes data
statistics.

Experimental Setup

To extract image features, we follow the suggestion of
(Caglayan et al. 2016) and adopt ResNet-50 network (He
et al. 2016b) pre-trained on ImageNet without finetuning.
We use the (14,14,1024) feature map of the res4fx (end
of Block-4) layer after ReLU. For some baseline methods
that do not support attention mechanism, we extract 2048-
dimension feature after the pool5 layer. We follow the archi-
tecture in (Xu et al. 2015) for image captioning and standard
RNNSearch architecture (Bahdanau, Cho, and Bengio 2015)
for translation. We leverage dl4mt > and arctic-captions * for
all our experiments. The beam search size is 2 in the middle
image-to-source caption generation. During validation and
testing, we set the beam search size to be 5 for both the cap-
tioner and the translator. All models are quantitatively eval-
uated with BLEU (Papineni et al. 2002). For the Multi30K
dataset, each image is paired with 5 English descriptions and
5 German descriptions in the test set. We follow the setting
in (Caglayan et al. 2016) and let the NMT generate a target
description for each of the 5 source sentences and pick the
one with the highest probability as the translation result. The
evaluation is performed against the corresponding five target
descriptions in the testing phase.
We compare our approach with four baseline methods:

1 Random: For a sentence in source language, we randomly
select a document in D, , whose caption would be output
as the translation result.

2 TFIDF: For a source sentence, we first search the nearest
document in D ,. in terms of cosine similarity of TFIDF
text features. Then, for the coupled image of that docu-
ment, we retrieve the most similar document in D, , in

3 di4mt-tutorial: https://github.com/nyu-dl
*arctic-captions: https://github.com/kelvinxu/arctic-captions
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Table 3: Comparison with previous work on German-to-
English and English-to-German translation with zero re-
source over the JAPR-TC12 and Multi30K datasets.

TAPR-TCI12 Multi30K
De-En  En-De | De-En  En-De
Random 2.5 1.2 2.0 0.8
TFIDF 10.2 7.5 2.4 1.0
3-way model | 13.9 8.6 15.9 10.1
TS model 14.1 9.2 16.4 10.3
PRE. 17.6 11.9 16.0 12.1
JOINT 18.6 14.2 19.6 16.6

terms of cosine similarity of pool5 feature vectors. We
output the coupled target sentence of the retrieved docu-
ment as our translation.

3 3-way model (Nakayama and Nishida 2017): We lever-
age the best 3-way model proposed in (Nakayama and
Nishida 2017) as our baseline, which adopts end to end
training strategy and trains the decoder with image and
description.

4 TS model (Chen et al. 2017): This method is originally de-
signed for leveraging a third language as a pivot to enable
zero-resource NMT. We follow the teacher-student frame-
work and replace the pivot language with image. The
teacher model is an image-to-target captioning model and
the student model is the zero-resource source-to-target
translation model.

Comparison with Baselines

Table 3 shows the translation performance of our pro-
posed zero-resource NMT on the TAPR-TC12 and Multi30K
datasets in comparison with other baselines. Note that the
TS model, PRE. model and JOINT model all utilize atten-
tion mechanism, while the 3-way model does not support
attention. It is clear from the table that in all the cases, our
proposed JOINT model outperforms all the other baselines.
Even with fixed captioner, the PRE. model can outperform
the baselines in most cases.

Specifically, the JOINT model outperforms the 3-way
model by +4.7 BLEU score on German-to-English transla-
tion and +5.6 BLEU score on English-to-German translation
over the IAPR-TC12 dataset; +3.7 BLEU score on German-
to-English translation and +6.5 BLEU score on English-to-



Source (German)

Translation (English) Reference image

1. ein madchen in einem kleid springt auf einem griinen rasen .
2. ein kleines madchen beim springen .

3. ein kleines madchen springt auf einer wiese herum .

4. ein madchen springt auf einer wise .

5.

ein kleines madchen in einem rosa kleid hiipft im gras

PRE.: a girl in a pink dress is jumping in the air .

JOINT: a little girl in a pink dress is jumping in the air .

die grauen mauern und griinen terrassen einer ruine auf
einem berg , mit einem sehr markanten berg dahinter und

einer bergkette im hintergrund .

PRE.: a ruin with grey walls and green terraces in the foreground .
JOINT: the grey walls and green terraces of ruins on top of a
mountain , with a very distinctive mountain behind them and a
wooded mountain range in the background .

Figure 3: Examples of target translations from the test set using zero-resource NMT trained by our proposed PRE. and JOINT
models. The first example is from the Multi30K dataset, while the second is from the IAPR-TC12 dataset.

German translation for the Multi30K dataset. The perfor-
mance gap can be explained since the 3-way model attempts
to encode a whole input sentence or image into a single
fixed-length vector, rendering it difficult for the neural net-
work to cope with long sentences or images with a lot of
clutter. In contrast, the JOINT model adopts the attention
mechanism for the captioner and the translator. Rather than
compressing an entire image or source sentence into a static
representation, attention allows for a model to automatically
attend to parts of a source sentence or image that are rele-
vant to predicting a target-side word. This explanation is in
line with the observation that all three models with attention
mechanism outperform the 3-way model.

Although the TS model also adopts the attention mech-
anism, its performance is dominated by the performance of
the teacher model, namely the image captioning model. Dur-
ing the learning process of the student model, the teacher
model is kept fixed all the time and the student tries to mimic
the decoding behavior of the teacher in the teacher-student
framework. The description of the same image can vary a
lot in different languages as indicated in (van Miltenburg,
Elliott, and Vossen 2017). Thus, the teacher model’s cap-
tioning result in target language is not necessarily the trans-
lation of the image’s coupled source-language description.
On the contrary, the JOINT model jointly optimize the cap-
tioner and the translator to win a two-agent communication
game. The two agents are complementary to each other and
are trained jointly to maximize expected reward. This mech-
anism helps to solve the problem of cross-linguistic dif-
ferences in image description (van Miltenburg, Elliott, and
Vossen 2017), resulting in better zero-resource NMT model.

Figure 3 shows translation examples of the zero-resource
NMT trained by the PRE. and JOINT methods. We also list
the corresponding image for reference. The first example is
from the Multi30K dataset, while the second is from the
IAPR-TC12 dataset. Apparently, the JOINT model has suc-
cessfully learned how to translate even with zero-resource.

Effect of Joint Training

We also compare the performance of the captioner with
(JOINT) and without (PRE.) the joint training. Table 4
shows the result. Cheng et al. (2017) demonstrate that in
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Table 4: Comparison the captioner’s performance of our pro-
posed PRE. and JOINT model.

IAPR-TCI12 Multi30K
Model |- - . g
img-de 1img-en | img-de img-en
PRE. 10.7 18.0 10.9 22.7
JOINT 10.5 17.3 12.3 21.3

pivot-based NMT, where the pivot is a third language, the
source-pivot and pivot-target translation models can be im-
proved simultaneously through joint training. In our set-
ting, image-to-source captioning does not necessarily im-
prove with joint training. It gets slightly worse on three out
of four translation tasks. Using a third language as a pivot,
the source-to-pivot and pivot-to-target models are symmetri-
cal as they are both NMT models. In contrast, in our setting
the captioner and the translator are not symmetrical anymore
since NMT is much easier to improve than image caption.
We suspect that the translator’s performance dominates the
multi-agent game.

Comparison with Oracle

Figure 4 compares the JOINT model with ORACLE that
uses direct source-target parallel or comparable corpora on
the TAPR-TC12 and Multi30K dataset.

For the Multi30K dataset, each image is annotated with
5 German sentences and 5 English sentences. The training
dataset for ORACLE can be constructed by the cross product
of 5 source and 5 target descriptions which results in a total
of 25 description pairs for each image or by only taking the 5
pairwise descriptions. We follow (Caglayan et al. 2016) and
use the pairwise way.

For the IAPR-TC12 dataset, the JOINT model is roughly
comparable with ORACLE when the number of parallel
sentences are limited to about 15% that of our monolin-
gual ones. For the Multi30K dataset, the JOINT model ob-
tains comparable results with ORACLE trained by num-
ber of comparable sentence pairs about 40% that of our
monolingual corpus. It obtains 75% of the BLEU score on
German-to-English translation and 65% of the BLEU score
on English-to-German translation for NMT trained with full
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Figure 4: Comparison with ORACLE that uses direct source-target parallel or comparable corpora. The JOINT model corre-

sponds to horizontal lines.

corpora. Although there is still a significant gap in perfor-
mance as compared to ORACLE trained with parallel cor-
pus, this is encouraging since our approach only uses mono-
lingual multimodal documents.

Related Work

Training NMT models without source-target parallel cor-
pora by leveraging a third language or image modality has
attracted intensive attention in recent years. Utilizing a third
language as a pivot has already achieved promising transla-
tion quality for zero-resource NMT. Firat et al. (2016) pre-
train multi-way multilingual model and then fine-tune the
attention mechanism with pseudo parallel data generated
by the model to improve zero-resource translation. John-
son et al. (Johnson et al. 2016) adopt a universal encoder-
decoder network in multilingual scenarios to naturally en-
able zero-resource translation. In addition to the above mul-
tilingual methods, several authors propose to train the zero-
resource source-to-target translation model directly. Chen et
al. (2017) propose a teacher-student framework under the
assumption that parallel sentences have close probabilities
of generating a sentence in a third language. Zheng et al.
(2017) maximize the expected likelihood to train the in-
tended source-to-target model. However, all these methods
assume that source-pivot and pivot-target parallel corpora
are available. Another line is to bridge zero-resource lan-
guage pairs via images. Nakayama and Nishida (2017) train
multimodal encoders to learn modality-agnostic multilin-
gual representation of fix length using image as a pivot. On
top of the fix-length representation, they build a decoder to
output a translation in the target language. Although the per-
formance is limited by the fix-length representation, their
work shows that zero-resource neural machine translation
with an image pivot is possible.

Multimodal neural machine translation, which introduce
image modality into NMT as an additional information
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source to reinforce the translation performance, has received
much attention in the community recently. A lot of work
have shown that image modality can benefit neural machine
translation, hopefully by relaxing ambiguity in alignment
that cannot be solved by texts only (Hitschler, Schamoni,
and Riezler 2016; Calixto, Liu, and Campbell 2017). Note
that their setting is much easier than ours because in their
setting multilingual descriptions for the same images are
available in the training dataset and an image is part of the
query in both training and testing phases.

Conclusion

In this work, we propose a multi-agent communication game
to tackle the challenging task of training a zero-resource
NMT system from just monolingual multimodal data. In
contrast with previous studies that learn a modality-agnostic
multilingual representation, we successfully deploy the at-
tention mechanism to the target zero-resource NMT model
by encouraging the agents to cooperate with each other
to win a image-to-target translation game. Experiments on
German-to-English and English-to-German translation over
the IAPR-TC12 and Multi30K datasets show that our pro-
posed multi-agent learning mechanism can significantly out-
perform the state-of-the-art methods.

In the future, we plan to explore whether machine transla-
tion can perform satisfactorily with automatically crawled
noisy multimodal data from the web. Since our current
method is intrinsically limited to the domain where texts can
be grounded to visual content, it is also interesting to explore
how to further extend the learned translation model to handle
generic documents.
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